finding structure in software

Daniel Jackson, MIT CSAIL · Nasa Formal Methods 2022 · May 26, 2022

we use structure to understand artifacts

villa designs (andrea palladio, c. 1570)

american federal government (1864)

periodic table (mendeleev, c. 1870)

Естественная система элементовъ Д. Мендельева.

сшій окисель разующій соли;	Группа I. R ² O	Группа II. R²O² или R O	Группа III. R ² O ³	Группа IV. R ² O ⁴ или RO ²	Группа V. R ² O ⁵	Группа VI. R ² O ⁶ или RO ³	Группа VII. R ² O ⁷	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	па VIII. (переход или RO ⁴	ъкъ I)	H=I
	H=1 H ² O _A HH _A HCl _A H ³ N _A H ⁴ C _A ROH.			RH'	RH ³	$\mathbf{R}\mathbf{H}^2$	RH	89	Тало твердое,	MAJODSCTRODER	HX COR BY BOTH
LiC	Li=7	A P C C C C C C C C C C C C C C C C C C	B=11 BCl ³ B ² O ³ BN _* B ⁴ Na ² O;BF ³		N=14 NH3NH4Cl _A N2O _A NO _A NO3M,CNM.	O=16 OH*0°C,O*0* OM*O"R,HOR.	F=19 FH,BF,SiF,CaF,KHF2.	â	Тъю газообра I=K, Ag M ² Cl,ONO;OH,	зное или летуч —Са, Ръ	ee.
. Рядъ 4.	Na=23 NaCl,NaHO,Na ² O Na ² SO ⁴ Na ² CO ³	Mg=24		Si=28 SiH\(\frac{1}{2}\siH\(\frac{1}\siH\(\frac{1}\siH\(\frac{1}{2}\siH\(\frac{1}{2}\siH\(\frac{1}{2}\siH\(\frac{1}{2}\siH\(\frac{1}{2}\siH\(\frac{1}{2}\siH\(\frac{1}\siH\(\frac{1}\siH\(\frac{1}\siH\(\frac{1}\siH\(\frac{1}\siH\	P=31 PH PCIPCIS P203P206, Ca3P2	S=32 SH\(\frac{2}{3}\su^2\xi^2\xi^2\su^2\xi^2\xi^2\su^2\xi^2\xi^2\su^2\xi^2\xi^2\su^2\xi^2\xi^2\xi^2\xi^2\xi^2\xi^2\xi^2\xi	Cl=35,5 ClH,ClM,ClC ClOH,ClO ⁴ H,A	A			
1737/	K=39 KCl,KOH,K ² O O ² ,K ² PtCl ² ,K ² SiF ⁴ Cu=63	$ \begin{array}{c} \mathbf{Ca} = 40 \\ \mathbf{CaSO}_{1}^{1} \mathbf{CaOnSiO}_{2}^{2} \\ \mathbf{CaCl}_{1}^{2} \mathbf{CaO}_{4}^{2} \mathbf{CaCO}_{4}^{2} \\ \mathbf{Zn} = 65 \end{array} $?44—Eb?	Ti=48(50?) TiCl†TiO2Ti2O2 FeTiO2TiOSO4	The second secon	CrClaCrClaCraOa M	Mn=55 InK *O; MnKO* nCl; MnO, MnO; Br=80	FeK ¹ O;FeS; FeO,Fe ² O; FeK ⁴ Cy ⁶	CoX3CoX3 CoX35NH3 CoK3Cy6	Ni=59 NiX;NiO _* NiSO 46H 20 NiK2Uy4	CuX,CuX;Cu Cu ² O,CuO, CuKCy ²
Рядъ 3, Рядъ 4,	CuX,CuX ² Rb=85	ZnCl;ZnO,ZnCO ZnSO;ZnEt; Sr=87		?72=Es? ?I1,EsO*? 2r=90	AsH ³ AsCl ³ As ⁴ C As ¹ O ⁵ ;As ¹ S ³ *	SeH;SeO;SeO; SeM;SeM:O* Mo=96	BrH, BrM, BrO M, BrAg,	Ru=104	Rh=104	Pd=106	Ag=10
Рядъ 5.	RbCl,RbOH. Rb*PtCl* Ag=108 AgX,AgCl*	SrCl;SrO,SrH;0; SrSO;SrCO; Cd=112 CdCl;CdO,CdS,	?88=Yt?(92) ?Yt*O**YtX*? In=113 InCl*;In*O**	SnCl ₂ SnCl ₂ SnO ₄	Nb ² O ² , NbOK ² F ⁵ Sb=122 SbH; SbCl ² , Sb ² O		100 (28?) I=127 (0; IH _{\(\text{IAg}\)} IH(RuO†RuCl ⁴ RuO†RuCl ³ RuK ⁴ Cy ⁶	RhCl [‡] RhCl [‡] Rh ² O [‡] RhX ² RhK ³ Cy ⁶	PdH _* IdO _* PdI PCI ² PdK ² ly ⁴	AgNO3Ag AgCl _* Ag ² (AgKCy ²
№ (Рядъ 6.	Cs=133 CsCl,CsOH. Cs ¹ PtCl ⁴	Ba=137 BaCl;BaH2O;BaO ?1 BaSO;BaSiF;	138=La?=Di?(144) ?La³O³*LaX³?	SnX †SnNa *0 * Ce=140 _(138?) CeCl †Ce *0 * CeO * CeX †CeX †CeK * X *	Sb*0 *Sb*S *SbO	X TeO M; TeN	148 IHO HgI #H	150	151	152	153
Радъ 7.	153	158	160	162	164	166	168				
Рядъ 8.	175	177	?174=Er?(169) ?Er*O#ErX*?	?180=Di?=La(187) ?DiO2DiX4?	Ta=182 TaCI5Ta 105 TaK 1F2	W=184 WCl ⁶ WCl ⁴ WO ³ K ⁴ WO ⁴ nWO ³	190	Os=193 OsO†OsH*O* OsCl†OsCl3	198? Ir=195 K ³ IrCl ⁶ ,IrCl ⁴ , IrCl ² ,Ir ² O ²	Pt=197	AuCl; AuC
Радъ 9.	AuX,AuX ^a	HgCl _A HgCl [*] _H Hg HgO _* HgX inHg	T1=20	4 Pb=207 PbCl*PbO*PbO* PbEt*PbSO*PbK*	Bi=208	H# 210 (HO)#	212	OsK Cy	IrK Cy 6	PtK2Cy4	AuKCy
Рядъ 10.	220	225	227	Th=231 ThCl;ThO; ThX;Th(SO')2	235	U=240 UCl+UO+UO+X+ UO+M+U+O7	245	246	248	249	250

