CONCEPTUAL MODELS
& MODERN SOFTWARE
CONSTRUCTION

Daniel Jackson - Computer Science & Artificial Intelligence Lab - MIT

» ISO speed

» shutter speed
» aperture

» focus

» depth of field

Shutter speed
1 parameters Aperture

|
S 686 - AABEE =
a

‘White balance

E3 E ./ ONE SHOT
(25 150s102 | I—
sstary s — (EEI 3 L RAMRNANER Al 20

Flash exposure Bracketing Exposure level [
compensation indicator compensation

» ISO speed

» shutter speed

> exposure

» aperture

» depth of field

» white balance (4pp)
» autofocus

» metering mode

» drive mode

» bulb mode

» image playback

» image protection
» direct printing

» date and time

» selection (21pp)

» layers (43pp)

» channels & masks

» shapes, paths & pens
» filters & sharpening
» color spaces

» history, actions

» painting & brushes

impact of conceptual design

conceptual

design

user interface
features &
functions @

options
& settings

1implementation

datatypes

ease of use
flexibility
robustness

clean interfaces
decoupling
extensibility
dependability

[will contend that conceptual integrity is the most important
consideration in system design. It is better to have a system omit
certain anomalous features and improvements, but to reflect one
set of design ideas, than to have one that contains many good but
independent and uncoordinated ideas. 1975

I am more convinced than ever. Conceptual integrity is central to
product quality. 1995

Preface

Introduction

In every large software system, there is a small model trying to get
out. It’s the model that you'd get if you cleared away all the clut-
ter — all the irrelevant details, unused features, performance hacks
and workarounds. It captures the essence of the system — what it’s
about, its key concepts and how they fit together.

Rationale

If the designers had written it down, the maintainers wouldn’t need
to struggle through the source code, putting the model together
like a jigsaw puzzle. The testers would know where weak spots in
the implementation are likely to be, and wouldn’t have to fumble
in the dark. The users wouldn’t have to learn the system function
by function, because the authors of the user manual would have
seen more clearly what all the functions had in common.

Preface

Introduction

In every large software system, there is a small model trying to get
out. It’s the model that youd get if you cleared away all the clut-
ter — all the irrelevant details, unused features, performance hacks
and workarounds. It captures the essence of the system — what it’s
about, its key concepts and how they fit together.

Rationale

If the designers had written it down, the maintainers wouldn’t need
to struggle through the source code, putting the model together
like a jigsaw puzzle. The testers would know where weak spots in
the implementation are likely to be, and wouldn’t have to fumble
in the dark. The users wouldn’t have to learn the system function
by function, because the authors of the user manual would have
seen more clearly what all the functions had in common.

060 Untitled-1: Preface Introduction...
Cnapter
section
opening ry large software system, there is a small model
g to get out. It's the model that you'd get if you
cleared away all the clutter - all the irrelevant deta
unused feat I rmance hacks and workarounds. It
m - what it's about, its

Lo e

If the designers had written it down, the maintainers

wouldn't need to struggle through the source putting
the model together 1ike a jigsaw pu = e testers would
know where weak spots in the implementation are

be, and wouldn't have to fumble in the dark. The u
woluldn't have to learn the s

because the authors

more clearly what all the functions had in common.

first use of style sheets in a text formatter:
Bravo, Xerox PARC (1973-79)
Butler Lampson and Charles Simonyi

fﬁ
3
E=
]
s
g
o

o paragraph style]
dy

chapter

opening

section

Paragraph Style Options
Style Name: section
General Ceneral

Based On: body

Mext Style: [Same style]

Shortcut:

Style Settings:

bady + next: [Same style] + Italic + size: 14 pt + lea
h left + nt = 1, [position: 2p6&, ali
space after: Op6 + keap next: 3

| Preview

There is no problem in computer science that cannot be solved by an
extra level of indirection. --David Wheeler

for consistent formatting
» styles arranged in hierarchy, and inherit properties
» change to parent affects child automatically

Paragraph Style Options
Style Name: section
Ceneral

Based On: body
Mext Style: [Same style]

Shortcut:

Style Settings:
Italic + size: 14 pt + leading: 14 pt + proportional oldstyle +

nt = 1, [position: 2p&, alignment: left] + space before: 1pb +
xt: 3

Strikethrough Options

| Preview £ Cancel

Certain styles (Heading 1 to 3, Normal...) must exist in the document structure, so they always appear. Word can'’t let
you delete them because the document binary structure would implode if it did.

