
Daniel Jackson · Princeton · March 2, 2020

software

concepts
&

how I got here

slides.pdfslides.gdoc

slides.pdfslides.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

slides.pdfslides.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

move sync

what’s wrong? the user interface? bugs in the code?

avoid bugs in code

design the user interface

understand the user

for robust, usable software…

get the concepts right

cloud app trashsync

physical linguistic conceptual

color, size, layout,
touch, sound

icons, labels, tooltips,
site structure, info scent

semantics, actions,
data model, purpose

concrete abstract

the conceptual level in UX design

I am more convinced than ever. Conceptual integrity is
central to product quality.
Mythical Man Month Anniversary Edition (1995)

No Silver Bullet (1986)

The essence of a software entity is a construct of
interlocking concepts… I believe the hard part of building
software to be the specification, design, and testing of this
conceptual construct, not the labor of representing it…

Conceptual integrity is the most important consideration
in system design.
Fred Brooks, Mythical Man Month (1975)

not a new idea

It is clear that users attempt to make sense—by building mental
models—of the behavior of a system as they use it. If a simple
model is not explicitly or implicitly provided, users formulate
their own myths about how the system works… [I]f the user is
to understand the system, the system has to be designed with
an explicit conceptual model that is easy enough for the user to
learn. We call this the intended user’s model, because it is the
model the designer intends the user to learn.

Stuart Card & Thomas Moran (1986)

a research agenda

what exactly is a concept? how do you express one?
what is the semantics? how are concepts composed?
what are the design principles for concepts?
what is the essence of design with concepts?

what is a concept?

Finder (1984) Word (1983) Photoshop (1988) Facebook (2004)

Emacs (1985)

Quark (1987)

line, buffer

page, textflow

Drive (2012) Google Doc (2009)
pixelarray,
layer, mask

update, friend,
like

paragraph,
format, style

folder, trash synchronization,
sharing

edit (OT),
cloud file

concepts characterize apps

example: style concept

the invention of style

Tim Mott visits Ginn in 1974
brings idea of styles to PARC

Charles Simonyi’s team
implements style in

Bravo text editor

Simonyi brings style
to Microsoft in 1983

Apple Pages 2005

Apple Keynote
adds style concept

c. 2017

other instances of style

Powerpoint color schemes Indesign swatches

Keynote image styles

non-instances: “pseudo-style”

Apple color swatches
TextEdit “styles"

purpose consistent formatting purpose: why the concept exists

structure
format: Style -> one Format
style: Element -> one Style

structure: localized data model

actions
define (s: Style, f: Format)
 s.format = f
assign (e: Element, s: Style)
 e.style = s
get(e: Element, out f: Format)
 f = e.style.format

actions: observable & atomic

name: essential for knowledge captureconcept Style

There is no
problem

in computer
science

that cannot be
solved by

introducing
another level of

indirection.
David Wheeler

story
define(s, f);
assign(e1, s); assign(e2, s);
define(s,f’); get(e1,f1); get(e1,f2)
=> f1 = f2 = f’

story justifies design and explains it
shows how behavior fulfills purpose

purpose consistent formatting

concept Style

structure
format: Style -> one Format
style: Element -> one Style

actions
define (s: Style, f: Format)
 s.format = f
assign (e: Element, s: Style)
 e.style = s
get(e: Element, out f: Format)
 f = e.style.format

story
define(s, f);
assign(e1, s); assign(e2, s);
define(s,f’); get(e1,f1); get(e1,f2)
=> f1 = f2 = f’

maximal polymorphism

no dependences

separation of concerns

a theorem about all behaviors
generalizes concept variants

story is an archetypal scenario

Michael Polanyi
operational principle

a concept handbook

concepts indexed by purpose
consistent formatting:

style, template, copy settings, …design variants
override formats
style inheritance

next style
partial styles

shareable stylesheet
known issues

deleting styles: what happens to elements?
copying elements between documents

need for “as is” values
troublesome properties (eg, fontstyle)

typical uses
formatting paragraphs & characters

formatting graphic objects
Word, Pages, CSS, …

often used with
paragraph

formatimplementation hints
…

what is the semantics?

