
recent advances in Alloy
Daniel Jackson · MIT
Integrated Formal Methods · Oxford · July 4, 2007

outline
three advances in Alloy
‣ a new modelling idiom
‣ a new engine/API
‣ a new analysis feature

what is Alloy?

Alloy
a software modelling language
‣ small and uniform ASCII syntax for first-order logic with relations
‣ binding by parameters (with funs/preds) and free variables (with sigs)
‣ subtype and parametric polymorphism without casts
‣ dependent declarations, multiplicity constraints

an analysis tool
‣ exhaustive analysis and simulation with bounded ‘scope’
‣ based on off-the-shelf SAT solvers
‣ customizable visualization
‣ available as API for use in other tools

influences
‣ Z, VDM, Larch, Syntropy, etc; model checking

scope-complete analysis
observations about analyzing designs
‣ most assertions are wrong
‣ most flaws have small counterexamples

testing:
a few cases of arbitrary size

scope-complete:
all cases within small scope

applications of Alloy
in teaching
‣ taught in over 30 courses worldwide
‣ not just FMs and modelling; maths too (eg, Huth&Ryan, Trinity)

in research and industry
‣ First Alloy Workshop, September 2006 with FSE
‣ Airbus, AT&T, Galois, IBM, NASA, Navteq, Northrop Grumman, Telcordia

applications to date
‣ design analysis
‣ test case generation
‣ code verification
‣ automatic configuration

elements of alloy

alloy in 3 slides
signatures
‣ provide classification hierarchy for sets
‣ composite structure of objects
‣ local name space for relations
‣ incremental development

relational logic
‣ simple and uniform
‣ generalized join

facts, predicates and assertions
‣ simple packaging of constraints

signatures & !elds
sig A {}
-- introduces a set of atoms called A

sig B extends A {}
-- introduces a subset B of A

sig C extends A {}
-- introduces a subset C of A disjoint from B

sig A {f: B}
-- introduces a binary relation from A to B called f

sig A {f: B->C}
-- introduces a ternary relation from A to B to C called f

relational operators
p + q {t | t ∈ p ∨ t ∈ q}
p - q {t | t ∈ p ∧ t ∉ q}
p & q {t | t ∈ p ∧ t ∈ q}

p -> q {(p1, … pn,q1, … qm) | (p1, … pn) ∈ p ∧ (q1, … qm) ∈ q
p . q {(p1, … pn-1,q2, … qm) | (p1, … pn) ∈ p ∧ (pn, q2, … qm) ∈ q}

p in q {(p1, … pn) ∈ p} ⊆ {(q1, … qn) ∈ q}
p = q {(p1, … pn) ∈ p} = {(q1, … qn) ∈ q}

eg, given sig A {f: B->C}, a: A, b: B, c: C
some expressions and their types:
a.f: B->C
f.c: A->B
b.(a.f): set C

constraints & commands
fact {F}
-- establishes formula F, as an assumption

pred P () {Fp}
-- declares predicate P; invocation equivalent to inlining Fp

assert A () {Fa}
-- declares assertion A, claiming that formula Fa is valid

run P
-- instructs analyzer to find instance satisfying facts and Fp

check A
-- instructs analyzer to find instance satisfying facts and not Fa

favorite example: hotel locks

hotel locking
recodable locks (since 1980)
‣ new guest gets a different key
‣ lock is ‘recoded’ to new key
‣ last guest can no longer enter

how does it work?
‣ locks are standalone, not wired

a recodable locking scheme

k1

if second matches,
just open

k0

k1 k1

card has two keys
if first matches lock,
recode with second

k0

k1 k0

k1

a new idiom

local state
sig Key {}

sig Card {k1, k2: Key}
-- c.k1 is first key of card c
-- k1.k is set of cards with k as first key

sig Guest {
 holds: Card -> Time
 }
-- g.holds.t is set of cards g holds at time t

sig Room {
 key: Key one -> Time,
 prev: Key lone -> Time,
 occ: Guest -> Time
 }
-- r.key.t is key of room r at time t

events as objects
abstract sig Event {
 pre, post: Time }
 }

abstract sig HotelEvent extends Event {
 guest: Guest
 }

sig Checkout extends HotelEvent { }

abstract sig RoomCardEvent extends HotelEvent {
 room: Room,
 card: Card
 }

sig Checkin extends RoomCardEvent { }

abstract sig Enter extends RoomCardEvent { }
sig NormalEnter extends Enter { }
sig RecodeEnter extends Enter { }

constraining events
abstract sig Enter extends RoomCardEvent { }
 {
 card in guest.holds.pre
 }

sig RecodeEnter extends Enter { }
 {
 card.k1 = room.key.pre
 key.post = key.pre ++ room -> card.k2
 }

frame conditions
sig RecodeEnter extends Enter { }
 {
 card.k1 = room.key.pre
 key.post = key.pre ++ room -> card.k2

 prev.unchanged
 holds.unchanged
 occ.unchanged
 }

pred Event.unchanged (field: univ -> Time) {
 field.(this.pre) = field.(this.post)
 }

pred Event.unchanged (field: univ -> univ -> Time) {
 field.(this.pre) = field.(this.post)
 }

frame conditions, Reiter-style
sig Room {
 key: Key one -> Time,
 prev: Key lone -> Time,
 occ: Guest -> Time
 }
 {
 Checkin.modifies [prev]
 (Checkin + Checkout).modifies [occ]
 RecodeEnter.modifies [key]
 }

