micromodels of software
declarative modelling
and analysis with Alloy

lecture 4: a case study

Daniel Jackson
MIT Lab for Computer Science
Marktoberdorf, August 2002

on research strategy

I have grown more and more aware that success in science ...
comes not so much to the most gifted, nor the most skillful,
nor the most knowledgeable, but rather to the superior
strategist and tactician. -- Jack Oliver

To make an important discovery, you must study an important
problem. -- Peter Medawar

Know your secret weapon. -- Herb Simon

know where you are

knowledge age of discovery

time

collection of aphorisms at
theory.lcs.mit.edu/~dnj/6898/lecture-notes.html

Session 20: Hints on Research Strategy

bakery algorithm

why this example?
» curiosity -- [hadn’t done it before
» familiarity -- you can compare to Rushby
> illustrate aspects of Alloy modelling

aspects

no commitment to fixed topology in model itself
can easily encode traces in the logic

both invariant reasoning & trace analysis

can mitigate effects of finite bounds

v

v

v

Vv

general observations

Rushby on PVS
> nothing’s easy, but everything’s possible

Jackson on Alloy
» everything’s easy, but nothing’s possible

not quite...
> it’s not always so easy
> more is possible than you might have guessed

signatures

module bakery

open std/ord

sig Process {}
sig Ticket {}

process in critical phase

holds no ticket: hand in ticket
sig State { when you're being served

ticket: Process ->? Ticket,

part idle, trying, critical: set Process

}

safety condition

at most one process is in the critical phase:

sig State {
ticket: Process ->? Ticket,

part idle, trying, critical: set Process

}
fun Safe (s: State) {

sole s.critical

}

transition relation

fun Trans (s, s': State, p: Process
let otherTickets = s.ticket[Process-p],
next = Ord[Ticket].next |

other cases

fun Trans (s, s': State, p: Process) {
let otherTickets = s.ticket[Process-p], next = Ord[Ticket].next |

or

{p in s.critical

p in s'.idle

s.ticket[p] = s.ticket[p]}
or

{p in s.idle
p in s'.trying
some s'.ticket[p] & otherTickets.*next}

}

10

frame condition

define a condition saying that a process p doesn’t change:

fun NoChange (s, s': State, p: Process) {
s.ticket[p] = s'.ticket[p]
p in s.idle => p in s'.idle
p in s.trying => p in s'.trying
p in s.critical => p in s'.critical

}

11

tial condition

fun Init (s: State) {
Safe (s)
}

12

putting things together

fun Interleaving () {
Init (Ord[State].first)
all s: State - Ord[State].last, s": Ord State|.next[s] |
some p: Process {
Trans (s,s',p)

all x: Process - p | NoChange(s,s',x)

}

} use of ordering:
instantiation imposes
a total order on
the set State

13

allowing simultaneous actions

fun Simultaneity () {
Init (Ord[State].first)
all s: State - Ord[State].last, s": Ord[State].next[s] |
all p: Process | Trans (s,s',p) or NoChange(s,s',p)

14

checking a conjecture

assert InterleavingSafe {

Interleaving () => all s: State | Safe (s)
}

check InterleavingSafe for 4 but 2 Process

15

counterexamples...

16

how much assurance?

analysis within bounded scope:

check InterleavingSafe for 4 but 2 Process

2 processes ... seems reasonable
> we've learned something about a real scenario

4 tickets? 4 states? ... not at all reasonable
» running out of tickets is a poor approximation
> not considering all states may miss bugs

17

when is a trace long enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
> if all states reached in path < k
» enough to consider only traces < k

strategy
» ask for loopless trace of length k+1

if none, then k 1s a bound
> tighter bounds possible: eg, no shortcuts

like bounded model checking
> but can express conditions directly

\\,
N

diameter = 1
max loopless =1

[\
N/

diameter = 1
max loopless =5

>

18

finding the diameter

fun NoRepetitionsI () {
Interleaving ()
no disj s, s': State | Equiv (s,s')
}
fun Equiv (s, s": State) {
s.ticket = s'.ticket
s.1dle = s'.idle && s.critical = s'.critical

}
run NoRepetitionsI for 3 but 2 Process, 8 State

19

can we fix the tickets in the same way?

what we want to do
> bound the ticket scope for fast analysis
» but know that we never run out of tickets

one idea
» find diameter of machine
> ensure enough tickets for longest trace

a better idea
> ticket allocations with same process order are equivalent
> so find diameter with respect to ticket ordering
> and show not all tickets are used

20

defining the order

introduce process ordering as a new field
sig StateWithOrder extends State {
precedes: Process -> Process
H
all p, p': Process |
p->p' in precedes iff
ticket[p'] in *(Ord[Ticket].next)[ticket[p]]

}
fact {State = StateWithOrder}

21

defining state equivalence

define equivalence modulo ordering
fun EquivProcessOrder (s, s': State) {
s.precedes = s'.precedes

s.idle = s'.idle && s.critical = s'.critical

}

define no repetition constraint
fun NoRepetitionsUnderOrderI () {
Interleaving ()

no disj s, s': State | EquivProcessOrder (s,s')

}

22

finding the bounds

find a diameter

run NoRepetitionsUnderOrderI for 7 but 3 Process, 13 State

check that tickets not all used
assert EnoughTicketsI {
Interleaving () => Ord[Ticket].last !in State.ticket [Process]

}
check EnoughTicketsI for 7 but 3 Process, 12 State

so now we know
» for 3 processes, 12 states and 7 tickets is fully general

23

getting full coverage

finally, we check this

check InterleavingSafe for 7 but 3 Process, 12 State

if no counterexample
> we have a ‘proof” for 3 processes

24

what we did

unbounded model of bakery
> no fixed number of processes or tickets

analysis in small finite scope
> may miss counterexamples

established diameter
» for 3 processes, 12 states and 7 tickets is enough

full analysis for bounded topology
> all scenarios for 3 processes

25

summary of Alloy

a simple language
> relational first-order logic
» signatures for structuring: global relations
> description is set of constraints

an effective analysis
» simulation & checking are instance-finding
> user provides scope, distinct from model
> tool reduces Alloy to SAT

applications
» a variety of case studies
> used for teaching in ~15 universities

26

challenges: better analysis

improving analysis
» exploiting equalities?
> eliminating irrelevant constraints?
> choosing symmetry predicates?

mitigating effects of scope
> data independence: scope of 3 enough?
» decision procedure for subset?

analyzing inconsistency
» what when no instances are found?
> might have shown

false => property
> tool might show which constraints used

27

challenges: applications

finding bugs in code
> extract formula from procedure
p(s,s0,s1,...,s")
> check the conjecture

pre(s) && p(s,s0,s1,...,s") => post(s,s’)
» counterexample is trace

build veneers on Alloy
> on API, or as macro language
> eg, role-based access control
> eg, semantic web design

28

challenges: case studies

source code control
> model CVS at multiple levels
» 1s it correct?

meta modelling
» check consistency of UML metamodel
> check theorems of Unified Theory?

dynamic topology algorithms
> reverse path forwarding, eg

29

thank you!
dnj@mit.edu

