RETHINKING

THE ROLE OF DESIGN
IN SOFTWARE
DEVELOPMENT

Daniel Jackson - Computer Science & Artificial Intelligence Lab - MIT

traditional engineers ...

ADOTONHO3L 40 JLNLILSNI SLLIISNHOVSSYN

U5 YIINIO VIVIS VIMVW ANV AVY JHL

nce Laboratory

G718

G714 Conference,
Rioam

G7

G706

state diagrams sequence diagrams class diagrams
» show transitions » show messages » show invariants
» embedded systems > telecomms (eg, SDL) > relational DB’s

XP Practices
tenets

> no ‘big design upfront’
Collective Coding . .
Ownership Test-Driven Standard » design evolves with code

i Development .

: \ Planaing by refactoring

Customer Pair .
. Refactoring
Tests Pr‘ogrammmg ,

g 7

1/

Giame

\ Simple - g
Design

Sustainable
Pace

Conlinuous
Inteqration \ . . .
9 Collective Code Ownership @zoom Out
Metaphor
Move People ..
Around 100%
Small

Releases vane XPro gramming.co

Next Task par (Create
or Failed Y 1100
Acceptance Test
Test

from extremeprogramming.org, xprogramming.com Refactor

- Paszzed
Copyright 2000 1. Dovaa Wels Mercilessly

Another strength of design with pictures is speed. In the time it would
take you to code one design, you can compare and contrast three
designs using pictures. The trouble with pictures, however, is that they
can’'t give you concrete feedback... The XP strategy is that anyone can
design with pictures all they want, but as soon as a question is raised
that can be answered with code, the designers must turn to code for
the answer. The pictures aren’t saved. -- Kent Beck (2000)

a missing ingredient
» design models must be analyzable
» are software engineers the only ones not to use computers?

alloy: a new approach

» a simple, powerful modelling language

» an analysis tool for concrete feedback

» based on properties: to characterize system & expectations

unlike XP

» user doesn’t write any test cases or expected results
» model is partial: focus on what matters

» exhaustive analysis: billions of cases in seconds

how alloy works

alloy
formula

alloy
instance

alloy analyzer

translate S—
formula i pping

boolean
formula

translate

instance

boolean
instance

Preface

Introduction

In every large software system, there is a small model trying to get
out. It’s the model that you'd get if you cleared away all the clut-
ter — all the irrelevant details, unused features, performance hacks
and workarounds. It captures the essence of the system — what it’s
about, its key concepts and how they fit together.

Rationale

If the designers had written it down, the maintainers wouldn’t need
to struggle through the source code, putting the model together
like a jigsaw puzzle. The testers would know where weak spots in
the implementation are likely to be, and wouldn’t have to fumble
in the dark. The users wouldn’t have to learn the system function
by function, because the authors of the user manual would have
seen more clearly what all the functions had in common.

Preface

Introduction

In every large software system, there is a small model trying to get
out. It’s the model that youd get if you cleared away all the clut-
ter — all the irrelevant details, unused features, performance hacks
and workarounds. It captures the essence of the system — what it’s
about, its key concepts and how they fit together.

Rationale

If the designers had written it down, the maintainers wouldn’t need
to struggle through the source code, putting the model together
like a jigsaw puzzle. The testers would know where weak spots in
the implementation are likely to be, and wouldn’t have to fumble
in the dark. The users wouldn’t have to learn the system function
by function, because the authors of the user manual would have
seen more clearly what all the functions had in common.

66 Untitled-1: Preface Introduction...
Cnapter
section
opening L ary large softwar there is a small model
g to get out. It"s the model that you'd get if you
cleared away all the clutter - all the irrelevant details,
unused feat performance hacks and workarounds. It
L's about, its

o paragraph style]
body
section Cnapier
body f th igners had written it down, the maintainers =
opening

wouldn't need to struggle through the source section

-
=
2
A
€=
=9
-
L
h
o

the model together 1ike a jigsaw puzzle. The t

know where weak . in the implementaticn are 11

be, and wouldn't have to fumble in the dark. The

|[s{

wouldn't have to learn the tem function by fun
because the authors of the user manual would hawve

more clearly what all the functions had in common.

Bravo, Xerox PARC (1973-79), Lampson/Simonyi
first use of style sheets in software

Paragraph Style Options
Style Name: section
General Ceneral

Based On: body

Mext Style: [Same style]

Shortcut:

Style Settings:

bady + next: [Same style] + Italic + size: 14 pt + lea
h left + nt = 1, [position: 2p6&, ali
space after: Op6 + keap next: 3

| Preview

There is no problem in computer science that cannot be solved by an
extra level of indirection --David Wheeler

for consistent formatting
» styles arranged in hierarchy, and inherit properties
» change to parent affects child automatically

Paragraph Style Options
Style Name: section
Ceneral

Based On: body
Mext Style: [Same style]

Shortcut:

SoylaSettings:

: 14 pt + proportional aldstyle +

Strikethrough Options

| Preview £ Cancel

Certain styles (Heading 1 to 3, Normal...) must exist in the document structure, so they always appear. Word can'’t let
you delete them because the document binary structure would implode if it did.