purpose identify users

concept AuthUser

structure
name, password: User -> one String
sessions: Client -> set User

actions
register(n: Name, p: String, out u: User)
login (n: Name, p: String, c: Client)
logout (c: Client)
auth (c: Client, out u: User)

story
register(n,p,u); login(n,p,c); auth(c,u’)
=> u’ = u

{
< >,
< register(n0,p0,u0)>,
< register(n0,p0,u0), login(n0,p0,c0)>,
< register(n0,p0,u0), register(n1,p1,u1)>,
…
< register(n0,p0,u0), login(n0,p0,c0), auth(c0,u0)>,
…
}

meaning is set of histories (event traces):

meaning of a single concept

purpose track relative popularity

concept Upvote

structure
votes: Item -> User

actions
upvote (i: Item, u: User)
 votes += i->u
count (i: Item, out k: int)
 k = #i.votes

story
no upvote(i,u) then …
count(i, k); upvote(i,u); count(i, k’)
=> k’>k

meaning of a single concept

{
< >,
…
< count(i0, 0) >,
…
< upvote(i0, u0) >,
…
< upvote(i0, u0), count(i0, 1) >,
…
< count(i0, 0), upvote(i0, u0), count(i0, 1) >,
…
}

post concept

upvote concept

comment concept

auth concept

app HackerNews
includes Post, Comment, Upvote, AuthUser, Owner
actions
newPost (s: String, out p: Post, c: Client)

concept Comment
actions
new (a: Author, s: String, t: Target, out c: Comment)
get (t: Target, out cs: set Comment)

concept Upvote
actions
upvote (i: Item, u: User)
count (i: Item, out r: Int)

concept Post
actions
new (a: Author, s: String, out p: Post)
edit (p: Post, s: String)
get (a: Author, out ps: set Post)

concept Owner
actions
register (o: Owner, i: Item)
owns (o: Owner, i: Item)

editPost (p: Post, s: String, c: Client)
 Post.edit(p, s)
 Owner.owns(u, p)
 AuthUser.auth (c, u)
newComment (p: Post, out x: Comment, c: Client)
 Comment.new(u,s,p,x)
 AuthUser.auth (c, u)
upvotePost (p: Post, c: Client)
 Upvote.upvote (p, u)
 AuthUser.auth (c, u)
…

 Post.new(u, s, p)

 Owner.register(u, p)

 AuthUser.auth (c, u)

concept AuthUser
actions
register (n: Name, p: String, out u: User)
login (n: Name, p: String, c: Client)
logout (c: Client)
auth (c: Client, out u: User)

making an app by composing concepts

projecting actions

each action in composite system
interpreted as zero or more actions in each concept

concept A

concept B

composite

code icon by Freepik from www.flaticon.com

Tony Hoare
CSP (1978)

http://www.flaticon.com

register (n1, p1, u1)
 AuthUser.register (n1, p1, u1)
…
login (n1, p2)
 AuthUser.login (n1, p1, c1)
…
newPost (s1, p1)
 AuthUser.auth (c1, u1)
 Post.new(u1, s1, p1)
 Owner.register(u1, p1)
upvotePost (p1)
 AuthUser.auth (c1, u1)
 Upvote.upvote (p1, u1)

Post.new(u1 ,s1, p1)

Owner.register(u1, p1)

Upvote.upvote (p1, u1)

AuthUser.register (n1, p1, u1)
AuthUser.login (n1, p1, c1)
AuthUser.auth (c1, u1)
AuthUser.auth (c1, u1)

concept AuthUser

concept Post

concept Owner

concept Upvote

✔

✔

✔

✔

check that projected events meet concept specifications

what concepts are (and are not)

behavioralinventive purposeful self-contained reusable

not domain entities
just “out there”

polymorphic
separated concerns

not fragments of
functionality

not datatypes
or modules

not data models
or ontologies

what design principles?