I have been writing my thesis paper and it has grown to be about 100 pages. The problem that I am having is with the
styles preferences... The problem I am having is if I choose and highlight maybe two words to bold, the entire document
becomes bold.

I'm having problems with Word 2002 automatically creating new styles. For example, I have a style called “Figures’, but
for some reason Word has created another style called “Figures Char Char3 Char Char Char Char Charl”.

First, make sure you have updated Word 2002 with at least SP-1. That solved a lot of the erroneous Char Char Char
problems. Second, it’s worth understanding how these ‘char’ styles are created. In Word 2002, you can have a paragraph
in, say, Body Text. If you select *part* of that paragraph and apply a different paragraph style (say, Style 2), then Word
creates a kind of hybrid, called Style 2 Char. It’s part-paragraph style and part-character style. This only happens if, when
you applied the style, some characters were selected, but not the whole paragraph including the paragraph mark.

You can get very bizarre behavior when importing one style that is based on another style without importing the based-
on style. This won’t be a problem when you update all styles based on a newly attached template. Even if you import the
whole set, you will get anomolies unless you import the set multiple times. I import (copy) three times.

I'll look some more, but it seems that the “RedefineStyle” command is buggy in Word2002/2003. Redefining a style
shouldn’t touch manual formatting. But it seems that “RedefineStyle” removes all manual formatting from all paragraphs
formatted in that style. It sure didn’t work like this up to Word2000, and whoever thought it a good idea to change this
must have ample access to psychedelic chemicals.

Fred Brooks
» one system architect
> plan to throw one away

extreme programming
» system metaphor

why not focus on concepts?
» express, analyze, explore

traditional engineering models

MIT Computer Science and Artifi
tes 7

Conference, 7264
Acom

focus

» risk-driven, so partial
» separation of concerns
» tiny compared to code

language

» graphical & textual

» small & uniform

> flexible & expressive

analyzability
» deep semantics, not just syntax
» simulation & property checking

language and analysis designed hand-in-hand
» maximize expressiveness without losing tractability

everything’s a constraint
» state invariants, operations, properties

a kernel relational logic

» simple & uniform

» no programming language notions
> no harder to grasp than SQL, eg

no hard-wired idioms
» good for many kinds of model
» can tailor to your own style

show me

> a state meeting these constraints ...

> a state breaking these constraints ...

» an execution of this operation ...

» an execution of this operation that breaks this constraint ...

Look Ma, no test cases!

incremental & partial

module styles_1
sig Para, Style {}

sig Doc {
based: Style ->? Style,
style: Para ->? Style
}

Doc.based

module styles_1
sig Para, Style {}

sig Doc {
based: Style ->? Style,
style: Para ->? Style
}

pred show () {}
run show for 3 but 1 Doc

Croc_0 | :

module styles_1
sig Para, Style {}

sig Doc {
based: Style ->? Style,
style: Para ->? Style
}

pred WellFormed (d: Doc) {
acyclic (d.based)

}
run WellFormed for 3 but 1 Doc

Property

module styles_1

sig Para, Style {}

sig Property {} ,

abstract sig Value {} Doc.actual [Property],
. . Doc.given [Property]

static sig Same extends Value {}

sig Real extends Value {}

Doc.based

sig Doc {
based: Style ->? Style,
style: Para ->? Style,
actual, given: (Style -> Property) ->? Value
H
all s: Style, p: Property {
some s.given|[p]
s.actual [p] = if s.given [p] in Same then s.based.actual [p] else s.given [p] }

}

module styles_1

sig Para, Style, Property {}
abstract sig Value {}

static sig Same extends Value {}
sig Real extends Value {}

sig Doc {
based: Style ->? Style,
style: Para ->? Style,
actual, given: (Style -> Property) ->? Value

H
all s: Style, p: Property { some s.given|[p]

s.actual [p] = if s.given [p] in Same
then s.based.actual [p] else s.given [p]}}

pred WellFormed (d: Doc) {acyclic (d.based)}

run WellFormed for 3
but 1 Doc, exactly 2 Property

given: P_1-" 0, P_O=-=%ame_0
actual: P_O-=FE_0, P_1-»F_0O

Qiven: P_1- : 0, P_O-=F_0
actual P_1-=F_0, P_O-=F_0Q

Do - 0

module styles_1 (pimz]

sig Para, Style, Property {}
abstract sig Value {}
static sig Same extends Value {}
sig Real extends Value {}
sig Doc {
based: Style ->? Style,
style: Para ->? Style,
actual, given: (Style -> Property) ->? Value

