
modelling &
analyzing
software
abstractions
Daniel Jackson · Computer Science & Artificial Intelligence Lab · MIT
Microsoft Research · March 21, 2005

premise #1: abstractions

the design of software abstractions is
› the essence of software design
› the key determinant of its quality
› and can be conscious, not just emergent

fred brooks on conceptual integrity

I will contend that conceptual integrity is the most important
consideration in system design. It is better to have a system omit certain
anomalous features and improvements, but to reflect one set of design
ideas, than to have one that contains many good but independent and
uncoordinated ideas. 1975

I am more convinced than ever. Conceptual integrity is central to product
quality. 1995

example

› what is an address? nickname? group?
› can nicknames have nicknames?
› are empty groups ok?
› can an address appear twice in a group?

premise #2: details matter

not all bugs in code are created equal
› transcription errors ⇢ easily fixed
› bugs in abstractions ⇢ barnacles of complexity

example: fonts
› no standard font styles (bold, semibold, black, ...)
› different glyphs with same unicode id!

elements of my approach

› expressive/precise/simple language
› automatic tool, for deep analysis
› catalog of patterns, to capture state of art
› case studies for demo, evualation, education

progress to date: alloy

Alloy 3, a logic-based modeling language
Alloy Analyzer, SAT-based analyzer for simulation & checking
about 40 patterns developed, basis for current UG course

case studies
› serious flaws found in several published designs
› recent studies: beam scheduling, cryptography, interoperation

Alloy has been taught in about 20 courses worldwide

desiderata

› structure and classification
› expressiveness
› instant feedback
› declarative spec
› constraints, not test cases
› fully automatic checks

structure & classification

alloy model of an address book
abstract sig Target {}

abstract sig Name extends Target {}

sig Alias, Group extends Name {}

sig Addr extends Target {}

sig Book {

 addr: Name -> Target

 }

instant feedback

incremental analysis, of very partial models
pred show () {}

run show

instant feedback

incremental analysis, of very partial models
pred show () {}

run show

expressiveness

no name refers to itself directly or indirectly
fact { all b: Book | no n: Name | n in n.^(b.addr) }

declarative spec (1)

first, an operational spec of deletion
pred del1 (b, b’: Book, n: Name) {

 let ad = b.addr {

 some n.ad

 b’.addr = ad - (n->univ) - (univ->n) + ad.n->n.ad }

 }

declarative spec (2)

lookup
fun lookup (b: Book, n: Name): set Addr { n.^(b.addr) & Addr }

a declarative spec of deletion
pred del (b, b’: Book, n: Name) {

 some n.(b.addr) and no n.(b’.addr)

 all x: Name |

 x = n implies no lookup (b’, x)

 else lookup (b’, x) = lookup (b, x)

 }

constraints, not test cases

show me an address book with more than two levels
pred show (b: Book) { some (b.addr).(b.addr) }

show me a deletion of a name at top-level
pred showDel (b, b’: Book, n: Name) { del (b, b’, n) and some n.(b.addr) and no b.addr.n }

show me a deletion that has no effect
pred showDel (b, b’: Book, n: Name) { del (b, b’, n) and b.addr = b’.addr }

fully automatic checks

check that deletion is deterministic
assert delDeterministic {

 all b, b’, b”: Book, n: Name |

 del (b, b’, n) and del (b, b”, n) => b’.addr = b”.addr }

check delDeterministic for 3

non-determinism!

missing complexities

no undefinedness all operators total, every expression defined

subtyping and overloading, but no casts or special type operators

composite structures but no higher-order logic

dynamics, mutation without built-in state machine idiom

resource-bounded analysis

language is undecidable
› no sound & complete algorithm
› so: try all small tests

scope: a bound on each type
› model proper is unpolluted
› user defines scope in command
› can scope subtypes

module book
open util/ordering [Book]
abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}
sig Book {...}
assert delDeterministic {...}
check delDeterministic for
 6 but 3 Book

why it works in practice

‘small scope hypothesis’
› many bugs have small counterexamples
› … and models often have many bugs
› many more cases than traditional testing

analysis: architecturealloy architecture

alloy analyzer

alloy
formula

scope

boolean
formula

boolean
instance

alloy
instance

translate
formula

translate
instance

SAT
solver

mapping

analysis by translation to SAT

analysis problem
› solve a constraint whose free variables are relations
› but in scope of 5, a ternary relation has 2^(5^3) ~ 10^30 values!

SAT: the quintessential hard problem
› SAT is hard (Cook, 1971)
› so reduce SAT to your problem

SAT: the universal constraint solver
› SAT is easy (Kautz, Selman et al, 1990’s)
› so reduce your problem to SAT

technology advances

1

10

100

1000

10000

1960 1986 1992 1996 2001

advances in SAT solvers
› size of solvable constraint
› in #boolean variables
from sharad malik

advances in processors
› speed in MHz
from intel.com

0.1

1

10

100

1000

10000

1971 1976 1982 1985 1989 1992 1994 1996 1998 2000 2001 2002 2003

since 1990: factor of 100 from Moore’s law, 1030 from SAT advances

patterns: trace

general form
 open util/ordering [State] as so

 pred op1 (s, s’: State) {...}

 pred opN (s, s’: State) {...}

 pred init (s: State) {...}

 fact traces {

 init (so/first ())

 all s: State - so/last () | let s’ = so/next (s) |

 op1 (s, s’) or ... or opN (s, s’)