three design rules

P1 C1

P2 C2

instrumentality
one concept per purpose

A1

P1

C1

A2

P1

C1

familiarity
same concept for given purpose

P1 C1

P2 C2

integrity
composition preserves concepts

instrumentality

understanding why: the key to usability

Macintosh Trash Photoshop Layers Available Funds

deleting things

undeleting things
stacking objects

non-destructive editing

signal that deposits are safe

permission to use

wrong purpose

right purpose

a conceptual flaw in Twitter

Nov 2, 2015: Twitter changes Favorite (Star) to Like (Heart)

We are changing our star icon for
favorites to a heart and we’ll be
calling them likes. We want to make
Twitter easier and more rewarding to
use, and we know that at times the
star could be confusing, especially
to newcomers. You might like a lot
of things, but not everything can be
your favorite. Twitter

I've favorited more than 60,000 tweets over
the years, and in that time I've come to
appreciate how versatile that little button is. I
use it as a kind of read receipt to
acknowledge replies; I use it whenever a tweet
makes me laugh out loud; I use it when
someone criticizes me by name in the hopes
that seeing it's one of my "favorite" tweets will
confuse and upset them. Casey Newton

The problem for Twitter is that the “favorite”
function had developed a range of uses over
time, many of which are known only to the
journalists and social-media experts who
spend all their time on the service. For some
(including me), clicking the star icon was a
way of saving a tweet for later, or of sending
a link that was being shared to a service like
Instapaper or Pocket. Mathew Ingram

If Twitter integrated a simple heart
gesture into each Tweet,
engagement across the entire
service would explode. More of us
would be getting loving feedback
on our posts and that would
directly encourage more posting
and more frequent visits to Twitter.
Chris Sacca

confused concepts lead to confused users

how Twitter resolved the conceptual flaw

Like: public Bookmark: private

instrumentality: one purpose, no more and no less

P1 C1

P2 C2

instrumentality
purposes:concepts are 1:1

P1 C1

C2

redundancy
>1 concept per purpose

P1 C1

P2

overloading
>1 purpose per concept

Nam Suh:
Axiomatic Design

redundancy gmail categories

initial reaction to categories

redundancy gmail categories

how Google explains labels

overloading epson driver

result: can’t create custom size for front loading
also, page size presets in Lightroom hold feed setting

overloading commit concept

feature setup

feature completion

backup just in case

familiarity

familiarity and the alternative

A1

P1

C1

A2

P1

C1

familiarity
steal, don’t invent

A1

P1

C11

A2

P1

C12

needless specialization
custom concept, standard purpose

the section concept in powerpoint

in Powerpoint Powerpoint commandsin Keynote

lightroom export preset

ok, highlighting selects the preset

huh, what are the checkboxes?

and why the warning message?

integrity

integrity and its violation

P1 C1

P2 C2

integrity
concepts safe when composed

P1 C1

P2 C2

interference
one concept breaks another

a label

show messages with label hacking

also implemented as a label

using labels to organize messages

a surprising behavior

hacking

meetups

labels are attached to messages

message

conversation

1. filter is applied to set of messages: some match
2. conversation appears if it includes a matched message

what’s going on?

so this is not a surprise

and this makes sense too (but order is special)

and this almost makes sense

the label concept

concept Label
purpose organize items for easy retrieval
structure
label: Item -> one String
actions
mark (i: Item, p: Label)
 i.label += p
unmark (i: Item, p: Label)
 i.label -= p
find (ps: set Label): set Item
 result = {i | ps in i.labels}
story
if mark(i,p); find(p):is then i in is
if no mark(i,p); find(p):is then i !in is

Label

Message

composite
system

sendMsg(m)

send(m)

mark(m, sent)

when message m is sent
Label.mark(m, ’sent’)

occurs implicitly

when Sent link is clicked
Label.find(‘sent’):ms

occurs

but ms includes
messages never marked

not a strawman!
about 1.5B users

20% of global market
27% of all email opens

“The details are not the details; they make
the product”—Charles and Ray Eames

why pick on gmail? do these nitpicks matter?