I have been writing my thesis paper and it has grown to be about 100 pages. The problem that I am having is with the
styles preferences... The problem I am having is if I choose and highlight maybe two words to bold, the entire document
becomes bold.

I'm having problems with Word 2002 automatically creating new styles. For example, I have a style called “Figures’, but
for some reason Word has created another style called “Figures Char Char3 Char Char Char Char Charl”.

First, make sure you have updated Word 2002 with at least SP-1. That solved a lot of the erroneous Char Char Char
problems. Second, it’s worth understanding how these ‘char’ styles are created. In Word 2002, you can have a paragraph
in, say, Body Text. If you select *part* of that paragraph and apply a different paragraph style (say, Style 2), then Word
creates a kind of hybrid, called Style 2 Char. It’s part-paragraph style and part-character style. This only happens if, when
you applied the style, some characters were selected, but not the whole paragraph including the paragraph mark.

You can get very bizarre behavior when importing one style that is based on another style without importing the based-
on style. This won’t be a problem when you update all styles based on a newly attached template. Even if you import the
whole set, you will get anomolies unless you import the set multiple times. I import (copy) three times.

I'll look some more, but it seems that the “RedefineStyle” command is buggy in Word2002/2003. Redefining a style
shouldn’t touch manual formatting. But it seems that “RedefineStyle” removes all manual formatting from all paragraphs
formatted in that style. It sure didn’t work like this up to Word2000, and whoever thought it a good idea to change this
must have ample access to psychedelic chemicals.

606 Alloy Analyzer

R EHE ..o _1@? AEE]EH &

New Open Save Prefs Build Execute Wiz Tree Text Msgs Layout
stf!e_'i.:'l'lls —"I-nstnnn:e'f'dund':'[_Dfi]lifli:-ﬁ?.'ll_j'_' Q@B _i'nstnnce_'S'?

module style_1

sig Para {style: Style} Para_0 Para_1

sig Style {basedOn: option Style} s es

pred show () {} \
run show style Style_2) basedOn

/JasedOn basedOn

Style_1 Style_0

af8A

ﬁ ﬁ E show [3]

New Open Save Prefs

stf!e_'i.:'l'lls —"I-nstnnn:e'f'dund':'[_Dfi]lifli:-ﬁ?.'ll_j'_'

module style_1

open std/graphs

sig Para {style: Style}

sig Style {basedOn: option Style}
fact {acyclic (basedOn)}

pred show () {}
run show

Alloy Analyzer

BERAKEE N

Build Execute Wiz Tree Text Msgs Layout

Q@ nstance 58

Style_0

Para_0O

Para_1

ba

sedOn / style

Style_2

QasedOn

Style_1

style

666

ﬁ ﬁ show [2]

Alloy Analyzer

mE P AELE

New Open Save Prefs

st_\,rle_'l.:'i'ls —"I'nstance'found.'[D:i]llfIl:'Dl.El)_
module style_1

open std/graphs

sig Para {style: Style}
sig Property {}

abstract sig Value {}
sig Real extends Value {}
static sig Same extends Value {}

sig Style {
basedOn: option Style,
given, actual: Property ->7 Value
H
all p: Property | p.actual =
if p.given in Same then p.(basedOn.@actual)
else p.given

}
fact {acyclic (basedOn)}

pred show () {some given}
run show for 2

’ Build Execute Wiz Tree Text

Q@E instance_60

Msgs Layout

Para_1

style

Style O

given: P_0->R_0,
actual: P 0->R_ D,

/::asedOn

Style_1
given: P_1->5ame_0, P_0->5ame_0
actual: P.1->R 0O, P 0->R 0

e Alloy Analyzer

ﬂ ﬁ AllParasHaveRealFormat [3] TJ Ié ? ‘E\ "—F"_E 3

New Open Save Prefs Build Execute Viz Tree Text Msgs Layout

style_lals - Counterexample found. {0:00:05.0) Q@E counterexample_63
module style_1
open std/graphs