london underground (harry beck, 1933)

experiential

structure helps you understand how it behaves not how it's built

experiential

structure helps you understand how it behaves not how it's built

modular

components of the structure can be understood independently

experiential

structure helps you understand how it behaves not how it's built

modular

components of the structure can be understood independently

abstract

internal workings and structure are not shown

what are the elements of software?

▲ Jackson structured programming (wikipedia.org)

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

▲ danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized input and output.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

▲ ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

Hacker News new | past | comments | ask | show | jobs | submit

Jackson structured programming (wikipedia.org)

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

▲ danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized input and output.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

▲ ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

Υ

▲ Jackson structured programming (wikipedia.org) **post**

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

▲ danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized input and output.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

▲ ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

▲ Jackson structured programming (wikipedia.org) post

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

▲ danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing comment fuctures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized i comment it.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

▲ ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

▲ Jackson structured programming (wikipedia.org) post

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

▲ danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing comment fuctures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized i comment it.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

▲ ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtrack reply standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

Υ

▲ Jackson structured programming (wikipedia.org) post

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

upvote

▲ uanieinicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing comment actures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized i comment it.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...
 - ▲ ob-nix 63 days ago [-]
 - ... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtrack reply standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

▲ Jackson structured programming (wikipedia.org) **post**

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

upvote

favorite

▲ uamemicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There's a class of programming problem that involves traversing comment fuctures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized i comment it.
- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...
 - ▲ ob-nix 63 days ago [-]
 - ... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtrack reply standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

▲ Jackson structured programming (wikipedia.org) post

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

upvote favorite

▲ uamemicholas 63 days ago [-]

user: danielnicholas bu might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift

created: 63 days ago, I'd point to these ideas as worth knowing:

karma: 11 ing problem that involves traversing comment ructures can be solved very systematically. HTDP addresses this class, but bases code structure only on input structure; JSP synthesized i comment it.

- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them helps.
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...
 - ▲ ob-nix 63 days ago [-]
 - ... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtrack reply standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

▲ Jackson structured programming (wikipedia.org)

106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

session

upvote favorite

▲ uamemicholas 63 days ago [-]

user: danielnicholas bu might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift

post

created: 63 days ago, I'd point to these ideas as worth knowing:

karma: 11 ing problem that involves traversing comment ructures can be solved very systematically. HTDP addresses this class, but bases one structure only on input structure; JSP synthesized i comment it.

- The karma is archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing them
- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.
- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which later became JSD) with a long-running process for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with events rather than objects.
- [0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...
 - ▲ ob-nix 63 days ago [-]
 - ... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtrack reply standard method, while mentioning that most languages lacked that, so it had to be implemented manually.

▲ CraigJPerry 63 days ago [-]

abstract type, class/object

Matrix multiply add invert equals

not limited to built-in types encapsulate representation defined by operations alone

abstract type, class/object

Matrix multiply add invert equals

not limited to built-in types encapsulate representation defined by operations alone

what operations can you do on an upvote?

abstract type, class/object

Matrix
multiply
add
invert
equals

not limited to built-in types encapsulate representation defined by operations alone

what operations can you do on an upvote?

abstract type, class/object

Matrix multiply add invert equals

not limited to built-in types encapsulate representation defined by operations alone

what operations can you do on an upvote?

upvotes and downvotes are votes and then what?

abstract type, class/object

Matrix
multiply
add
invert
equals

not limited to built-in types encapsulate representation defined by operations alone

entity in data model

what operations can you do on an upvote?

upvotes and downvotes are votes and then what?

abstract type, class/object

Matrix
multiply
add
invert
equals

not limited to built-in types encapsulate representation defined by operations alone

entity in data model

but concept is in the relationships, not the entities!

what operations can you do on an upvote?

upvotes and downvotes are votes and then what?

a concept has a name

concept Upvote

a concept has a name

concept Upvote

same concept in HackerNews,
NYTimes comment section,
StackOverflow, etc

a concept has a name

concept Upvote

same concept in HackerNews, NYTimes comment section, StackOverflow, etc

Reader Picks All

John

Boston Oct. 27

To protect children? Seems far more likely it's yet one more way to extract personal information to feed the insatiable advertising machines.

1 Reply 143 Recommend Share

Flag

a concept has a purpose

concept Upvote

purpose rank items by popularity

```
This is homework and I'm having a are the definitions of the objects:

sig Library {
   patrons : set Person, on_shelves : set Book, }
}
```

a concept has a purpose

concept Upvote

purpose rank items by popularity

concept Reaction

purpose send reactions to author

a concept has a purpose

concept Upvote

purpose rank items by popularity

concept Reaction

purpose send reactions to author

concept Recommendation

purpose use prior likes to recommend

a concept has a state

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

a concept has a state

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

a concept has a state

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

a concept has a state

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

like bounded context in DDD, but even more localized

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

actions capture the concept behavior in full

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

actions capture the concept behavior in full

```
downvote (i: Item, u: User)
  // no existing Downvote for i in u.votes
  // remove any Upvote for i from u.votes
  // add a Downvote for i in u.votes
  // update i.rank ...
```

concept Upvote

purpose rank items by popularity

state

votes: User -> set Vote

for: Vote -> one Item

Upvote, Downvote: set Vote

rank: Item -> one Int

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

actions capture the concept behavior in full

// update i.rank ...

downvote (i: Item, u: User) // no existing Downvote for i in u.votes // remove any Upvote for i from u.votes // add a Downvote for i in u.votes

succinct specification as actions on states VDM (1986) Z (1992) Larch (1993) Event-B (2006) Alloy (2006)

a concept catalog entry

concept Upvote

related concepts
Recommendation, Reaction, ...

often used with Karma, Session, ...

