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lightweight formal methods

ingredients
› incremental, risk-driven
› small, focused models
› rapid feedback from analysis

language must be
› small and simple
› expressive, esp. for structure
› declarative (for partiality)

analysis must be
› fully automatic
› semantically deep
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alloy: a structural, analyzable logic

a notation inspired by Z
› just (sets and) relations
› everything’s a formula
› but not easily analyzed

an analysis inspired by SMV
› billions of cases in second
› counterexamples, not proof
› but not declarative

Oxford, home of Z

Pittsburgh, home of SMV
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why not …?

animators
› non-declarative sublanguage
› limited coverage of space
› manually driven (eg, by test cases)

theorem provers
› still too hard for many users
› failure hard to diagnose

model checkers
› no support for data structures
› language is often operational
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demo

lengthy illustration of use of Alloy
to model and analyze an address book
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a whirlwind tour

language ideas (versus Z)
› kernel: everything’s a relation -- not a set
› signatures: structure by atoms+projection -- not bindings
› functions: explicit parameterization -- not free variables

analysis ideas
› scope: exhaustive search in finite bounds
› engine: reduction to SAT



7

everything’s a relation

set

function relation

scalar

sequence

Alloy

tuple

is-a

setfunction relation

scalar

sequence

Z tuple binding
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relational kernel

all values are represented as relations
{(a),(b)} for a set
{(a)} for a scalar
{(a,b)} for a tuple

operators
p + q, p - q, p & q, ~p, *p, ^p
p in q
p . q = {(p1, … pn-1, q2, … qm) | (p1,… pn) ` p . (pn,q2,… qm) ` q}
p -> q = {(p1, … pn, q1, … qm) | (p1,… pn) ` p . (q1,… qm) ` q}

example
b’.addr = b.addr + n->a
b = {(B0)}, b’ = {(B1)}, n = {(N0)}, a = {(A0)}, addr = {(B1,N0,A0)}
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consequences

good
› no function application: avoid partiality tarpit
› uniform navigation expressions: no flattening, lifting, etc
› simple semantics: easy to grasp, easy to implement

bad
› partial function problem isn’t gone

no p: Person | p.wife in p.siblings
implies that everyone has a wife; instead say
no p: Person | some p.wife & p.siblings

first-order puns
r: A -> B means r Õ A¥B not r Œ A´B
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signatures

key idea
› signatures denote sets of atoms
› fields denote global relations
› extension is subset

example
sig X, Y {}
sig A {f: X}
sig B extends A {g: X -> Y, h: Y}

f is a relation on A -> X
g is a relation on B -> X -> Y
h is a relation on B -> Y

X, Y, A, B are atom sets
X, Y, A are disjoint
B is a subset of A

a.h is empty if a not in B
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consequences

good
› quantification over signature sets is first-order
› simpler semantics than Z’s schema bindings
› no casts needed

bad
› existentials don’t always mean what you think

all b: Book | some b’: Book | b’.addr = b.addr + n->a
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no classification by schemas in Z

Target ’ [] BOGUS!
Addr ’ [Target; u: User]
Book ’ [addr: Name h Target]
Add ’ [DBook, n: Name, a: Addr | addr’ = addr » {(n,a)}] ERROR!

sig Target {}
sig Addr extends Target {u: User}
sig Book {addr: Name -> Target}
fun SimpleAdd (b, b’: Book, n: Name, a: Addr) {b’.addr = b.addr + n->a}
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idioms for change of state

› ‘established strategy’
sig Book {addr: Name -> Addr}
fun Clear (b, b’: Book) {no b’.addr}

› object-oriented heap
sig State {deref: Ref -> Book}
fun Clear (s, s’: State, br: Ref) {no s’.deref[br]}

› asynchronous processes
sig BookProcess {addr: Name -> Addr -> Time}
fun Clear (t, t’: Time, bp: BookProcess) {no bp.addr.t’}

› explicit events
sig Event {t: Time}
sig ClearEvent extends Event {bp: BookProcess}
fun trans (e: Event) {e in ClearEvent => no e.bp.addr.t ,…}
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parameterization

functions are parameterized formulas
› semantics is just renaming/inlining
› can handle recursion if args are scalar

good
› simple, clear semantics
› no tricky variable capture
› type checking catches errors
› modular implementation

bad
› can be more verbose than Z
› can’t factor out argument sublist
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promotion in Alloy

sig Name, Addr {}
sig Book {addr: Name -> Addr}
fun AddLocal (b, b’: Book, n: Name, a: Addr) {

b’.addr = b.addr + n->a
}

sig BookID {}
sig Email {book: BookID ->! Book}
fun Add (e, e’: Email, b: BookID, n: Name, a: Addr) {

AddLocal (e.book[b], e’.book[b], n, a)
all bx: BookID - b | e’.book[bx] = e.book[bx]
}
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promotion in Z

[Name, Addr]
Book í [addr: Name <-> Addr]
AddLocal í [DBook; n: Name; a: Addr | addr’ = addr » {(n,a)}]

