Ho
SAE

A report on JSP by C.A.R. Hoare, 1977
A Tribute to Michael Jackson - Vancouver - May 2009
Daniel Jackson - MIT

"Mitt namn ar Michael Jackson.
Jag skapade JSP-metoden.
Nu vill jag ocksa hjalpa er att
implementera den.”

"The Btores sectilon in a factory issues and receives parts,
Each issue and each receipt is recorded on a punched card:

the card contains the part-number, the movement type (I for
issuec, R for receipt) amd the guantity. The cards have already
been copled to magneklc tape and sorted into part-number order.
The program to be written will produce a simple summary of

the net movement of each part. The format of the summary is:

STORES MOVEMENTS SUMMARY

AS/132 NET MOVEMENT =450
AS/197 NET MOVEMENT 1760
B4dl/728 KET MOVEMENT 7

&

ho attention need be paid to such refinements as skipping
over the perforationg at the end of each sheet of paper.’

The flrst step of the desicn procedure, the data step,
is to draw daca structures of all the files in the problem.
The result of the data step 1s:

TINPUT FILE EUMMARY
L REFORT

-

[T : ANK REFORT

| PART -GROUP™ | HEADING I_:.iHIiE I I BODY I

rHﬂvEHuﬂT “I B
RECORD SUMMARY *

— "\.\\ LINE
ISSUES i inﬂﬂﬁ{yfﬂ

T?‘\Q \’l Le NP, \J a_‘,zq s :DM

47 T.»,oku‘;,w
l x _ . S,
Aoaha, § oA B o it
A T
=l U1

TL m.o.i:dv\ ()5 o cmr“tr Fvoam dnvoL:-u
'Hu. uu.u..}{'w ?(o Zhwu J,,,.,,,,{’_‘., a\MMplA , and
t;['* m d(a Ao JMML:‘;q‘ /t:‘t =
v WA rw‘a\u.’)&, rm\/LL, /t Ja’b o wrwt-r -
reeovd UJ)A Mu\] c.mw.«p(w lu.« y S mc«t}
M‘l CJ-Lo Jt Mw'ul eadn t&‘t o4 0{' 4 ouw

The Michael Jackson Design Technique:
A study of the theory with applications

C.A.R.Hoare

1 Programs, Traces and Regular Expressions

The execution of a computer program involves the execution of a series of elementary
commands, and the evaluation of a series of elementary tests (which, in fact, the Mi-
chael Jackson technique tends to ignore). It is in principle possible to get a computer to
record each elementary command when it is executed, and also to record each test as it
is evaluated (together with an indication whether it was true or false). Such a record is
known as a ‘trace’; and it can sometimes be helpful in program debugging.

It is obviously very important that a programmer should have an absolutely clear un-
derstanding of the relation between his program and any possible trace of its execution.
Fortunately, in the case of a structured program, this relation is very simple — indeed, as
Dijkstra pointed out, this is the main argument in favour of structured programming.
The relation may be defined as follows:

(a) For an elementary condition or command (input, output, or assignment), the
only possible trace is just a copy of the command. This is known as a ‘terminal
symbol; or ‘leaf; of the structure tree.

(b) For a sequence of commands (say P ; Q), every possible trace consists of a trace
of P followed by a trace of Q (and similarly for sequences longer than two).

(c) For a selection (say P U Q), every possible trace is either a trace of P or a trace of
Q (and similarly for selections of more than two alternatives).

(d) For an iteration (say P*), every possible trace is a sequence of none or more

fraroc oarh Afuhicrkh 0 a (haceiRkRlyy A avront) fraro ~nfD Zovra rormotitinance il oo

a JSP example

stores movement problem

"The stores seciion in a factory issues and receives parts.
Each issue and each receipt is recorded on a punchec card:

the card contains the part-number, the movement type (I for
issue, R for receipt) and the guantity. The cards have already
been copled to magnektlic tape and sorted into part-number order,
The program bto be written will produce a simple summary of

the net movement of each part. The format of the summary is:

STORES MOVEMENTS SUMMARY

AD/S132 NET MOVEMENT =450
ASS197 NET MOVEMENT 1760
B4l /728 NET MOVLEMENT 7

L

no attention need be paid to such refinements as skipping
over the perforationsg at the end of each sheet of paper.'

step 1: structures

step 1: structures

SMF

*
PART-GROUP

*
MOVEMT-REC

AN

O
ISSUE RECEIPT

step 1: structures

SMF REPORT
* *
PART-GROUP SUMMARY
LINE

*
MOVEMT-REC

AN

O
ISSUE RECEIPT

step 1: structures

SMF < > REPORT
* *
PART-GROUP |« > SUMMARY
LINE

*
MOVEMT-REC

AN

O
ISSUE RECEIPT

step 2: operations

0O N O U1 ~N LW D -

. smf=open (...)

. close (smf)

. rec=read (smf)

. display (pno, net)

. pno =rec.part_number
.net=0

. net =net + rec.quantity
. net=net - rec.quantity

0O NN O U0 N LW DN -

. smf=open (...)