design variants downvote as unvote use age in ranking

weigh downvotes more

typical uses
social media posts
comments on articles
Q&A responses

known issues

preventing double votes
(require login, use IP address, save cookie)
saving storage space
(freeze old posts and from user info)

how to compose concepts?

concept Upvote

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

concept Upvote

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

suppose I want this behavior:

you can't downvote an item until you've received N upvotes on your own items

concept Upvote

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

suppose I want this behavior:

you can't downvote an item until you've received N upvotes on your own items

define a new concept!

a hint: not just used by Upvote

concept Upvote

actions

upvote (u: User, i: Item) downvote (u: User, i: Item)

unvote (u: User, i: Item)

suppose I want this behavior:

you can't downvote an item until you've received
N upvotes on your own items

define a new concept!

a hint: not just used by Upvote

concept Karma

purpose privilege good users

state

karma: User -> one Int

contribs: User -> set Item

actions

contribute (u: User, i: Item)

reward (u: User, r: Int)

concept Upvote

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

concept Karma

actions

contribute (u: User, i: Item)

reward (i: Item, r: Int)

concept Upvote

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

when upvote (u, i) and i in u'.contribs also reward (u', 10)

concept Karma

actions

contribute (u: User, i: Item)

reward (i: Item, r: Int)

concept Upvote

actions

upvote (u: User, i: Item)

downvote (u: User, i: Item)

unvote (u: User, i: Item)

when upvote (u, i) and i in u'.contribs also reward (u', 10)

when downvote (u, i) also permit (u, 20)

concept Karma

actions

contribute (u: User, i: Item)

reward (i: Item, r: Int)

concept Upvote concept Karma concept Upvote concept Karma contrib (Alice, post1) concept Upvote concept Karma contrib (Alice, post1) contrib (Bob, post2)

composition uses event sync from Hoare's CSP

composition uses event sync from Hoare's CSP

no concept coupling concepts preserve properties

so what can you do with concepts?

text editor

word processor

desktop publishing app

text editor

line

character set

markup

word processor

desktop publishing app

text editor

line

character set

markup

word processor

paragraph

format

style

desktop publishing app

text editor

line

character set

markup

word processor

paragraph

format

style

desktop publishing app

paragraph

format

style

page

textflow

explore & evaluate individual concepts

explore & evaluate individual concepts

how many users believe the folder concept works

explore & evaluate individual concepts

how many users believe the folder concept works

how folders actually work (in Dropbox, Unix, Multics)

analyze how concepts fit together

concept Upvote
purpose rank items by popularity
actions
 upvote (u: User, i: Item)
...

concept Upvote purpose rank items by popularity actions

upvote (u: User, i: Item)

• • •

concept Reaction
purpose convey emotion to author
actions

reactAngry (u: User, i: Item)

• • •

concept Reaction
purpose convey emotion to author
actions

reactAngry (u: User, i: Item)

• • •

concept Reaction
purpose convey emotion to author
actions
reactAngry (u: User, i: Item)

design moves mechanical analogs

three pairs of design moves

three pairs of design moves

three pairs of design moves

split-merge: tradeoff simplicity/flexibility

split-merge: tradeoff simplicity/flexibility

photocopier

printer + scanner

split-merge: tradeoff simplicity/flexibility

photocopier

printer + scanner

emergency flashlight

flashlight + battery + charger

unify-specialize: tradeoff simplicity/specificity

unify-specialize: tradeoff simplicity/specificity

unify-specialize: tradeoff simplicity/specificity

set of wrenches

adjustable wrench

macro lens

general-purpose lens

tighten-loosen: tradeoff automation/flexibility

tighten-loosen: tradeoff automation/flexibility

light pull / door lock

airplane toilet lock

tighten-loosen: tradeoff automation/flexibility

light pull / door lock

airplane toilet lock

rotary dimmer switch

successful design moves in software

full screen toggle emerges as partial concept (c. 2010?)

full screen toggle emerges as partial concept (c. 2010?)

play-in-window option now an independent concept (2021)

full screen toggle emerges as partial concept (c. 2010?)

play-in-window option now an independent concept (2021)

can toggle mailing list attribute

can toggle mailing list attribute

can create admin list with no login users!