The Extraction of the Stone of Madness, Hieronymus BoschBronze Age skull with evidence of trepanning

trepanning: small symptoms of major surgery

pro fonts break integrity of format concept

Regular

Italic

Bold

BoldItalic

I I

B

B

B B

slides.pdfslides.gdoc

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

Google CloudApp concept breaks Sync concept

recap: three design rules

P1 C1

P2 C2

instrumentality
one concept per purpose

A1

P1

C1

A2

P1

C1

familiarity
same concept for given purpose

P1 C1

P2 C2

integrity
composition preserves concepts

what is design?

what is design?

refining concepts
click to select Group elements

reusing concepts
using Style for color swatches inventing concepts

Event Type in Calendly
synergy: merging concepts

channels in Photoshop

concept Trash
purpose undo deletion
structure
 all, inTrash: set Object
actions
 delete (o: Object)
 empty ()
 restore (o: Object)
 new (o: Object)
 exists (o: Object, out b: bool)
story
 delete(o); restore(o); exists(o, true)
 delete(o); empty(); exists(o, false)

Apple Lisa (1982): “Wastebasket”
Apple Macintosh (1984): “Trash”
Microsoft MS-DOS 6 (1993): “DeleteSentry”
Apple vs. Microsoft (1994): Apple lost, but ©Trash
Windows 95 (1995): “Recycle Bin”
 holds files not folders, so can’t recover structure

the trash concept & its history

concept Trash
purpose undo deletion
structure
 all, inTrash: set Object
actions
 delete (o: Object)
 empty ()
 restore (o: Object)
 new (o: Object)
 exists (o: Object, out b: bool)
story
 delete(o); restore(o); exists(o, true)
 delete(o); empty(); exists(o, false)

concept Folder
purpose local organization
structure
 root: Folder
 contents: Folder -> set (Folder + Object)
actions
 move (o: Object + Folder, to: Folder)
 new (p: Folder, out f: Folder)
 list (f: Folder, out os: set Object)
 delete (f: Folder)
 root (out f: Folder)
story
 list(f, os); move(o, to); list(f, os’)
 => if o not in os and to != f then os = os’

merging two concepts

trash x folder

can contain folder

generalizes date deleted
handle volumes

trash x folder

synergies
trash is not a special thing
all folder tools apply
can put folder in trash
move to trash = delete
move from trash = restore
date added = date deleted

anomalies
trash contains objects from >1 volume
in trash folder, can group by volume
delete immediately allows partial emptying
trash folder has no path (path concept)
can’t move trash folder or delete it

purpose: undo deletion purpose: local organization

email x server account

style/toc synergy

photoshop synergies

selection = mask = channel = image

the crazy power of photoshop

how to sharpen an image using an edge mask
select channel with greatest contrast
duplicate selected channel
apply Filter > Stylize > Find Edges
apply Image > Adjustments > Invert
apply Filter > Other > Maximum
apply Filter > Noise > Median
apply Image > Adjustment > Levels
apply Filter > Blur > Gaussian Blur
right-click to make channel a selection
select image layer
apply Select > Inverse
apply Filter > Sharpen > Unsharp Mask

treat channel as image

make selection from channel

apply filter using selection as mask

a research & teaching program

a design theory design case studies concept handbook code platform

Gitless
[Perez De Rosso,

Onward 13,
OOPSLA 16]

concept semantics
& design rules
[Onward 15],
book to appear

just sketches so far Deja Vu
[Perez De Rosso]

