
software
Daniel Jackson

Workshop Honoring Shmuel Katz · Technion · Dec 19, 2013

rethinking
designby analyzing

state

three puzzles

why are formal methods not widely used?
› great advances, successful application in specialized domains
› but still a niche, little impact on mainstream development

why is analysis often a second order effect?
› key rationale for formalization: mechanical analysis?
› but in many case studies, most errors found during formalization

why is software so “reliable without proof”?
› better languages & more testing don’t explain it
› least usable features are the least reliable?

a hypothesis

one underlying driver
› clarity of the underlying conceptual model

bad concepts affect both
› user: can’t form mental model
› developer: can’t implement clean modules

so:
› why don’t formal methods have more influence?

with good conceptual model, informal reasoning goes far
› why does formalization alone find flaws so effectively?

it forces you to clarify the concepts
› why do the least usable features have the most bugs?

because the developers are confused too

Lightroom architecture diagram from
http://www.troygaul.com/LrExposedC4.html

code
interface

user’s model

conceptual model

http://amplicate.com
http://amplicate.com

research program

basic theory
defining concepts
concept dependence
structural design criteria

concept idioms
behavioral design criteria

concept models

git, gmail, dropbox, css
conceptual redesigns

evolving research

as the thesis reader said: “There are new and good ideas here”

“But what’s new isn’t good and what’s good isn’t new”

concept models

classification syntax

atoms are
› distinguishable: have an identity
› immutable: don’t change
› indivisible: not structured

box
› set of atoms (empty, singleton, finite, infinite)
› italic: exhausted by subsets

fat arrow
› subset, not necessarily static
› shared arrow: disjoint subsets

FSObject

File Directory

Soft Hard

Link

Message

Read Unread

relations syntax & semantics

kinds of relation
› property
› containment
› association
› naming

ColorShape
color !

IPAddressMachine
ip ??

FSObjectDirectory
contains?

StudentCourse
enrolled

+

User
friends

*
*

A BR
m n

+ one or more
* zero or more
! exactly one
? at most one
omitted = *

‣ R maps m A’s to each B
‣ R maps each A to n B’s

example word styles

model word styles

Paragraph Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn, next

?

!

!

instance word styles

P0
(Paragraph)

S0
(Style)

P0
(Property)

R0
(Rule)

style

rules
prop

S1
(Style)

next

basedOn

V0
(Value)

value

Face

Caslon

semantics word styles

P0
(Paragraph)

S0
(Style)

P0
(Property)

R0
(Rule)

style

rules
prop

S1
(Style)

next

basedOn

V0
(Value)

value

Paragraph Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn, next

?

!

!

?∈✔

?
P0

(Paragraph)
S0

(Style)

P0
(Property)

R0
(Rule)

style

rules
prop

S1
(Style)

next

basedOn

V0
(Value)

value

Face

Caslon

P1
(Paragraph)

semantics word styles

Paragraph Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn, next

?

!

!

∈✘

P0
(Paragraph)

S0
(Style)

P0
(Property)

R0
(Rule)

style

rules
prop

basedOn

Face

semantics word styles

Paragraph Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn, next

?

!

!

?∈✘

P0
(Paragraph)

S0
(Style)

P0
(Property)

R0
(Rule)

style

rules
prop

basedOn

V0
(Value)

value

Face

Caslon

P1
(Paragraph)

adding constraints word styles

Paragraph Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn, next

?

!

!

all s: Style | s not in s.basedOn

?∈✘

not just application state

model javascript

JS Object

Function

_proto

?
_constructor

prototype

!

?

all o: JSObject | o._proto = o._constructor.prototype

model same origin policy

// requests that are not embedded come from the client
all r: Request - Embedded | r.origin = r.from
// embedded requests have the same origin as the response
all r: Response, e: r.embeds | e.origin = r.origin
// request is only accepted if origin is server itself or sender
all s: Server, r: Request | r.to = s implies r.origin = r.to or r.origin = r.from

Request

HTTPEvent

Responseresponse
!

Embedded
Request

Redirect
Response

!

embeds

!