concept trash

purpose undo deletion

structure

trash: **set** Item

actions

delete (i: Item)

restore (i: Item)

empty ()

concept trash

purpose undo deletion

structure

trash: **set** Item

actions

delete (i: Item)

restore (i: Item)

empty ()

concept label

purpose organize with overlapping

structure

labels: Item -> **set** Label

actions

add (i: Item, l: Label)

remove (i: Item, l: Label)

find (ls: set Label, out is: set Item)

concept trash

purpose undo deletion

structure

trash: **set** Item

actions

delete (i: Item)

restore (i: Item)

empty ()

when delete (i)
also add (i, 'trash')

concept label

purpose organize with overlapping

structure

labels: Item -> set Label

actions

add (i: Item, l: Label)

remove (i: Item, l: Label)

find (ls: set Label, out is: set Item)

click on trash

click on trash

filter on todo label

filter on todo and trash

 Trash ⇒ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Trash		Empty	
Weston	Date Added	Date Modified	
photos for dropbox example	Yesterday at 1:31 PM	Aug 29, 2018 at 2:23 PM	
Screen Shot 2020-07-17 at 7.20.50 PM	Yesterday at 10:43 AM	Jul 17, 2020 at 7:20 PM	
Screen Shot 2020-07-17 at 7.20.38 PM	Yesterday at 10:43 AM	Jul 17, 2020 at 7:20 PM	
Screen Shot 202020 at 10.40.45 AM	Yesterday at 10:43 AM	Yesterday at 10:40 AM	
Screen Shot 2020-07-17 at 3.27.57 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:28 PM	
Screen Shot 2020-07-17 at 3.27.59 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:28 PM	
Screen Shot 2020-07-17 at 3.29.53 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:29 PM	
Screen Shot 2020-07-17 at 3.30.07 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:30 PM	
Screen Shot 2020-07-17 at 3.33.01 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:33 PM	

folder sortable by volume!

	Trash		
Trash		Empty	
Weston	Date Added	Date Modified	
photos for dropbox example	Yesterday at 1:31 PM	Aug 29, 2018 at 2:23 PM	
Screen Shot 2020-07-17 at 7.20.50 PM	Yesterday at 10:43 AM	Jul 17, 2020 at 7:20 PM	
Screen Shot 2020-07-17 at 7.20.38 PM	Yesterday at 10:43 AM	Jul 17, 2020 at 7:20 PM	
Screen Shot 202020 at 10.40.45 AM	Yesterday at 10:43 AM	Yesterday at 10:40 AM	
Screen Shot 2020-07-17 at 3.27.57 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:28 PM	
Screen Shot 2020-07-17 at 3.27.59 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:28 PM	
Screen Shot 2020-07-17 at 3.29.53 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:29 PM	
Screen Shot 2020-07-17 at 3.30.07 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:30 PM	
Screen Shot 2020-07-17 at 3.33.01 PM	Yesterday at 10:39 AM	Jul 17, 2020 at 3:33 PM	

design moves in response to problems

aspect ratio in fujifilm cameras

a lovely camera fuji x100

complex menu system: image quality setting

complex menu system: image quality setting

complex menu system: image quality setting

aspect ratio

aspect ratio

non-standard ratio + raw?

problem #1: no non-standard ratio unless also save JPG!

raw image showing non-destructive aspect ratio crop

problem #2: very few ratio options

problem #2: very few ratio options

diagnosis?

aspect ratio is not a concept

merged into JPEG image size concept so cannot be controlled independently I call this "overloading by piggybacking"

solution: split concepts

would allow ratio change to raws without JPEGs would avoid combinatoric explosion of options

diagnosis?

