
alloy:
a logical
modelling language

Daniel Jackson, MIT
Ilya Shlyakhter
Manu Sridharan

ZB 2003
Turku, June 4, 2003

Small Tower of 6 Gears, Arthur Ganson

2

lightweight formal methods

ingredients
› incremental, risk-driven
› small, focused models
› rapid feedback from analysis

language must be
› small and simple
› expressive, esp. for structure
› declarative (for partiality)

analysis must be
› fully automatic
› semantically deep

3

alloy: a structural, analyzable logic

a notation inspired by Z
› just (sets and) relations
› everything’s a formula
› but not easily analyzed

an analysis inspired by SMV
› billions of cases in second
› counterexamples, not proof
› but not declarative

Oxford, home of Z

Pittsburgh, home of SMV

4

why not …?

animators
› non-declarative sublanguage
› limited coverage of space
› manually driven (eg, by test cases)

theorem provers
› still too hard for many users
› failure hard to diagnose

model checkers
› no support for data structures
› language is often operational

5

demo

lengthy illustration of use of Alloy
to model and analyze an address book

6

a whirlwind tour

language ideas (versus Z)
› kernel: everything’s a relation -- not a set
› signatures: structure by atoms+projection -- not bindings
› functions: explicit parameterization -- not free variables

analysis ideas
› scope: exhaustive search in finite bounds
› engine: reduction to SAT

7

everything’s a relation

set

function relation

scalar

sequence

Alloy

tuple

is-a

setfunction relation

scalar

sequence

Z tuple binding

8

relational kernel

all values are represented as relations
{(a),(b)} for a set
{(a)} for a scalar
{(a,b)} for a tuple

operators
p + q, p - q, p & q, ~p, *p, ^p
p in q
p . q = {(p1, … pn-1, q2, … qm) | (p1,… pn) ` p . (pn,q2,… qm) ` q}
p -> q = {(p1, … pn, q1, … qm) | (p1,… pn) ` p . (q1,… qm) ` q}

example
b’.addr = b.addr + n->a
b = {(B0)}, b’ = {(B1)}, n = {(N0)}, a = {(A0)}, addr = {(B1,N0,A0)}

9

consequences

good
› no function application: avoid partiality tarpit
› uniform navigation expressions: no flattening, lifting, etc
› simple semantics: easy to grasp, easy to implement

bad
› partial function problem isn’t gone

no p: Person | p.wife in p.siblings
implies that everyone has a wife; instead say
no p: Person | some p.wife & p.siblings

first-order puns
r: A -> B means r Õ A¥B not r Œ A´B

10

signatures

key idea
› signatures denote sets of atoms
› fields denote global relations
› extension is subset

example
sig X, Y {}
sig A {f: X}
sig B extends A {g: X -> Y, h: Y}

f is a relation on A -> X
g is a relation on B -> X -> Y
h is a relation on B -> Y

X, Y, A, B are atom sets
X, Y, A are disjoint
B is a subset of A

a.h is empty if a not in B

11

consequences

good
› quantification over signature sets is first-order
› simpler semantics than Z’s schema bindings
› no casts needed

bad
› existentials don’t always mean what you think

all b: Book | some b’: Book | b’.addr = b.addr + n->a

12

no classification by schemas in Z

Target ’ [] BOGUS!
Addr ’ [Target; u: User]
Book ’ [addr: Name h Target]
Add ’ [DBook, n: Name, a: Addr | addr’ = addr » {(n,a)}] ERROR!

sig Target {}
sig Addr extends Target {u: User}
sig Book {addr: Name -> Target}
fun SimpleAdd (b, b’: Book, n: Name, a: Addr) {b’.addr = b.addr + n->a}

13

idioms for change of state

› ‘established strategy’
sig Book {addr: Name -> Addr}
fun Clear (b, b’: Book) {no b’.addr}

› object-oriented heap
sig State {deref: Ref -> Book}
fun Clear (s, s’: State, br: Ref) {no s’.deref[br]}

› asynchronous processes
sig BookProcess {addr: Name -> Addr -> Time}
fun Clear (t, t’: Time, bp: BookProcess) {no bp.addr.t’}

› explicit events
sig Event {t: Time}
sig ClearEvent extends Event {bp: BookProcess}
fun trans (e: Event) {e in ClearEvent => no e.bp.addr.t ,…}

14

parameterization

functions are parameterized formulas
› semantics is just renaming/inlining
› can handle recursion if args are scalar

good
› simple, clear semantics
› no tricky variable capture
› type checking catches errors
› modular implementation

bad
› can be more verbose than Z
› can’t factor out argument sublist

15

promotion in Alloy

sig Name, Addr {}
sig Book {addr: Name -> Addr}
fun AddLocal (b, b’: Book, n: Name, a: Addr) {

b’.addr = b.addr + n->a
}

sig BookID {}
sig Email {book: BookID ->! Book}
fun Add (e, e’: Email, b: BookID, n: Name, a: Addr) {

AddLocal (e.book[b], e’.book[b], n, a)
all bx: BookID - b | e’.book[bx] = e.book[bx]
}

16

promotion in Z

[Name, Addr]
Book í [addr: Name <-> Addr]
AddLocal í [DBook; n: Name; a: Addr | addr’ = addr » {(n,a)}]