pred modifies (es: set Event, field: univ -> Time) {
 all e: Event - es | field.(e.pre) = field.(e.post)
 }

generating traces
open util/ordering[Time] as time

sig Time {}

abstract sig Event {
 pre, post: Time
 }

fact Traces {
 all t: Time - last | one e: Event | e.pre = t and e.post = t.next
 }

is it safe?
assert NoBadEntry {
 all e: Enter | let occs = occ.(e.pre) [e.room] |
 some occs => e.guest in occs
 }

check NoBadEntry for 5

summary
to use idiom
‣ open library module providing Event, unchanged, traces
‣ add Time column to time-varying fields
‣ declare events with pre/post conditions

advantages
‣ dynamic aspect doesn’t interfere with subtyping of domain objects
‣ classification of events factors out common elements
‣ can express LTL properties and more

a new engine
[Emina Torlak]

why a new engine?

2 4

6

configuration

scheduling enumeration

alloy 3 API

alloy analyzer 3

why a new engine?

2 4

6

scheduling enumeration

string
interface

no partial
instances

poor
scaling

no
sharing

alloy 3 API

configurationalloy analyzer 3

kodkod

2 4

6

configuration

scheduling

kodkod

enumeration

alloy analyzer 4.0

kodkod

2 4

6

configuration

scheduling

alloy analyzer 4.0

kodkod

enumeration

kodkod structure

‣ new symmetry detection algorithm
that works for arbitrary bounds

‣ new translation to propositional
logic based on sparse matrices

‣ new sharing detection based on
compact boolean circuits

formula

bounds

universe

skolemizer

symmetry
detector

symmetry
breaker

skolemized

formula

universe

partitioning

circuit
transformer

translation

SBP

translator

SAT
solver

CNF
instance

circuit
factory

performance

1

10

100

analysis time, seconds

pi
ge

on
-3

9
ce

il-
12

nu
m
37

8-
21

se
t9

48
-7

ge
o1

58
-6

m
ed

00
7-

15
m
ed

00
9-

17
al
g1

95
-1

4
pi
ge

on
-9

9
co

m
00

8-
11

ce
il-

20
ge

o0
91

-8
se

t9
43

-7
to

p0
20

-9
nu

m
37

4-
5

al
g2

12
-7

Alloy 3
Kodkod
Paradox 1.3
MACE4
FM-Darwin

∞

a new analysis
[Emina Torlak & Felix Chang]

multiple choice
1. suppose analyzer finds a counterexample to an assertion

A. assertion is wrong

B. analyzer is broken

2. suppose analyzer does not find a counterexample

A. assertion is valid and design is correct

B. assertion is valid but design is too strong

C. assertion is valid but assertion is too weak

D. assertion is invalid, has counterexample in larger scope

research question
‣ can we detect 2B, 2C, 2D?

exposing the proof
when no counterexample is found
‣ SAT solver creates a proof of unsatisfiability
‣ just a resolution graph over the clauses of the CNF

sometimes, not all clauses are used in the proof
‣ unused clauses are irrelevant
‣ Alloy constraints that translate to unused clauses are also!

scope to small

with only two time instants
‣ no Enter event can happen
(since Checkin must precede it)

highlighting shows
‣ Event postcondition irrelevant

model too strong

to prevent double issue, wrote
 all e1, e2: Checkin |
 e1.card.k2 != e2.card.k2

highlighting shows
‣ Checkin is irrelevant
‣ can never happen!

meant
 all disj e1, e2: Checkin |
 e1.card.k2 != e2.card.k2

assertion too weak

assertion is just a restatement
‣ of precondition of Enter

highlighting shows
‣ other Event constraints irrelevant

other ongoing projects

code veri!cation
a new tradeoff
‣ fully automatic, deep analysis of rich specifications
‣ counterexample traces generated

procedure
specification

procedure
source code

alloy formula
instance is

execution trace

alloy formula
instance is

counter trace
NOT AND

unroll loops,
bound heap

code veri!cation progress
two aspects of work
‣ demand-driven specification extraction for called code (Mana Taghdiri)
‣ efficient translation of code into Alloy (Greg Dennis)

current case studies
‣ libraries (OpenJGraph, Sun Java Collections)
‣ Quartz job scheduler
‣ KOA electronic voting system

experience
‣ discovered subtle bugs missed by testing
‣ typical performance:

few thousand kloc
scope of 5 (types, loop unwindings)

proton therapy project
collaboration with BPTC
‣ Burr Proton Therapy Center at MGH
‣ methods for safer software
‣ dependability & flexibility

projects to date
‣ beam scheduler design analysis
‣ emergency stop analysis (code dependences)
‣ end-to-end dependability case

infrastructure development
recent news
‣ awarded $800k by NSF (June 2007)

plans
‣ tool improvements
‣ educational materials
‣ user community website
‣ case study repository

for more information
about Alloy
‣ http://alloy.mit.edu

about Kodkod
‣ http://web.mit.edu/~emina/www/kodkod.html

about the Software Design Group
‣ http://sdg.csail.mit.edu

contact me!
‣ dnj@mit.edu

http://alloy.mit.edu
http://alloy.mit.edu
http://sdg.csail.mit.edu
http://sdg.csail.mit.edu
mailto:dnj@mit.edu
mailto:dnj@mit.edu

