6.898 Advanced Topics in Software Design February 6, 2001

Lecture 1: Course Overview and Introduction to Alloy
Lecturer: Daniel Jackson Scribe: Bill Thies

1 Course Overview

1.1 Contacting the Lecturer

Please use the email address dnj+6898@mit.edu to contact Daniel, to help him organize mail for
the course.

1.2 Expectations

The following tasks are expected to be completed by the student. They are described in more detail
on the course webpage.

e Scribe one lecture — take notes and write them up in HTML. There might be enough people
registered for the course that not everyone will have to scribe.

e Attend class and participate.

e Read assigned papers, and answer a few short questions about the papers before coming to
class. These answers should be emailed to Daniel the day before the class meeting.

e Complete three projects:

1. A modeling exercise. This will be challenging, but not open-ended.
2. A programming exercise.
3. A term project. The project can be of three types:

(a) Do an open-ended research project. This can be done in a team or individually, and
will result in a paper with an oral presentation.

(b) Build something as a design project. This must be done individually, and requires
only a written presentation.

(c) Re-design an existing piece of software, as a design “clinic’. This must be done
individually, and requires only a written presentation.

In all, the course should require an average of about 6 hours/week of outside work, but the work
will be sporadic since there are only a few assignments.

1.3 Collaboration Policy

It is fine to discuss solutions in a group, but all work that is handed in must be written individually.


mailto:dnj+6898@mit.edu
http://theory.lcs.mit.edu/~dnj/6898/index.html
http://theory.lcs.mit.edu/~dnj/6898/readings.html
mailto:dnj+6898@mit.edu

1.4

Course Outline

This course will focus on advanced topics of software design. We will concentrate on how to express,
analyze, and realize high-level design ideas, and will examine current techniques, languages, tools,
and methods in the field. We will try to bring together perspectives from different communities,
including:

1.
2.

The programming language community, especially those interested in functional programming.
The formal methods community.

The “extreme programming” community, which embraces open-source models with communal
incremental refactoring of code.

The theoretical design community, e.g. those that are interested in decoupling theory. This
area the lecturer is less familiar with, but is interested in exploring as part of the course.

Speaking of communities, Alan Donovan is organizing a programming languages reading group
that meets from 4-5 p.m. on Tuesdays. Everyone is welcome to join.

1.4.1 The Lecturer’s Biases

Daniel gave a disclaimer as to his own biases in software design. They include:

1.

He is a reductionist. How can you capture the essence of software? What makes a design
different from other designs? How can designs be most simple?

He likes tools. It’s kind of strange to note that software designers are one of the only
“computer scientists” who don’t necessarily use computers in their work — currently, they just
think about the design without much help of automated tools. This is especially true for the
early stages of design. Some people are concerned that software design is a craft, and shouldn’t
be reduced to a science—a tool would be too rigid and restrictive. However, most people don’t
take this view about structured programming, even though it met with some resistance at
first. Is it possible to factor out repeated human tasks and capture common structures in the
design process, too?

Regarding formal methods, he likes lightweight formalism. Some people argue for reducing
all of software design into a mathematical formula, but this has the unappealing aspects of 1)
not really capturing everything in the design, and 2) not being practical. Instead, the use of
formal methods should be risk-driven, motivated by “bang for the buck”. For example, if a
product needs to be highly reliable, then lightweight methods can be valuable for providing a
precise design and a mechanical analysis of the program’s properties.

1.4.2 Topics to be Covered

There are four main topics planned for the course, although they are flexible:

1.

2.

Modeling Languages, including the idioms and analyses that are characteristic of each. We
will start with Alloy], the language being developed in Daniel’s group. This will provide a clean
notation to use for discussing design ideas in the remainder of the class. Also, we’ll consider
NI,

Design Patterns. There are two types of patterns that we will consider:
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e Patterns of Problems. These include Martin Fowler’s book on refactoring, and Michael
Jackson’s work on problem frames. The latter work takes the approach of classifying
design problems into known categories before attempting solutions.

e Patterns of Solutions. This includes the classic Design Patterns book by the Gang of
Eour,

3. Programming Language support for software design. Examples include:

(a) Functors, which are constructs in ML for building module generators and sharing con-
straints.

(b) Type classes, which are provided in Haskell as a decoupling mechanism for something
related to overloading.

(¢) Units, a theoretical idea that is being developed by Matthias Felleisen (who is teaching
a related type-theory tourse at Northeastern this spring). Units are being incorporated
into the Java pre-processor.

(d) Open Classes, which allows one to dynamically add methods to a class.

(e) Aspect-Oriented Programming, which is a technology for separation of concerns in software
development.

4. Theoretical underpinnings, including Nam Suh’s work on software design, as well as Design
Rules by [I'Thomas Baldwin and Kim Clark, which views design from the perspective of economic
theory.

2 Introduction to Alloy

We'll discuss the Alloy language at the beginning of this class, both as a foundation for discussing
design concepts later, and as a means for understanding a modeling language. Alloy has some oper-
ators that are generalized versions of normal operators, which makes it very succinct and expressive.

2.1 Overview

The high-level ideas and properties of Alloy are as follows:

1. Declarative Modeling. Alloy is for recognizing that a program has a given property. It
answers the modeler’s question “how can I recognize that property P has happened?” rather
than the engineer’s question of “how can I make property P happen?” Also, Alloy code can
be executed, e.g. to demonstrate that a sorting algorithm works.

2. Expresses Structure. Everything in Alloy is done with relations — there are no sets or other
mathematical entities in the language. This keeps things simple.

3. First-Order. All the logical constraints in Alloy are first-order, which allows them to be
analyzed automatically with a tool. This is in contrast to some higher-order logics that are
harder to analyze.