aspect ratio is not a concept

merged into JPEG image size concept so cannot be controlled independently I call this "overloading by piggybacking"

solution: split concepts

would allow ratio change to raws without JPEGs would avoid combinatoric explosion of options

message filters in apple mail

search for a message

search for a message

create a rule

search for a message

create a rule

define a smart folder

Description: Anonymous If any of the following conditions are met: does not contain odnj@mit.edu Perform the following actions: Move Message 😧 to mailbox: 🗎 Groups Cancel OK

create a rule

Date last viewed

10:29 AM

Include messages from Sent

Smart Mailbox Name: Today Contains messages that match all of the following conditions: is today Include messages from Trash

define a smart folder

rule options

define a smart folder

define a smart folder

smart folder options

rule options

search, rule and smart folder all include their own specialized concepts incomparable features, different UIs

unify in a single message filter concept include "create folder from search", eg

search, rule and smart folder all include their own specialized concepts incomparable features, different UIs

unify in a single message filter concept include "create folder from search", eg

sticky hands in zoom

zoom

zoom

event deletion in google calendar

Arvind Satyanarayan

November 15, 2018 at 2:04 PM

Re: TALK: Monday 11-19-2018 Kanit (Ham) Wongsuphasawat: No...

Details

Cc: seminars@csail.mit.edu, HCI-Seminar@lists.csail.mit.edu

This message is from a mailing list.

Unsubscribe (X)

Despite some erroneous messages sent to this list accidentally, Kanit's talk is happening! Please join us on Monday.

event **installed** automatically in user's calendar

event **installed** automatically in user's calendar

user **deletes** event from calendar

event **installed** automatically in user's calendar

user **deletes** event from calendar

cancellation email automatically sent to other invitees

Canceling and deleting events in the Google Calendar mobile app is similar to on a desktop.

- 1. First, open Google Calendar.
- 2. Tap on the event you wish to cancel.
- 3. Press on the three dots in the top right corner of the event window.
- 4. Select Delete.
- 5. Tap Delete event. Google Calendar will send a cancellation email to the guests.

Mar 22, 2021

https://wpamelia.com > Blog

How to Cancel an Event in Google Calendar - Amelia booking ...

seminar announced as **email** to listserv with attached calendar event

event **installed** automatically in user's calendar

user **deletes** event from calendar

cancellation email automatically sent to other invitees

Are you sure you want to delete this event?

Deleting this meeting will remove it from your calendar and notify the invitees that this event has been deleted. You can't undo this action.

Cancel

Delete

a long time problem in iCal too how to delete spam calendar events?

concept calendar
purpose record engagements
actions

createEvent (...): Event deleteEvent (e: Event)

• • •

concept calendar
purpose record engagements
actions

createEvent (...): Event deleteEvent (e: Event)

• • •

concept invitation
purpose coordinate events
actions

accept (e: Event) decline (e: Event)

• • •

concept calendar
purpose record engagements
actions

createEvent (...): Event deleteEvent (e: Event)

• • •

• • •

concept calendar
purpose record engagements
actions

createEvent (...): Event deleteEvent (e: Event)

• • •

sync!

concept invitation
purpose coordinate events
actions
 accept (e: Event)
- decline (e: Event)
...

apple's solution

Are you sure you want to delete this event?

Deleting this event will notify the organizer that you're declining the event and deleting it from your calendar. You can't undo this action.

Cancel

Delete and Don't Notify

Delete and Notify

resolution to design problem make sync optional

apple's solution

Are you sure you want to delete this event?

Deleting this event will notify the organizer that you're declining the event and deleting it from your calendar. You can't undo this action.

Cancel

Delete and Don't Notify

Delete and Notify

resolution to design problem make sync optional

structure your software design with concepts inventory the concepts, identify the critical ones see if you can describe them fully independently then formulate interactions as synchronizations

inventory the concepts, identify the critical ones see if you can describe them fully independently then formulate interactions as synchronizations

apply design moves to explore new options never a panacea, always a tradeoff

structure your software design with concepts inventory the concepts, identify the critical ones see if you can describe them fully independently then formulate interactions as synchronizations

apply design moves to explore new options never a panacea, always a tradeoff

software concepts as patterns
only hinted at this, but equally important
don't reinvent the wheel!
express your design as sync of familiar concepts?

structure your software design with concepts inventory the concepts, identify the critical ones see if you can describe them fully independently then formulate interactions as synchronizations

apply design moves to explore new options never a panacea, always a tradeoff

software concepts as patterns
only hinted at this, but equally important
don't reinvent the wheel!
express your design as sync of familiar concepts?

in formal methods can concepts help structure & validate models?

essenceofsoftware.com

newsletter essenceofsoftware.com/subscribe

join the discussion about concept design! forum.softwareconcepts.io