[BookID]
Email í [book: BookID h Book]
Add í $ DBook | AddLocal Ÿ

[
DEmail; DBook; bid: BookID |
book bid = qBook
book’ bid = qBook’
"bid’: BID • bid’ != bid | book’ bid’ = book bid’
]

17

scope

language is undecidable
› so no sound & complete algorithm

“try all small tests”
› model proper is unbounded
› user defines scope in command
› scope bounds each basic type

small scope hypothesis
› many bugs have small counterexamples
› … and models often have many bugs

18

small scope hypothesis

consequences
› sound: no false alarms
› incomplete: can’t prove anything

cumulative invalid assertions 90%

smallest
revealing

scope

5

misscatch

19

engine: reduction to SAT

space is huge
› in scope of 5, each relation has 225 possible values
› 10 relations gives 2250 possible assignments

SAT to the rescue
› SAT is hard (Cook, 1971)
› SAT is easy (Kautz, Selman et al, 1990’s)
› Chaff, Berkmin: thousands vars, millions clauses

translating to SAT
› view relation as a graph
› space of possible values: each edge is present or not
› label edge with boolean variable
› compositional mapping from relational to boolean formula

20

analyzer architecture

translate
formula

translate
modelmapping

boolean
formula

boolean
 instance

SAT
solver

alloy
formula

alloy
instance

scope

symmetry
breaking,
template
detection,

optimizations

customized
visualization

21

analysis idioms

› refactoring
fun lookup (b: Book, n: Name): set Target {…}
fun lookup’ (b: Book, n: Name): set Target {…}
assert same {all b: Book, n: Name | lookup(b,n) = lookup’(b,n)

› abstraction
fun abs {c: Concrete, a: Abstract) {…}
fun opC (c, c’: Concrete) {…}
fun opA (a, a’: Abstract) {…}
assert refines {all a, a’: Abstract, c, c’: Concrete |

opC(c,c’) and abs(c,a) and abs(c’,a’) => opA(a,a’) }
› machine diameter

fun noRepeats {no disj b, b’: Book | b.addr = b’.addr}
-- when noRepeats is unsatisfiable, trace is long enough

22

reflections

executable and abstract specifications?
› can have your cake and eat it
› … if you eat slowly

is first-order enough?
› most uses of higher-order features are gratuitous
› but minimization is a problem

tool implementation
› strong sanity check on language design

23

Alloy and UML

because of these Alloy features
› signature extension
› implicit typing
› flexible declaration syntax

you can transcribe an object model or ER diagram

A

B Cr

sig A {}
sig B extends A {r: set C}
sig C {}

sig Atyp, Ctyp {}
sig State {

A: set Atyp, C : set Ctyp,
B: set A, r: B -> C}

24

the UML dilemma

UML’s constraint language, OCL
› complicated, inexpressive, not modular, not well defined

what to do?

path A
› develop formal semantics, and sanction its complexity
› call this an industrial application of formal methods
› embrace UML in teaching

path B
› explain why it’s broken, and suggest how it might be fixed
› get on with applying better approaches to real problems
› snub UML in teaching and teach stronger, simpler notations

25

experience: general

amazing number of flaws
› blatant and subtle
› in every model

results
› raises the bar
› sense of confidence
› compelling and fun

26

experience: design analyses

case studies
› about 30 completed
› serious flaws in published designs found

distinguishing features
› complex data structures (eg, file synchronization)
› network protocol over all topologies (eg, firewire, chord)
› partial model; only some operations (eg, intentional naming)
› not state machine (eg, ideal address translation)

typically
› a few hundred lines of Alloy
› longest analysis time: 10 mins to 1 hour

27

experience: education

helps teach modelling
› abstract descriptions, concrete cases
› very close to standard first-order logic

used in courses at
› Imperial, U. Iowa, Kansas State, CMU, Waterloo,

Wisconsin, Rochester, Irvine, Georgia Tech, Queen’s,
Michigan State, Colorado State, Twente, WPI, USC, MIT, …

how long to learn?
› undergraduate, no formal methods background
› can build and analyze small models in 2 weeks

28

applications: code analysis

procedure
specification

procedure
source code

alloy formula
instance is

execution trace

alloy formula
instance is

counter trace
NOT AND

unroll loops,
bound heap

applied to small, complex algorithms
› Schorr-Waite garbage collection
› red-black trees

Mandana Vaziri’s doctoral thesis

29

applications: test case generation

why?
› easier to write invariant than test cases
› all test cases within scope give better coverage
› symmetry breaking gives good quality quite

applied to Galileo, a NASA fault tree tool
› generated about 50,000 input trees, each less than 5 nodes
› found unknown subtle flaws

Sarfraz Khurshid’s doctoral thesis

invariant,
precondition

Alloy
instances

Alloy
Analyzer

Concretizer test cases

30

ongoing research projects

scalability: dancing around the intractability tarpit
› circuit minimization

overconstraint: the dark side of declarative models
› unsat core prototype
› highlights contradicting formulas

new type system: real subtypes
› makes semantics fully untyped
› still no casts, down or up
› catches more errors, more flexible, better performance

model extraction
› looking at how to extract models from code

31

alloy.mit.edu

› downloads for OS X, windows, linux
› courses, talks, case studies, papers
› coming: tutorial, book

