alloy:
a logical
modelling language

Daniel Jackson, MIT
Ilya Shlyakhter
Manu Sridharan

ZB 2003
Turku, June 4, 2003

Small Tower of 6 Gears, Arthur Ganson

lightweight formal metho

ingredients

» incremental, risk-driven

» small, focused models

» rapid feedback from analysis

language must be
» small and simple
» expressive, esp. for structure
» declarative (for partiality)

analysis must be
» fully automatic
» semantically deep

alloy: a structural, analyzable logic

a notation inspired by Z
> just (sets and) relations
» everything’s a formula
» but not easily analyzed

an analysis inspired by SMV
» billions of cases in second
» counterexamples, not proof
» but not declarative

Pittsburgh, home of SMV

why not ...?

animators
» non-declarative sublanguage
» limited coverage of space
» manually driven (eg, by test cases)

theorem provers
» still too hard for many users
» failure hard to diagnose

model checkers
» no support for data structures
» language is often operational

demo

lengthy illustration of use of Alloy
to model and analyze an address book

a whirlwind tour

language ideas (versus Z)
» kernel: everything’s a relation -- not a set
» signatures: structure by atoms+projection -- not bindings
» functions: explicit parameterization -- not free variables

analysis ideas
» scope: exhaustive search in finite bounds
» engine: reduction to SAT

everything’s a relation

scalar tuple binding

sequence—» function— relation » set

Alloy

tuple \

sequence—p function —p relation

scalar —p» set /

1S-a

relational kernel

all values are represented as relations
{(a),(b)} for a set
{(a)} for a scalar
{(a,b)} for a tuple

operators
p+q,p-qp&qg ~p, *p,p
ping
P.q={(Py -+ Pn1s Qor +-- Gg) | (P1rev- Do) €P A (Prslyre-- Q) € G}

P->q={(Py -+ Pov Q1s +-- Q) | (P1ro+- D) €P A (Qyse-- Q) € G}

example
b’.addr = b.addr + n->a
b = {(B0)}, b’ ={(B1)}, n={(NO)}, a = {(AO)}, addr = {(B1,N0O,A0)}

8

consequences

good
» no function application: avoid partiality tarpit
» uniform navigation expressions: no flattening, lifting, etc
» simple semantics: easy to grasp, easy to implement

bad
» partial function problem isn’t gone
no p: Person | p.wife in p.siblings
implies that everyone has a wife; instead say
no p: Person | some p.wife & p.siblings

first-order puns
1: A->Bmeansr C AxBnotr & A<>B

signatures

key idea
» signatures denote sets of atoms
» fields denote global relations
» extension is subset

example
sig X, Y {}
sig A {f: X}
sig B extends A {g: X ->Y, h: Y}
X, Y, A, B are atom sets fis a relation on A -> X
X, Y, A are disjoint gisarelationonB->X ->Y
B is a subset of A his arelationon B ->Y

a.h is empty if a not in B

10

consequences

good
» quantification over signature sets is first-order
» simpler semantics than Z’s schema bindings
» no casts needed

bad
» existentials don’t always mean what you think
all b: Book | some b": Book | b’.addr = b.addr + n->a

11

no classification by schemas in Z

sig Target {}

sig Addr extends Target {u: User}

sig Book {addr: Name -> Target}

fun SimpleAdd (b, b": Book, n: Name, a: Addr) {b".addr = b.addr + n->a}

Target r [] BOGUS!
Addr r [Target; u: User]

Book r [addr: Name ~ Target]
Add r [ABook, n: Name, a: Addr | addr’ = addr U {(n,a)}] ERROR!

12

idioms for change of state

» ‘established strategy’
sig Book {addr: Name -> Addr}
fun Clear (b, b": Book) {no b".addr}
» object-oriented heap
sig State {deref: Ref -> Book}
fun Clear (s, s": State, br: Ref) {no s".deref[br]}
» asynchronous processes
sig BookProcess {addr: Name -> Addr -> Time}
fun Clear (t, t": Time, bp: BookProcess) {no bp.addr.t’}
» explicit events
sig Event {t: Time}
sig ClearEvent extends Event {bp: BookProcess}
fun trans (e: Event) {e in ClearEvent => no e.bp.addr.t ,...}