 }

patterns: local state

instead of State as first column
 sig State {f : A -> B}

 a.(s.f)

make State last column
 sig A {f: B -> State}

 a.f.s

pattern instantiation: hotel locks

local state
sig Room {

 keys: set Key,

 currentKey: keys one -> Time

 }

one sig FrontDesk {

 lastKey: (Room -> lone Key) -> Time,

 occupant: (Room -> lone Guest) -> Time

 }

sig Guest { keys: Key -> Time }

trace
fact traces {

 init (to/first ())

 all t: Time - to/last() | let t’ = to/next (t) |

 some g: Guest, r: Room, k: Key |

 entry (t, t’, g, r, k)

 or checkin (t, t’, g, r, k)

 or checkout (t, t’, g)

 }

checking hotel locks

assert NoBadEntry {

 all t: Time, r: Room, g: Guest, k: Key | let t’ = to/next(t) |

 entry (t, t’, g, r, k) => g in FrontDesk.occupant.t [r]

 }

check NoBadEntry for 3 but 7 Time, 2 Room, 2 Guest

what has alloy been used for?

at MIT
› about 30 case studies, typically a few hundred lines long
› find flaws in almost everything we look at
› latest examples: beam scheduler for proton therapy, crypto

industrial uses
› animating requirements (TCS, India)
› military simulation (Northrop Grumman)
› role-based access control (BBN)
› telephony (AT&T)

test case generation

how
› characterize input tests with invariant
› have analyzer enumerate solutions

why?
› for complex structures, most random inputs are ill-formed
› Alloy’s symmetry breaking reduces suite size
› less work, more coverage than manual test cases

Sarfraz Khurshid, 2003

code checking

basic idea
› model OO code with relations for fields
› extract constraint from code
› assert Code () => Spec ()
› scope sets path length within procedure, heap size, etc

so far, small systems but rich properties
› tally strategy of electronic voting software

basics + optimizations -- Mandana Vaziri, 2001/3
specification inference -- Mana Taghdiri, 2004

prospects & challenges

short term plans
› book on modelling & analyzing abstractions
› expanding Alloy user base, esp in education

long term plans
› new embedded Alloy as flexible API
› bridging design/code gap

for more information

alloy.mit.edu
› case studies
› courses
› tutorial
› downloads

upcoming book (late 2005)
› about modelling, not Alloy
› patterns of modelling & analysis
› lots of realistic examples

�����������
�������
����

���������
������

��������������

extra slides

reactions to UML

too complicated
› UML Reference Manual
 576 pages; #62,915 in amazon.com
› Fowler, UML Distilled
 192 pages; #1,516; 300,000 sold

too burdensome
› inflexible process
› big documentation, little insight

revolution!

two kinds of design

interface design
interfaces

representation
design patterns

coding
building

extending
fixing

refactoring

testing
suite generation
stubs & drivers
test execution

coverage analysis

behavioural design
conceptual structure
states & operations

properties

requirements
problem structure

domains &
assumptions

conceptual
models

conceptual
models

origins of alloy

a notation inspired by Z
› just (sets and) relations
› everything’s a formula
› but not easily analyzed

an analysis inspired by SMV
› billions of cases in second
› counterexamples, not proof
› but not declarative

Oxford, home of Z

Pittsburgh, home of SMV

why analyzable models?

why models?
› figure out what problem you’re solving
› explore invented concepts
› communicate with collaborators

why analyzable?
› not just finding errors early
› analysis breathes life into models!

impact of conceptual design

ease of use
flexibility
robustness

clean interfaces
decoupling
extensibility
dependability

implementation

user interface

conceptual
design

features &
functions

options
& settings

datatypes

modules

interfaces

widgets

displays

procedures

xp on design models

Another strength of design with pictures is speed. In the time it would take
you to code one design, you can compare and contrast three designs
using pictures. The trouble with pictures, however, is that they can’t
give you concrete feedback… The XP strategy is that anyone can design
with pictures all they want, but as soon as a question is raised that can be
answered with code, the designers must turn to code for the answer. The
pictures aren’t saved. -- Kent Beck, Extreme Programming Explained, 2000

slide list

premise #1: abstractions 2
fred brooks on conceptual integrity 3
example 4
premise #2: details matter 5
elements of my approach 6
progress to date: alloy 7
desiderata 8
structure & classification 9
instant feedback 10
instant feedback 11
expressiveness 12
declarative spec 13
constraints, not test cases 14
fully automatic checks 15
non-determinism! 16

missing complexities 17
resource-bounded analysis 18
why it works in practice 19
alloy architecture 20
analysis: architecture 20
analysis by translation to SAT 21
technology advances 22
patterns: trace 23
patterns: local state 24
pattern instantiation: hotel locks 25
checking hotel locks 26
what has alloy been used for? 27
test case generation 28
code checking 29
prospects & challenges 30
for more information 31
extra slides 32

	premise #1: abstractions
	fred brooks on conceptual integrity
	example
	premise #2: details matter
	elements of my approach
	progress to date: alloy
	desiderata
	structure & classification
	instant feedback
	instant feedback
	expressiveness
	declarative spec
	constraints, not test cases
	fully automatic checks
	non-determinism!
	missing complexities
	resource-bounded analysis
	why it works in practice
	alloy architecture
	analysis: architecture
	analysis by translation to SAT
	technology advances
	patterns: trace
	patterns: local state
	pattern instantiation: hotel locks
	checking hotel locks
	what has alloy been used for?
	test case generation
	code checking
	prospects & challenges
	for more information
	extra slides
	reactions to UML
	two kinds of design
	origins of alloy
	why analyzable models?
	impact of conceptual design
	xp on design models

