alloy:
an analyzable
modelling language

Daniel Jackson, MIT
Ilya Shlyakhter
Manu Sridharan

Small Tower of 6 Gears, Arthur Ganson
Praxis Critical Systems
April 25, 2003

preaching to the choir

explicit models before code
> higher quality
» easier coding

formalism helps

» forces simplicity

» no wishful thinking
» potential for tools

assurance/cost tradeoffs

[Thacking

[Jsketching

[gwrite-only models
cost] mtype-checked models
[manalyzed models
mproven models

assurance

lightweight formal methods

language must be
> small and simple

> well defined
» expressive enough

analysis must be
» fully automatic
» semantically deep

user doesn’t want to
» provide test cases
» invent lemmas

alloy: a structural, analyzable logic

a notation inspired by Z
> just sets and relations
» familiar logical quantifiers
» simpler, less expressive, all ASCII

an analysis inspired by SMV
» billions of cases in second
» counterexamples, not proof
» declarative logic, not state machines

Pittsburgh, home of SMV

what to look out for

the language
» all structure by relations
» composites by higher-arity
> entirely first order
» familiar syntax by puns

the analysis
» as in Z, everything’s a formula
> tool tries all small tests within a “scope”
> model itself is unbounded

a first alloy model

introduces sets of atoms Name and Addr

module email an assertion to be checked
sig Name, Addr {}

assert A {
all friends, spammﬁz‘y set Name, addr: Name -» Addr |
(iriends - spammers).addy = niends.addr - spammers.addr

b I :-
¥ R G ,a,\.u,\-

B e
e

}

check A for 3 set difference relational image

a command the tool executes

analysis by constraint solving

module email
sig Name, Addr {}
assert A {
all friends, spammers: set Name, addr: Name -> Addr |
(friends - spammers).addr = friends.addr - spammers.addr

}
check A for 3

» to check, first negate conjecture

some f, s: set N, a: N-> A | not (f-s).a=f.a-s.a
» then skolemize away quantifiers

not (f-s).a=1f.a-s.a
» and now solve for constants

f={NO, N1}, s = {N1}, a = {N0O->A1, N1->A1}

analysis by constraint solving

module email
sig Name, Addr {}
assert A {
all friends, spammers: set Name, addr: Name -> Addr |
(friends - spammers).addr = friends.addr - spammers.addr

}
check A for 3

M_1

“try all small tests”

language is undecidable
» so no sound & complete algorithm

alloy’s analysis is refutation
> look for a counterexample
» consider all assignments of values to constants
> user selects scope (here, 3 names and 3 addrs)

properties of models
» usually flawed, especially in early stages
» many bugs, even subtle ones, have small counterexamples

10

‘all small tests’

5

smallest
revealing
scope

cumulative invalid assertions

consequences
» sound: no false alarms
» incomplete: can’t prove anything

90%

11

simulating an operation

declares a parameterized formula

fun add (addr, addr’: Name -> Addr, n: Name, a: Addr) {
addr’ = addr + {n -> a)

}

run add for 2 forms a tuple

set union

addr jaddr'

alloy semantics

all values are relations
{(a),(b)} 1s a set
{(a)} 1s a scalar
{(a,b)} 1s a tuple

higher-order values
» can’t be represented directly
AddrBook = P(’(Name x Addr))
» can often be represented with higher-arity
AddrBook -> Name -> Addr

13

expressions

expressions are made from variables and
» set operators
P+q P-4 Pp&q
» relational operators
p.q, p->q, "D, *p, ~p
[p . al ={(®: - Pr1 Qv -+ Q) |
(P, --- Pn) € [P] A (@1 --- 9w) € [A Po=a}
P->q={(Ps - P Q1 -+ Q) | (P1s --- Pw) € [P] A (g4

puns
for scalars a, b, sets S, T and relations p, g
a ->bisatuple; S ->Tis arelation
S.p 1s image; p.q 1s join

, -+ Q) € [all}

14

formulas

ein e’
not F
Fand G
ForG
F=>0G
{FG}
allx: X | F
some x: X | F
one x: X | F
sole x: X | F
nox:X|F
no e
some e
sole e

e is a subset of e’

implicit conjunction

there 1s exactly one x such that F
there is at most one x such that F

there i1s no tuple in e; e is empty
there i1s some tuple in e; e is non-empty
there 1s at most one tuple in e

15

fields

declares a ternary relation on AddrBook, Name, Addr

sig AddrBook {
map: Name -» Addy

}

fun add (b, b: AddrBook, n: Name, a: Addr) {

b".map = b.map + n->a

}

an instance
map = {AB2->N2->A2}
b =AB2, b = AB?
a=A2, n=N2

AddrBook _2
(b', b)

map[M_2]

16

projection (a visualization technique)

to show ternary relations
» index the arcs
> Or project a type

AddrBook _2
(b', b)

map[M_2]