13

parameterization

functions are parameterized formulas
» semantics is just renaming/inlining
» can handle recursion if args are scalar

good
» simple, clear semantics
» no tricky variable capture
» type checking catches errors
» modular implementation

bad
» can be more verbose than Z
» can’t factor out argument sublist

14

promotion in Alloy

sig Name, Addr {}

sig Book {addr: Name -> Addr}

fun AddLocal (b, b": Book, n: Name, a: Addr) {
b’.addr = b.addr + n->a

}

sig BookID {}

sig Email {book: BookID ->! Book}

fun Add (e, €: Email, b: BookID, n: Name, a: Addr) {
AddLocal (e.book[b], €".book[b], n, a)
all bx: BookID - b | e".book[bx] = e.book[bx]

}

15

promotionin Z

[Name, Addr]
Book = [addr: Name <-> Addr]
AddLocal = [ABook; n: Name; a: Addr | addr’ = addr U {(n,a)}]

[BooKID]

Email = [book: BookID ~ Book]
Add = 3 ABook | AddLocal A

[
AEmail; ABook; bid: BookID |

book bid = 6Book

book’ bid = 6Book’

Vbid': BID ¢ bid’ != bid | book” bid" = book bid'
]

16

scope

language is undecidable
» so no sound & complete algorithm

“try all small tests”
» model proper is unbounded
» user defines scope in command
» scope bounds each basic type

small scope hypothesis
> many bugs have small counterexamples
> ... and models often have many bugs

17

small scope hypothesis

5

smallest
revealing
scope

cumulative invalid assertions

consequences
» sound: no false alarms
» incomplete: can’t prove anything

90%

18

engine: reduction to SAT

space is huge
» in scope of 5, each relation has 22° possible values
» 10 relations gives 22°° possible assignments

SAT to the rescue
» SAT is hard (Cook, 1971)
» SAT is easy (Kautz, Selman et al, 1990’s)
» Chaff, Berkmin: thousands vars, millions clauses

translating to SAT
» view relation as a graph
» space of possible values: each edge is present or not
> label edge with boolean variable
» compositional mapping from relational to boolean formula

19

analyzer architecture

customized
alloy . alloy visualization
formula instance

translate > MaDDING - translate
formula pping model

symrlr:fetrv boolean SAT boolean
breaking, formula solver instance
template
detection,

optimizations

20

analysis idioms

» refactoring

fun lookup (b: Book, n: Name): set Target {...}

fun lookup’ (b: Book, n: Name): set Target {...}

assert same {all b: Book, n: Name | lookup(b,n) = lookup’(b,n)
» abstraction

fun abs {c: Concrete, a: Abstract) {...}

fun opC (c, c": Concrete) {...}

fun opA (a, a": Abstract) {...}

assert refines {all a, a": Abstract, ¢, ¢": Concrete

opC(c,c’) and abs(c,a) and abs(c’,a’) => opA(a,a’) }

» machine diameter

fun noRepeats {no disj b, b": Book | b.addr = b’.addr}

-- when noRepeats is unsatisfiable, trace is long enough

21

reflections

executable and abstract specifications?
» can have your cake and eat it
> ... if you eat slowly

is first-order enough?
» most uses of higher-order features are gratuitous
» but minimization is a problem

tool implementation
» strong sanity check on language design

22

Alloy and UML

because of these Alloy features
» signature extension
» implicit typing
» flexible declaration syntax

you can transcribe an object model or ER diagram

sig A {}
sig B extends A {r: set C}

A
[P sig C {}
B

<> ¢ sig Atyp, Ctyp {}
sig State {

A: set Atyp, C : set Ctyp,
B: set A, 1: B -> C}

23

the UML dilemma

UML's constraint language, OCL
» complicated, inexpressive, not modular, not well defined

what to do?

path A
» develop formal semantics, and sanction its complexity
» call this an industrial application of formal methods
» embrace UML in teaching

path B
» explain why it’s broken, and suggest how it might be fixed
» get on with applying better approaches to real problems
» snub UML in teaching and teach stronger, simpler notations

24

experience: general

amazing number of flaws
> blatant and subtle
» in every model

results
» raises the bar
» sense of confidence
» compelling and fun

25

experience: design analyses

case studies
» about 30 completed
» serious flaws in published designs found

distinguishing features

complex data structures (eg, file synchronization)

network protocol over all topologies (eg, firewire, chord)
partial model; only some operations (eg, intentional naming)
not state machine (eg, ideal address translation)

v

typically
» a few hundred lines of Alloy
» longest analysis time: 10 mins to 1 hour