H{...}
pred WellFormed (d: Doc) {acyclic (d.based)}

pred AllParasFormatted (d: Doc) {
all x: Property, p: Para |
some d.actual[d.style[p]][x] & Real

}

assert DocOK {
all d: Doc | WellFormed (d) => AllParasFormatted (d)}
check DocOK for 3 but 1 Doc —

hased

given: P_0-=%ame_n0

Coc_0 | &

module styles_1
sig Para, Style, Property {}
abstract sig Value {}
static sig Same extends Value {}
sig Real extends Value {}
sig Doc {
based: Style ->? Style,
style: Para ->? Style,
actual, given: (Style -> Property) ->? Value
H{...}

pred WellFormed (d: Doc) {
acyclic (d.based)
all s: Style |
no s.(d.based) => s.(d.given) [Property] in Real
}

pred AllParasFormatted (d: Doc) {

all x: Property, p: Para | some d.actual[d.style[p]][x] & Real }
assert DocOK {

all d: Doc | WellFormed (d) => AllParasFormatted (d)}
check DocOK for 3 but 1 Doc

where to go from here?
» modelling paragraph overrides
» specify and analyze deleteStyle operation

typical modelling experience?

» yes: small model, incrementality, quick feedback, hard questions
» no: usually more clumsy, not liner

how alloy works

alloy
formula

alloy
instance

alloy analyzer

translate S—
formula i pping

boolean
formula

translate

instance

boolean
instance

small scope hypothesis
» most interesting cases can be shown with small numbers of objects
» dense analysis works better than random testing

random testing
» check some large cases picked randomly

dense analysis
» check every case up to a certain size

example
» 3 styles, 3 paras, 3 properties, 3 values, 2 documents

» 27290 (10730) values for relations
» can analyze in seconds

» firewire configuration protocol

» unison file sychronizer

» IMPP presence protocol for instant messaging
» query interface in COM

» key distribution for multicast

> intentional naming

» Chord distributed hash table

» role-based access control

> web ontologies

» military simulation

> telephone switch feature configuration
> proton beam scheduling

typical learning experience

» a few years of programming

» minimal background in discrete math
» writing small alloy models in a week

» modelling with confidence in a month

course usage
» taught in >12 universities worldwide
» mostly in masters of software engineering degrees

requirements
problem structure
domains &
assumptions

behavioural design

conceptual structure

states & operations
properties

conceptual
models

conceptual
models

interface design
interfaces
representation
design patterns

testing
suite generation
stubs & drivers
test execution
coverage analysis

coding
building
extending
fixing
refactoring

XP Practices

Collechive Coding
Ownership Test-Driven Otandard
~ Development |

i

. \ i

' Bt Plannin

Customer . Refactoring !
/

Tesls Programming Giame
.

1;

S Sl Collective Code Ownership

De-sign

Sustainable

Pace R O Move People

Metaphor ~ards Around
s

Lontinuous
Integration

%“‘.a“ .' .) Failed
IZ_Q,‘Q, ASE5 wvnva, K Pro grammmitig.com Next TaSk Pair “reate IIrLi:) }] _
orFailed U0 o220~ Par 77, Continuous
Acceptance . i Programming Integration
I ' g g g

Test Toc Func

Refactor
Copyright 2000, Dromvam Wl Mercilessly

from extremeprogramming.org, xprogramming.com

Passed

Another strength of design with pictures is speed. In the time it would
take you to code one design, you can compare and contrast three
designs using pictures. The trouble with pictures, however, is that they
can’'t give you concrete feedback... The XP strategy is that anyone can
design with pictures all they want, but as soon as a question is raised
that can be answered with code, the designers must turn to code for
the answer. The pictures aren’t saved. -- Kent Beck (2000)

can’'t always refactor your way to design quality
> interface design can evolve (on small projects)
» conceptual design changes are painful

coding isn’t the right way to answer design questions
> tedious, irrelevant details to complete

> test cases are hard work to write, give poor coverage
» code is not so amenable to Alloy-like analysis

pick the right problem

» small enough to be manageable

» hard enough to be interesting

> pressing enough to be worth the trouble
> not so pressing you can’t experiment

try alloy
» simulate some small object models
» customize diagrams to give intuitive appearance

contact us if you need help
» dnj@mit.edu
» alloy@mit.edu, alloy-discuss@yahoogroups.com

Analyzable

website Models
» case studies for

» courses Software
» tutorial

Design

» downloads

Daniel Jackson

good books .
» Martin Fowler, Analysis Patterns upcoming book
» William Kent, Data and Reality » Fall 04

» Michael Jackson, Software Requirements
and Specifications