@
()

f << 1 AddrEnnk_Eﬂ“ o

17

some conjectures

equivalent to n.(b.map)

fun lookup (b: AddrBook, n: Name): set Addr {result = b.mapin|}

x assert delUndoesAdd {all b,b",b”: AddrBook, n: Name, a: Addr |
add (b,b’,n,a) and del (b’,b”,n) => b.map = b".map }

v assert addIdempotent {all b,b’,b”: AddrBook, n: Name, a: Addr |
add (b,b’,n,a) and add (b’,b”,n,a) => b’.map = b”.map }

sassert addLocal {all b,b: AddrBook, n,n": Name, a: Addr |
add (b,b’,n,a) and n != n" => lookup (b,n") = lookup (b’,n’) }

18

a counterexample

assert delUndoesAdd {all b,b’,b"”: AddrBook, n: Name, a: Addr |
add (b,b’,n,a) and del (b’,b”,n) => b.map = b”".map }

b’b’ b"

f << _"AddrEnnk_l}:l'. >> L << _"AddrEnnk_[l*H'_ >

19

subsignatures

sig Target
part sig Addr, Name extends Target {}
part sig Alias, Group extends Name {}

map: Name -> Target

fun lookup (b: AddrBook, n: Name): set Addr {
result = n.*(b.map) & Addr }

Target

Addr Name
A\
I
Alias Group

20

counterexample

assert addLocal {all b,b": AddrBook, n,n": Name, a: Addr |
add (b,b’,n,a) and n != n" => lookup (b,n") = lookup (b’,n’) }

Frap

Addrsook 0 [¥) Addrsool 1 TF)

21

fields of subsignatures

defines field host such that no t.host if t !'in Addr

disj sig Addr extends Target {host: Host}

signature fact: all this: AddrBook ... implicit

{all a: Alias | sole maplal}
fun getHosts (b: AddrBook, n: Name): set Hosts {
result = n.*(b.map).host }

no ... applies host to set of Target; no need to write (expr & Addr).host

» partial functions, undefinedness, third logical value
» type casts

22

flexible declarations

decl says names is domain of map

sig AddrBook {names: set Name, map: names -»+ Target}

fun add (b, b': AddrBook, n: Name, a: Target) {
a in Addr or some lookup(b,a)
b'.map = b.map + n->a}

23

traces

open std/ord

fun init (b: AddrBook) {no b.map}

fact traces {
all b: AddrBook - Ord[AddrBook].last | let b' = OrdNext(b) |
some n: Name, a: Target | add (b, b', n, a) or del (b, b, n)
init (Ord[AddrBook].first) }

assert lookupYields {all b: AddrBook, n: b.names | some lookup(b,n)}.

counterexample

Target_2
n, a, narmes,

Target_2
(Croup)

AdarBook 3 79

Adarbook 2 19

25

what you've seen

language

» first-order encoding
r: A -> B looks like r € "(AxB) but means r C AxB
instead of AddrBook = (”(NamexAddr))

define map: AddrBook -> Name -> Addr

> simple and uniform syntax
navigational dot, rich declarations
explicit parameterization

analysis
» executable and declarative
» no ad hoc constraint on language
» no test cases

26

not seen: modelling idioms

schema extension
sig AddrBook” extends AddrBook {cache: Name -> Addr}
object-oriented heap
sig State {obj: Ref -> Obj}
asynchronous processes
sig Process {state: Time ->! State}
explicit events
sig Event {t: Time}
sig AddEvent extends Event {n: Name, a: Addr}

v

v

v

v

27

not seen: analysis idioms

» refactoring

fun lookup (b: AddrBook, n: Name): set Target {...}

fun lookup’ (b: AddrBook, n: Name): set Target {...}

assert same {all b: AddrBook, n: Name | lookup(b,n) = lookup(b’,n)
» abstraction

fun abstract {c: ConcreteState, a: AbstractState) {...}

fun opC (c, c": ConcreteState) {...}

fun opA (a, a": AbstractState) {...}

assert refines {all a, a’: AbstractState, c, c’: ConcreteState |

opC(c,c’) and abstract(c,a) and abstract(c’,a’) => opA(a,a’) }

» machine diameter

fun noRepeats {no disj b, b": AddrBook | b.map = b".map}

-- when noRepeats is unsatisfiable, trace is long enough

28

how analyzer works

space is huge
» in scope of 5, each relation has 22° possible values
» 10 relations gives 22°° possible assignments

SAT to the rescue
» 1971: satisfiability problem to be shown NP-complete
» 1990’s: shown to be easy in practice
» fastest solvers (Chaff, Berkmin) can handle
thousands of boolean variables, millions of clauses

translating to SAT
» an instance is a graph
» for space of instances,
label arcs with boolean variables

29

analyzer architecture

customized
alloy . alloy visualization
formula instance

translate NS W translate
formula pping model

symrlr:?tl‘y boolean SAT boolean
breaking, formula solver instance
template
detection,

optimizations

30

experience: general

amazing number of flaws
> blatant and subtle
> in every model

good things
» raises the bar
» sense of confidence
» compelling and fun

bad things
» encourages hacking
» over confidence

31

experience: design analyses

about 20 small case studies completed

>

VvV VWV VvV VWV

Key management (Taghdiri)