26

experience: education

helps teach modelling
» abstract descriptions, concrete cases
» very close to standard first-order logic

used in courses at
» Imperial, U. lowa, Kansas State, CMU, Waterloo,
Wisconsin, Rochester, Irvine, Georgia Tech, Queen’s,
Michigan State, Colorado State, Twente, WPI, USC, MIT, ...

how long to learn?
» undergraduate, no formal methods background
» can build and analyze small models in 2 weeks

27

applications: code analysis

procedure NOT AND
specification
lloy f l
procedure unroll loops, ¢ .oy orm1.1 .
Iinstance 1s
source code bound heap

execution trace

applied to small, complex algorithms
» Schorr-Waite garbage collection
» red-black trees

Mandana Vaziri’s doctoral thesis

alloy formula
instance is
counter trace

28

applications: test case generation

invariant, Alloy Alloy :
" : Concretizer test cases
precondition Analyzer Instances
why?

» easier to write invariant than test cases
» all test cases within scope give better coverage
» symmetry breaking gives good quality quite

applied to Galileo, a NASA fault tree tool
» generated about 50,000 input trees, each less than 5 nodes
» found unknown subtle flaws

Sarfraz Khurshid’s doctoral thesis ”

ongoing research projects

scalability: dancing around the intractability tarpit
» clrcuit minimization

overconstraint: the dark side of declarative models
» unsat core prototype
» highlights contradicting formulas

new type system: real subtypes
» makes semantics fully untyped
» still no casts, down or up
» catches more errors, more flexible, better performance

model extraction
» looking at how to extract models from code

30

alloy.mit.edu

» downloads for OS X, windows, linux
» courses, talks, case studies, papers

» coming: tutorial, book

Y Yy Alloy Homepage
| « | | | + | @ http://sdg.lcs.mit.edu/alloy/index.html - Q- mit public service ¢
CIO i Every Gatic & 1ha Poor Apple Amazon eBay Yahoo! Newswv =

The Alloy Analyzer

The Alloy Analyzer is a tool for analyzing models written in Alloy, a simple structural moedeling
language based on first-order logic. The tool can generate instances of invariants, simulate the
execution of operations (even those defined implicitly), and check user-specified properties of a
medel. Alloy and its analyzer have been used primarily to explore abstract software designs. It
use in analyzing code for conformance to a specification and as an automatic test case
generator are being investigated in ongoing research projects.

You can learn more about the language and the analyzer by following the links bellow. If you
prefer a more guided tour of Alloy, take a look at our Brief Guide to Alloy.

FAQ - frequently asked guestions
Downloads - analyzer distribution, reference manual, sample models
Publications - papers and theses on Alloy
Talks - talks about Alloy
Courses - Alloy as a teaching tool
Case Studies - case studies using Alloy
Alloy-Discuss - Yahoo discussion group

Flease send guestions and comments to ngtd where n = alloy and ¢ = mit.edu
& 2000-2002 Software Design Group

)

&

CO m

Courses

| | | + | @ http://sdg.lcs.mit.edu/alloy/courses.html - Q- mit public service center &

News v

Every Gen... & the Poor Apple Amazon eBay Yahoo!

Courses

| HOME | FAQ | DOWNLOADS | PUBLICATIONS | TALKS | COURSES | CASE STUDIES | ALLOY-DISCUSS |

Alloy has been used as a teaching tool in the following courses offered by MIT and other
universities:

MIT

Advanced Topics in Software Design
Daniel Jackson

MIT (Spring 2002)

Synopsis: Topics are likely to include: modelling languages (Alloy, JML);
programming language constructs for expressing design (functors,
typeclasses, units, mixins, aspects); classification of problems and solutions
(problem frames, analysis patterns, design patterns); decoupling theories
(axiomatic design, design structure matrices, module dependences).

Other Universities

CISC 422: Formal Methods in Software Engineering
Juergen Dingel
Queen's University (Winter 2001, Winter 2002)

Synopsis: CISC422 is an introduction to the formal specification, design,
and automatic analysis of software artifacts. The course presents a variety
of specification notations (propositional and predicate logic, Z, Alloy,
UML/OCL, temporal logic), and discusses corresponding analysis techniques
(theorem proving, constraint checking, animation, model checking) using
existing commercial and research tools (Jape, Z/Eves, Alloy, USE, SMV).
The course compares the various approaches and attempts to balance
theory (e.g., discussing theorems) and practise (e.g., discussing tools).

31

