
events & environment
Daniel Jackson · Lipari Summer School · July 18-22, 2005

leader election: review

election progress: first attempt
from this:

assert AtMostOneElected {
 lone elected.Time
 }

just try this?

assert AtLeastOneElected {
 some elected.Time
 }

counterexample:
› just skips in every step!

election progress: again
add progress filtering constraint
› if some process has an ID to send, some process doesn’t skip

pred progress () {
 all t: Time - to/last() |
 let t' = to/next (t) |
 some Process.toSend.t => some p: Process | not skip (t, t', p)
 }

assert AtLeastOneElected {
 progress () => some elected.Time
 }
check AtLeastOneElected for 5 Process, 10 Time

topics for today
some new idioms
› events as explicit objects
› Reiter-style frame conditions

environment
› assumptions about environment

at heart of many requirements failures

frame conditions

frame conditions
in declarative models
› unmentioned ≠ unchanged

so need frame conditions to say that
› relation doesn’t change

xs.buffer = xs’.buffer
› relation changes only at some object

(b.addr [n] = a) and (all m: Name - n | b’.addr [m] = b.addr [m])

s s'
unchanged
old value
new value

mitigating frame conditions
generate automatically
› from ‘modifies at most’ clause
› from non-mention of relations
› loss of flexibility

structure constraints to minimize
› specify value of whole relation

(b.addr [n] = a) and (all m: Name - n | b’.addr [m] = b.addr [m])
b’.addr = b.addr ++ n->a

› factor out
pred noChangeExceptAt (b, b’: Book, n: Name) {
 all m: Name - n |
 b’.addr [m] = b.addr [m]) and m <: b’.names = m <: b.names
 }

more radical mitigations
define components
› eg, elected in leader election model

Ray Reiter’s scheme
› add ‘explanation closure axioms’

if field f changed, then event e happened

forms

form: explicit events
sig Time {}
sig O {f: X -> Time}
sig Event {pre, post: Time, o: O, x: X}
 {f.post = f.pre ++ o -> x}

fact {
 all t: Time - last() | let t’ = next(t) |
 some e: Event | e.pre = t and e.post = t’
 }

form: event classification
sig Time {}
sig O {f: X -> Time, g: Y -> Time}
sig Event {pre, post: Time, o: O, x: X}
 {f.post = f.pre ++ o -> x}

sig SubEvent extends Event {y: Y}
 {y.post = y.pre ++ o -> y}

form: explanation closure
sig Time {}
sig O {f: X -> Time, g: Y -> Time}
sig EventA {pre, post: Time, ...}
sig EventB {pre, post: Time, ...}

fact {
 all t: Time - last() | let t’ = next(t) |
 some e: Event {
 e.pre = t and e.post = t’
 f.t = f.t’ or e in EventA
 g.t = g.t’ or e in EventB
 }
 }

recodable hotel locks

hotel locking
recodable locks (since 1980)
› new guest gets a different key
› lock is ‘recoded’ to new key
› last guest can no longer enter

how does it work?
› locks are standalone, not wired

a recodable locking scheme
from US patent 4511946; many other similar schemes

k0

k1

card & lock have two keys
if both match, door opens k0

k1

k0

k1

k1

k2

if first card key matches
second door key, door opens

and lock is recoded k1

k2

k0

k1

modelling in alloy: state
sig Key, Time {}
sig Card {fst, snd: Key}
sig Room {fst, snd: Key one -> Time}

one sig Desk {
 prev: (Room -> lone Key) -> Time,
 issued: Key -> Time,
 occ: (Room -> Guest) -> Time
 }

sig Guest {cards: Card -> Time}

initialization
pred init (t: Time) {
 -- room’s previous key is its second key
 Desk.prev.t = snd.t
 -- each key is the first or second key of at most one room
 (fst + snd).t : Room lone -> Key
 -- set of keys issued is first and second keys of all rooms
 Desk.issued.t = Room.(fst+snd).t
 -- no cards handed out, and no rooms occupied
 no cards.t and no occ.t
 }

digression: subsignatures
suppose you write
sig S1 {f: A}
sig S2 extends S1 {g: B}