Chord peer-to-peer storage (Wee)

Firewire leader election (Jackson)
Intentional Naming (Khurshid)

Query Interface in COM (Sullivan)

Unison file synchronizer (Nolte)

Cellular automata (Sridharan)

Role-based access control (Schaad et al)
Ideal Address Translation (Seater & Dennis)

typically

>

>

a few hundred lines of Alloy
longest analysis time: 10 mins to 1 hour

32

experience: education

helps teach modelling
» abstract descriptions, concrete cases
» very close to standard first-order logic

major part of a course
» Imperial, U. Iowa, Kansas State

taught, usually with project
» CMU, Waterloo, Wisconsin, Rochester, Irvine, Georgia
Tech, Queen’s, Michigan State, Colorado State, Twente,
WPIL, USC, MIT

how long?
» undergraduate with no formal methods background
can build small models in 2 weeks

33

applications: code analysis

procedure NOT AND
specification
lloy f l
procedure unroll loops, . .oy orm1.1 .
Iinstance 1s
source code bound heap

execution trace

applied to small, complex algorithms
» Schorr-Waite garbage collection
» red-black trees

Mandana Vaziri’s doctoral thesis

alloy formula
instance is
counter trace

34

applications: test case generation

invariant, Alloy Alloy :
" : Concretizer test cases
precondition Analyzer Instances
why?

» easier to write invariant than test cases
> all test cases within scope give better coverage
» symmetry breaking gives good quality quite

applied to Galileo, a NASA fault tree tool
» generated about 50,000 input trees, each less than 5 nodes
» found unknown subtle flaws

Sarfraz Khurshid’s doctoral thesis .

research challenges

scalability: dancing around the intractability tarpit
» clrcuit minimization

overconstraint: the dark side of declarative models

» unsat core prototype
» highlights contradicting formulas

new type system: real subtypes
» makes semantics fully untyped
» still no casts, down or up
» catches more errors, more flexible, better performance

model extraction
» looking at how to extract models from code

36

for more information ...

alloy.mit.edu

» downloads for windows, unix, macintosh
» courses, talks, case studies, papers

Ty Alloy Homepage
| -« \ g ‘ + | @ hitp://sdg.Ics.mit.edu/alloy/index.html - [Q- mit public service ¢
[0 In Every Cenf& the Poor Apple Amazon eBay Yahoo! HNewsw ==

The Alloy Analyzer

The Alloy Analyzer is a tool for analyzing models written in Alloy, a simple structural modeling
language based on first-order logic. The tool can generate instances of invariants, simulate the
execution of operations (even those defined implicitly), and check user-specified properties of a
model. Alloy and its analyzer have been used primarily to explore abstract software designs. It
use in analyzing code for conformance to a specification and as an automatic test case
generator are being investigated in ongoing research projects.

You can learn more about the language and the analyzer by following the links bellow. If you
prefer a more guided tour of Alloy, take a look at our Brief Guide to Alloy.

FAQ - frequently asked questions
Downloads - analyzer distribution, reference manual, sample models
Publications - papers and theses on Alloy
Talks - talks about Alloy
Courses - Alloy as a teaching tool
Case Studies - case studies using Alloy
Alloy-Discuss - Yahoo discussion group

Flease send guestions and comments to n@d where n = alloy and d = mit.edu
© 2000-2002 Software Design Group

Yy Courses
| -« \ g ‘ + | @ http://sdg.Ics.mit.edu/alloy/courses. html - Q- mit public service center &
[0 In Every Cenf& the Poor Apple Amazon eBay Yahoo! HNewsw ==
| HOME | FAQ | DOWNLOADS | PUBLICATIONS | TALKS | COURSES | CASE STUDIES | ALLOY-DISCUSS | i
Courses

Alloy has been used as a teaching tool in the following courses offered by MIT and other
universities:

MIT

Advanced Topics in Software Design
Daniel Jackson

MIT (Spring 2002)

Synopsis: Topics are likely to include: modelling languages (Alloy, JML);
programming language constructs for expressing design (functors,
typeclasses, units, mixins, aspects); classification of problems and solutions
(problem frames, analysis patterns, design patterns); decoupling theories
(axiomatic design, design structure matrices, module dependences).

Other Universities

CISC 422: Formal Methods in Software Engineering
Juergen Dingel
Queen's University (Winter 2001, Winter 2002)

Synopsis: CISC422 is an introduction to the formal specification, design,
and automatic analysis of software artifacts. The course presents a variety
of specification notations (propositional and predicate logic, Z, Alloy,
UML/OCL, temporal logic), and discusses corresponding analysis techniques
(theorem proving, constraint checking, animation, model checking) using
existing commercial and research tools (Jape, Z/Eves, Alloy, USE, SMV).
The course compares the various approaches and attempts to balance
theory (e.g., discussing theorems) and practise (e.g., discussing tools).

37