. close (smf)

. rec=read (smf)

. display (pno, net)

. pno =rec.part_number
.net=0

. net =net + rec.quantity
. net=net - rec.quantity

SMF

OO| ®

*
PART-GROUP

G| ®

*
MOVEMT-REC

ISSUE

7 e

RECEIPT

®

smf=open (...); rec=read (smf);
while (!eof (rec)) {
pno = rec.part_number;
net=0;
while (!eof (rec) && pno==rec.part_number) {
if (rec.code ==ISSUE)
net = net - rec.quantity;
else
net =net + rec.quantity;
rec =read (smf);

}
display (pno, net);

}

close (smf);

Hoare's approach

programs & traces

programs & traces

smf=open (...); rec=read (smf);
while (!eof (rec)) {
pno = rec.part_number;
net=0;
while (...) {
if (rec.code ==1ISSUE)
net = net - rec.quantity;
else
net =net + rec.quantity;
rec =read (smf);

}
display (pno, net);

}

close (smf);

programs & traces

smf=open (...); rec=read (smf);
while () {

while (...) {

rec=read (smf);

}
display (pno, net);

}

close (smf);

programs & traces

smf=open (...); rec=read (smf); a trace
while () { <open, read, display, close>

while (...) {

rec =read (smf);

}
display (pno, net);

}

close (smf);

programs & traces

smf=open (...); rec=read (smf); a trace
while (!eof (rec)) { <open, read, display, close>
pno =rec.part_number;
net=0;
while (...) {
if (rec.code ==ISSUE)
net = net - rec.quantity;
else
net =net + rec.quantity;
rec =read (smf);

}
display (pno, net);

}

close (smf);

programs & traces

smf=open (...); rec=read (smf); a trace

while (!eof (rec)) { <open, read, display, close>
pno = rec.part_number; _ .
net=0; selective trace on input
while (...) { <open, read, close>

if (rec.code ==1ISSUE)

net = net - rec.quantity;
else

net =net + rec.quantity;
rec =read (smf);

}
display (pno, net);

}

close (smf);

programs & traces

smf=open (...); rec=read (smf); @ trace

while (!eof (rec)) { <open, read, display, close>
pno = rec.part_number; ' .
net=0; selective trace on input
while (...) { <open, read, close>

if (rec.code ==1ISSUE)
net = net - rec.quantity;
else
net =net + rec.quantity;
rec =read (smf);
}
display (pno, net);

}

close (smf);

programs & traces

smf=open (...); rec=read (smf); a trace

while (!eof (rec)) { <open, read, display, close>
pno = rec.part_number; _ .
net=0; selective trace on input
while (...) { <open, read, close>

if (rec.code ==ISSUE) .
net = net - rec.quantity; selective trace on output
else | <display>
net=net + rec.quantity;
rec =read (smf);
}
display (pno, net);

}

close (smf);

selective programs & traces

smf=open (...); rec=read (smf); @ trace

while (teof (rec)) { <open, read, display, close>
pno = rec.part_number;
;‘viﬁ:’(" selective trace on input
if (rec.code == ISSUE) <open, read, close>
net = net - rec.quantity;
else

selective program

net =net + rec.quantity;
smf=open (...); rec=read (smf);

rec =read (smf);

) while (...) {
display (pno, net); while (...) {
] rec=read (smf);
close (smf); }

}

merging selective programs

merging selective programs

SMF

//\

open read GROUPS close

*
PART-GROUP

T~

RECS read

*
MOVEMT-REC

VAN

O
ISSUE RECEIPT

merging selective programs

_

SMF

\

REPORT

open

read

GROUPS

close

BODY

*
PART-GROUP

T~

*
SUMMARY
LINE

RECS

read

display

*
MOVEMT-REC

VAN

ISSUE

O
RECEIPT

merging selective programs

_

SMF

\

REPORT

open

read

GROUPS

close

BODY

*
PART-GROUP

T~

*
SUMMARY
LINE

RECS

read

display

*
MOVEMT-REC

VAN

ISSUE

O
RECEIPT

merging selective programs

SMF/
REPORT

// \
GROUPS/
BODY

open read close

*
PART-GROUP/
SUMMARY LINE.

—~—

RECS read display

*
MOVEMT-REC

VAN

ISSUE RECEIPT

annotating with non-terminals
* left (right) annotation puts non-terminal symbol at start (end)

* now traces include non-terminals!

correspondences
* two symbols correspond if they alternate <a, b, a, b, ...>

transformation rules
* how to make structures match?

* apply algebraic rewrites, eg. Q=QuQ

methodical matching
* merged structure correct by construction
* in JSP, not formal but can check after

can project on variables too
* operation allocation subsumed

structures clash relative
* INPUT; OUTPUT always possible

* can do this at any level

paper available online at
http://tinyurl.com/hoarejsp

http://tinyurl.com/hoarejsp
http://tinyurl.com/hoarejsp