Client

EndPoint

Server

from, to, origin !

causes !

after Barth et al

model degree rules

Course

courses

Group

conflicts

selects

Plan

!

// plan must include one course from each group
all p: Plan, g: Group | some c: p.selects | c in g.courses
// plan cannot include conflicting courses
all p: Plan | no c1, c2: p.selects | c1 in c2.conflicts

concept idioms

Element Stylestyle !

Rule

rules
Property

Value

prop

value

!

!

abstracted basic concept idiom

style idiom

There is no problem
in computer science
that cannot be solved
by introducing another
level of indirection.
--David Wheeler

Paragraph Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn, next

?

!

!

original concept model for Word styles

Element Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn

?

!

!

variant idiom with basedOn
variant idiom with stylesheet

Element Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn

?

!

!

Stylesheet

styles

style other instantiations

Powerpoint schemes Indesign swatches

style non instantiations

Apple color picker

Element Stylestyle !

Rule

rules
Property

Value

prop

value

!

!

value relation must be mutable

idiom selection

slides in
Keynote

messages in Apple Mailphotos in Adobe Lightroom

idiom selection

some variants
one or more selections per document?
selected elements and active element?
selection is 0/1 or 0..1?

Document

Elementelements

Selection

selected

selection

Object

Document

elements

Selection

selected

selection

Element Group

contents

can select groups too

Element

Filtershows

Tag

includes

tags

Element

Filtershows

Tag

includes

tags TrashTag

idiom tagging

some variants
filter has disjuncts/conjuncts
tags are key/value pairs
some tags are system tags
some tags inhibit display

examples
labels in Gmail
keywords in Lightroom
file properties in OS X

idiom invariants

invariant style

all s: Style, p: Property | some r: s.rules | r.prop = p

Element Stylestyle !

Rule

rules
Property

Value

prop

value

basedOn

?

!

!

every style has a rule for every property

invariant variants style

why it matters
› if a style must include all properties then:
› a style can’t inherit a rule from its parent

but unfortunately
› many designs don’t consider implications fully...

can you inherit a property?

Word: property
absent until entered;

then remove only
in Visual Basic!

Indesign: property
absent until entered;

then remove only
with Reset (since 2007)

Pages: aaah!
properties

are optional

invariant selection

all s: Selection, o: s.selected & Group | o.contents in s.selected
selecting a group selects its elements too

Object

Document

elements

Selection

selected

selection

Element Group

contents

invariant variants selection

why it matters
› if groups and their members can be selected separately,

the design is more flexible for the user

variants
› drawing apps: until recently, grouping prevented separate selection

now many apps allow elements of groups to be selected alone
› Apple Mail: selecting an element of a group and an element outside

the group causes all elements of the group to be selected
› git: eliminates notion of group by not syncing directories
› CrashPlan: selection of directory has different meaning; sets default

for files that will be added later

invariant tagging

all f: Filter | f.shows = f.includes.∼tags
a filter shows elements with its included tags

Element

Filtershows

Tag

includes

tags TrashTag

invariant variants tagging

why it matters
› users get very confused if things they expect to be there are not

variants
› Lightroom: deleted images are never shown
› Apple Finder: “include trash” separated out

(but will create a smart folder that shows files marked as invisible!)

generally won’t show trashed messages

if you ask for them explicitly, you’ll see some

hmm...

analyzing concepts

refactoring concept models

suppose we have a bad concept model
› can we refactor into a better one?
› and show that the two are somehow equivalent?

an example from the “Area 2 web app”
› application that tracks degree requirements for MIT CS students
›

	��
����������
�������
��
�����������
��������������������
��
��������
�������������

Plan�for�Completing�the�Technical�Qualifying�Evaluation�
�

Name:___MIT�ID�#:___________________________�
�
Date�Submitted:______________________Email:________________________________Area:_____________�
�
If�you�do�not�intend�to�continue�for�the�doctorate,�please�check�here,�sign�and�return�the�form:_______�
�
Circle�four�subject�numbers�in�the�table�below.�Of�the�4�subjects,�two�subjects�should�be�selected�from�a�single�group.�
The�remaining�two�subjects�must�be�selected�from�two�other�groups.�If�you�have�already�received�a�grade�in�the�subject,�
please�enter�the�grade�in�the�box.�Please�enter�the�term�that�you�completed�the�subject�or�plan�to�take�the�subject�as�
well�(e.g.�FT12�is�the�term�starting�September�2012�and�ST13�is�the�term�starting�February�2013).�Prior�to�Drop�Date�of�
the�Spring�term�2013,�changes�in�your�choices�may�be�made�by�submitting�a�new�version�of�this�form;�after�that�date,�a�
petition�to�the�Committee�on�Graduate�Students�is�required.�

�
THIS�FORM�IS�DUE�IN�THE�EECS�GRADUATE�OFFICE,�38�444,�BY�FEBRUARY�1,�2013.�
�
YOUR�SIGNATURE:___�

GRADUATE�COUNSELORNS�SIGNATURE:___�
� � � � � � � � � � � � Page�1�of�2�

�

option
option

conflict

	��
����������
�������
��
�����������
��������������������
��
��������
�������������

Plan�for�Completing�the�Technical�Qualifying�Evaluation�
�

Name:___MIT�ID�#:___________________________�
�
Date�Submitted:______________________Email:________________________________Area:_____________�
�
If�you�do�not�intend�to�continue�for�the�doctorate,�please�check�here,�sign�and�return�the�form:_______�
�
Circle�four�subject�numbers�in�the�table�below.�Of�the�4�subjects,�two�subjects�should�be�selected�from�a�single�group.�
The�remaining�two�subjects�must�be�selected�from�two�other�groups.�If�you�have�already�received�a�grade�in�the�subject,�
please�enter�the�grade�in�the�box.�Please�enter�the�term�that�you�completed�the�subject�or�plan�to�take�the�subject�as�
well�(e.g.�FT12�is�the�term�starting�September�2012�and�ST13�is�the�term�starting�February�2013).�Prior�to�Drop�Date�of�
the�Spring�term�2013,�changes�in�your�choices�may�be�made�by�submitting�a�new�version�of�this�form;�after�that�date,�a�
petition�to�the�Committee�on�Graduate�Students�is�required.�

�
THIS�FORM�IS�DUE�IN�THE�EECS�GRADUATE�OFFICE,�38�444,�BY�FEBRUARY�1,�2013.�
�
YOUR�SIGNATURE:___�

GRADUATE�COUNSELORNS�SIGNATURE:___�
� � � � � � � � � � � � Page�1�of�2�

�

implied conceptual model

Course
course

Option

options

Group

NotOnly
Option

conflicts

selects

Plan

!

a. select 2 options from one group
b. select one option from other groups
c. NotOnly option is not only option in group
d. options may not conflict

new design

simplified conceptual model

a. select one more course than groups
b. select at least one course per group
c. courses may not conflict

Course

courses

Group

conflicts

selects

Plan

!

alloy model

forward: check {
 all p: TQE_Plan | valid[p] implies simpler_valid[p]
 } for 4 but 1 TQE_Plan

backward: check {
 all p: TQE_Plan | simpler_valid[p] implies valid[p]
 } for 4 but 1 TQE_Plan

counterexample: new too strong

plan rejected by new rules but accepted by old ones
because courses 0 and 2 only conflict for some options

counterexample: new too weak

plan rejected by old rules but accepted by new ones because
option was chosen for course 1 that leaves a ‘not only’ course in
group 1

when is simplification valid?

P1. When two options conflict, any other pair of options that
corresponds to the same two courses also conflicts.

P2. If two options (in different groups) are for the same course, then
those options are “not only” options

conclusions

simple invariants expose subtle problems
use idioms to explore standard solutions

formal methods might help
cost amortized when applied to idiom

conceptual modeling: old idea with new challenges
Analysis Patterns (Fowler, 1997)
Data Model Patterns (Hay, 2011)

Conceptual Models (Henderson & Johnson, 2011)