then this introduces
sets

S1
S2 in S1

relations
f: S1 -> A
g: S2 -> B

aside: s1.g is not necessarily bad

event classification
abstract sig HotelEvent {
 pre, post: Time,
 guest: Guest
 }

abstract sig RoomCardEvent extends HotelEvent {
 room: Room,
 card: Card
 }

checking in
sig Checkin extends RoomKeyEvent { }
 {
 card.fst = room.(Desk.prev.pre)
 card.snd not in Desk.issued.pre
 cards.post = cards.pre + guest -> card
 Desk.issued.post = Desk.issued.pre + card.snd
 Desk.prev.post = Desk.prev.pre ++ room -> card.snd
 Desk.occ.post = Desk.occ.pre + room -> guest
 }

entering a room
abstract sig Enter extends RoomKeyEvent { }
 {card in guest.cards.pre}

sig NormalEnter extends Enter { }
 {card.fst = room.fst.pre and card.snd = room.snd.pre}

sig RecodeEnter extends Enter { }
 {
 card.fst = room.snd.pre
 fst.post = fst.pre ++ room -> card.fst
 snd.post = snd.pre ++ room -> card.snd
 }

free variables
what’s going on here?

why are explicit events good?
› appear as atoms in visualization
› can classify events

why can’t you classify with predicates?
› you can, but it’s uglier
› free vs. bound variables

pred enter (t, t’: Time, r: Room, g: Guest) {...}
pred normalEnter (t, t’: Time, r: Room, g: Guest) {
 enter (t, t’, r, g) and ...}

reiter-style frame conditions
fact Traces {
 init (first ())
 all t: Time - last () | let t' = next (t) |
 some e: HotelEvent {
 e.pre = t and e.post = t'
 fst.t = fst.t' and snd.t = snd.t' or e in RecodeEnter
 prev.t = prev.t' and issued.t = issued.t' and cards.t = cards.t'
 or e in Checkin
 occ.t = occ.t' or e in Checkin + Checkout
 }
 }

does the scheme work?
safety condition
› if an enter event occurs, and the room is occupied,

then the guest who enters is an occupant

assert NoBadEntry {
 all e: Enter | let occs = Desk.occ.(e.pre) [e.room] |
 some occs => e.guest in occs
 }

demo

constraining the environment
after checking in, guest immediately enters room:

fact NoIntervening {
 all c: Checkin |
 some e: Enter {
 e.pre = c.post
 e.room = c.room
 e.guest = c.guest
 }
 }

machines & environments

specification is at machine interface,
but requirement might not be

the world

the machine

REQ
SPEC

ENV

more generally: domains

see: Problem Frames, Michael Jackson, Addison Wesley, 2001

machine

cards & locks

guestsemployees

rooms

REQ

homework

hacking the hotel
in an earlier patent
› lock required match only on first key

suppose guest can make new cards
› using keys from cards she holds

is system secure?

your task
› make one line change to NormalEnter event to reflect this
› rerun NoBadEntry check to expose attack

checking code
checking code against relational logic specifications
› basic idea and optimizations [Vaziri]
› iterative refinement of procedure summaries [Taghdiri]

procedure
code

procedure
spec not and

unroll
loops

formula:
traces

formula:
counterexample

traces

test case generation
generating test cases from invariants [Khurshid]
› easier to write invariant than test cases
› random generation fails when precondition is strong
› Alloy’s symmetry breaking eliminates redundant tests

rep invariant or
precondition

Alloy
Analyzer

test suite

reminder
return memory sticks to alfredo in next break!

acknowledgments
current students
& collaborators

Greg Dennis
Derek Rayside
Robert Seater

Mana Taghdiri
Emina Torlak

Jonathan Edwards
Vincent Yeung

former students
Sarfraz Khurshid
Mandana Vaziri
Ilya Shlyakhter

Manu Sridharan
Sam Daitch
Andrew Yip
Ning Song

Edmond Lau
Jesse Pavel

Ian Schechter
Li-kuo Lin

Joseph Cohen
Uriel Schafer

Arturo Arizpe

for more info
http://alloy.mit.edu
› downloads
› papers
› case studies

alloy@mit.edu
› questions about Alloy

dnj@mit.edu
› happy to hear from you!

Software Abstractions
›MIT Press, 2006

that’s all folks!