[BookID]
Email í [book: BookID h Book]
Add í $ DBook | AddLocal Ÿ

[
DEmail; DBook; bid: BookID |
book bid = qBook
book’ bid = qBook’
"bid’: BID • bid’ != bid | book’ bid’ = book bid’
]
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scope

language is undecidable
› so no sound & complete algorithm

“try all small tests”
› model proper is unbounded
› user defines scope in command
› scope bounds each basic type

small scope hypothesis
› many bugs have small counterexamples
› … and models often have many bugs
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small scope hypothesis

consequences
› sound: no false alarms
› incomplete: can’t prove anything

cumulative invalid assertions 90%

smallest
revealing

scope

5

misscatch
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engine: reduction to SAT

space is huge
› in scope of 5, each relation has 225 possible values
› 10 relations gives 2250 possible assignments

SAT to the rescue
› SAT is hard (Cook, 1971)
› SAT is easy (Kautz, Selman et al, 1990’s)
› Chaff, Berkmin: thousands vars, millions clauses

translating to SAT
› view relation as a graph
› space of possible values: each edge is present or not
› label edge with boolean variable
› compositional mapping from relational to boolean formula
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analyzer architecture

translate
formula

translate
modelmapping

boolean
formula

boolean
 instance

SAT
solver

alloy
formula

alloy
instance

scope

symmetry
breaking,
template
detection,

optimizations

customized
visualization
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analysis idioms

› refactoring
fun lookup (b: Book, n: Name): set Target {…}
fun lookup’ (b: Book, n: Name): set Target {…}
assert same {all b: Book, n: Name | lookup(b,n) = lookup’(b,n)

› abstraction
fun abs {c: Concrete, a: Abstract) {…}
fun opC (c, c’: Concrete) {…}
fun opA (a, a’: Abstract) {…}
assert refines {all a, a’: Abstract, c, c’: Concrete |

opC(c,c’) and abs(c,a) and abs(c’,a’) => opA(a,a’) }
› machine diameter

fun noRepeats {no disj b, b’: Book | b.addr = b’.addr}
-- when noRepeats is unsatisfiable, trace is long enough
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reflections

executable and abstract specifications?
› can  have your cake and eat it
› … if you eat slowly

is first-order enough?
› most uses of higher-order features are gratuitous
› but minimization is a problem

tool implementation
› strong sanity check on language design
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Alloy and UML

because of these Alloy features
› signature extension
› implicit typing
› flexible declaration syntax

you can transcribe an object model or ER diagram

A

B Cr

sig A {}
sig B extends A {r: set C}
sig C {}

sig Atyp, Ctyp {}
sig State {

A: set Atyp, C : set Ctyp,
B: set A, r: B -> C}
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the UML dilemma

UML’s constraint language, OCL
› complicated, inexpressive, not modular, not well defined

what to do?

path A
› develop formal semantics, and sanction its complexity
› call this an industrial application of formal methods
› embrace UML in teaching

path B
› explain why it’s broken, and suggest how it might be fixed
› get on with applying better approaches to real problems
› snub UML in teaching and teach stronger, simpler notations
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experience: general

amazing number of flaws
› blatant and subtle
› in every model

results
› raises the bar
› sense of confidence
› compelling and fun
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experience: design analyses

case studies
› about 30 completed
› serious flaws in published designs found

distinguishing features
› complex data structures (eg, file synchronization)
› network protocol over all topologies (eg, firewire, chord)
› partial model; only some operations (eg, intentional naming)
› not state machine (eg, ideal address translation)

typically
› a few hundred lines of Alloy
› longest analysis time: 10 mins to 1 hour
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experience: education

helps teach modelling
› abstract descriptions, concrete cases
› very close to standard first-order logic

used in courses at
› Imperial, U. Iowa,  Kansas State, CMU, Waterloo,

Wisconsin, Rochester, Irvine, Georgia Tech, Queen’s,
Michigan State, Colorado State, Twente, WPI, USC, MIT, …

how long to learn?
› undergraduate, no formal methods background
› can build and analyze small models in 2 weeks
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applications: code analysis

procedure
specification

procedure
source code

alloy formula
instance is

execution trace

alloy formula
instance is

counter trace
NOT AND

unroll loops,
bound heap

applied to small, complex algorithms
› Schorr-Waite garbage collection
› red-black trees

Mandana Vaziri’s doctoral thesis
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applications: test case generation

why?
› easier to write invariant than test cases
› all test cases within scope give better coverage
› symmetry breaking gives good quality quite

applied to Galileo, a NASA fault tree tool
› generated about 50,000 input trees, each less than 5 nodes
› found unknown subtle flaws

Sarfraz Khurshid’s doctoral thesis

invariant,
precondition

Alloy
instances

Alloy
Analyzer

Concretizer test cases
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ongoing research projects

scalability: dancing around the intractability tarpit
› circuit minimization

overconstraint: the dark side of declarative models
› unsat core prototype
› highlights contradicting formulas

new type system: real subtypes
› makes semantics fully untyped
› still no casts, down or up
› catches more errors, more flexible, better performance

model extraction
› looking at how to extract models from code
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alloy.mit.edu

› downloads for OS X, windows, linux
› courses, talks, case studies, papers
› coming: tutorial, book