Para_2
sig Para {style: Style} (q@2)

sig Property {} style

abstract sig Value {} Style_1
sig Real extends Value {} given: P_0->Same_0
static sig Same extends Value {}

basedOn

sig Style {
basedOn: option Style, Style_2

given, actual: Property ->? Value (s@0)
H given: P_0->R_0

actual: P_O->R_0

all p: Property | p.actual =
if p.given in Same then p.(basedOn.@actual)
else p.given

; Style_O

iven: P_0O-
fact {acyclic (basedOn)} fgjgl: P__D—:;

basedOn

R_1
R_1

assert AllParasHaveRealFormat {
all s: Style, p: Property | some s.given[p]
=> all g: Para, p: Property | some q.style.actual [p] & Real
}

check AllParasHaveRealFormat

where might this example go?
» multiple style sheets

» operations, eg deleting a style
» numbering scheme

typical experience

»a few hundred lines of Alloy

» analyses from seconds to minutes

> lots of backtracking, thinkos, refactoring

does it scale?
> this example: 62 bits ~ 10%° cases
> limit is currently about 500 bits ~ 10'®° cases

advances in SAT solvers
» size of solvable constraint

» in #boolean variables

e
-
e

from Sharad Malik

10000

1000

100

10

1960

1986

1992

1996

2001

10000

1000

100

0.1

advances in processors

» speed in MHz
from intel.com

_—

e

//

/

19{ 1976 1982 1985 1989 1992 1994 1996 1998 2000 2001 2002 2003

since 1990: factor of 100 from Moore’s law, 10%° from SAT advances

» firewire configuration protocol

» unison file sychronizer

» IMPP presence protocol for instant messaging
» query interface in COM

» key distribution for multicast

> intentional naming

» Chord distributed hash table

» role-based access control

> web ontologies

» military simulation

> telephone switch feature configuration
> proton beam scheduling

typical learning experience

» a few years of programming

» minimal background in discrete math
» writing small alloy models in a week

» modelling with confidence in a month

taught in courses

»in US, Canada, UK, Italy, Belgium, Switzerland,
Australia, New Zealand, Singapore

» mostly in masters of software engineering degrees

requirements
problem structure
domains &
assumptions

behavioural design

conceptual structure

states & operations
properties

conceptual
models

conceptual
models

interface design
interfaces
representation
design patterns

testing
suite generation
stubs & drivers
test execution
coverage analysis

coding
building
extending
fixing
refactoring

[will contend that conceptual integrity is the most important
consideration in system design. It is better to have a system omit
certain anomalous features and improvements, but to reflect one
set of design ideas, than to have one that contains many good but
independent and uncoordinated ideas. 1975

I am more convinced than ever. Conceptual integrity is central to
product quality. 1995

lightweight, analyzable design models
» better medium than code

> better feedback than code

» especially good for conceptual design

extreme programming
» a risk-driven approach, just like formal methods
» but models have benefits over programs

interface design
» also needs lightweight models

Alloy Homepage

Google Search:

.
A or analyzing models written in Al imple structural modeling language based on first-order logic. The tool can generate
: vari imulate the execution of operations (even those defined implicitly), and check user-specified properties of a model. Alloy and its
° ° an have been used primarily to explore abstra e designs. Its use in analyzing code for conformance to a specification and as an automatic test

Analyzable
Models
for
Software

case generator are being Investigated in ongoing research projects.

You can learn more about the language and the er by following the links bellow. If you prefer a more guided tour of Alloy, take a look at our Brief
Alloy or the more thorough Alloy 2.0 Tu

» case studies

as a teaching tool

) Courses —r dgiml
» downloads

Design

Daniel Jackson

books

» Martin Fowler, Analysis Patterns

» Erich Gamma et al, Design Patterns
» Michael Jackson, Software Requirements & Specifications
» Kent Beck, Extreme Programming Explained

upcoming book
Fall 04

extra slides

too complicated
> UML Reference Manual

576 pages; #62,915 in amazon.com
» Fowler, UML Distilled

192 pages; #1,516; 300,000 sold

too burdensome
» inflexible process
» big documentation, little insight

revolution!
> programmers vs. managers
» Elvis vs. Mort

Change Unidirectional Association to Bidirectional

You have two classes that need to use each other's features, but there is only a one-way link.

Add back pointers, and change modifiers to update both sets.

Customer

~}<

Customer

For more information see page 197 of Refactoring

Additional Comments
Doing a remove

In the example | showed an addOrder method, but | didn't show the removeOrder method. If you want to do a remove, you would write it
like the add method but set the customer to null.

Class Customer ...
void removeOrder(Order arg) {
arg.setCustomer({ null };

}

impact of conceptual design

user interface

conceptual
design

features &

functions @
options

& settings @

1implementation

datatypes

ease of use
flexibility
robustness

clean interfaces
decoupling
extensibility
dependability