4. Slick Syntax. The syntax is designed to be compact and completely textual, so that you
don’t need KTEX to get it onto paper.

The following sections describe the main concepts of Alloy in more detail.
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2.2 Atoms

An atom is the basic modeling object in Alloy. An atom is:

1. Indivisible. It has no parts.
2. Immutable. It doesn’t change over time.

3. Uninterpreted. That is, there is no “theory” coming with it—for example, numbers don’t
count as atoms.

We pretend that things are atoms even when they’re not, since not many things in real life
strictly satisfy the above properties. For example, we can model a compound object a that contains
two components b and ¢ by treating all three objects as atoms and defining a contains relation:

contains

2.3 Basic Types

Every atom in Alloy belongs to a single basic type. That is, there is no subtyping in Alloy, and all
basic types are disjoint. We write basic types in capital letters:

The types of atoms are not declared, but inferred by Alloy from the types of relations (see below)
that are used with the atoms.

2.4 Relations

Every expression in Alloy is a relation. A relation is a set of tuples, where each element of the tuple
is of a basic type. One can visualize a relation as a fixed-width table with one or more columns and
zero or more rows; each row is a tuple of the relation. All of the entries in a given column must
have the same basic type. As in other applications, the number of columns is called the arity of the
relation, and the number of rows is called the cardinality.

Alloy allows arbitrary k-relations (the arity can be any natural number). We'll refer to 1-
relations as unary, 2-relations as binary, and 3-relations as ternary. Sometimes people use the word
“relation” to describe only binary relations. We’ll consider sets to be unary relations, as they are
just an unordered list of atoms.

Example

We are going to define some relations. First we give their types:



Danid sibling Tim
spouse spouse
Claudia sibling Emily

Figure 1: Example of some relations. Here, a bi-
directional arrow is used for shorthand to indicate
a relation in both directions.

spouse: <PERSON, PERSON>
sibling: <PERSON, PERSON>
Daniel: <PERSON>
Tim: <PERSON>
Claudia: <PERSON>
Emily: <PERSON>

Each of the relations above is a variable. Daniel is a unary relation (which we also refer to as a
set), and in this case we presume that it contains only one element (i.e., it is is a singleton)—we use
the word scalar to refer to singleton sets. We could say that Daniel is an instance of the DANIEL
atom. Atoms are never declared explicitly; Alloy is concerned only with variables, and it “generates”
atoms.

Now let us specify some values for the relations above:

spouse: { (Daniel, Claudia),
(Claudia, Daniel),
(Tim, Emily),
(Emily, Tim) }

sibling: { (Daniel, Tim),
(Tim, Daniel),
(Claudia, Emily),
(Emily, Claudia) }

As depicted in Figure [, these relations illustrate the lecturer’s remark: “If you didn’t know me, you
wouldn’t know that I'm a living example of a commuting diagram!”
To get a taste of Alloy, we can express this remark in the language:

Some ( Daniel.spouse.sibling &
Daniel.sibling.spouse )

This states that the intersection between Daniel’s spouse’s siblings and his sibling’s spouses is non-
empty.

Notes

A few notes about relations:

e Note the tuple-notation (a, b) denotes an ordered list of a and b. As usual, the notation
{a, b} denotes an unordered set.

e In Alloy (unlike in some set theories), there is no distinction between a variable a, a 1-tuple
of a, a singleton set a, and a singleton set of the 1-tuple of a. That is, in Alloy syntax,

a = (a) = {a} = {(&}



Type Symbol Meaning
Set + union
- difference
& intersection
Comparison in subset
= equality (have same set of tuples)
Relational ~ transpose
— product
join

Table 1: Binary operators in Alloy.

e The relations defined above are all homogeneous, meaning that they relate variables of the
same type. Alloy also supports heterogeneous relations between variables of different types.
For example, one could define a relation for a routing table as table: <ROUTER, IP, LINK>

2.5 Operators

2.5.1 Binary Operators

Some of the binary operators that Alloy supports are shown in Table . A few of the operators
deserve further explanation:

Transpose

The transpose operation is only defined for binary relations. So, for example, “parents = child .

Product
The product operation is defined as follows:
Hp - qH = { (817"'75nat13'~'vt71’L)

| (s1,---y8n) € [lp]] A
I

(tlv"'7tm) Hq }

Roughly speaking, the product operation takes all combinations of elements in p followed by elements
in q. For example, if we have the following relations:

S
S

Knows: <PERSON, PROGRAMMING-LANGUAGE>
MITGrad: <PERSON>
LISP-Dialect: <PROGRAMMING-LANGUAGE>

then the assertion MITGrad—LISP-Dialect would mean that all MIT graduates know all dialects
of LISP.

Join
The join operation is defined as follows:

([p-al] ={ (s1,- -y Sn—1,t2,- -« tm)
| (s1,---58n) € [[pl] A
(t1,-stm) € [la]] A

Spn=11 }



That is, the join operation “links together” tuples from p and ¢ that have matching ends, and the
element that matches is omitted from the linked set. For example, if we have the following relations:

room: <STUDENT, ROOMS>
phone: <ROOM, PHONE>

with the following values:

room: { (si1, r1), (s2, r1), (s3, r2), (s4, r3) }
phone: { (r1, p1), (x2, p2) }

Then the expression room.phone gives you { (s1, pl), (s2, pl), (s3, p2) 1}, as illustrated by
the following diagram:
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rd4 p4 A p4
The room and phone relations. The room.phone relation.
As an example of the join operator, we can note that Daniel.parents = “parents.Daniel .

2.5.2 Constants

Before we can define the closure operator, we need some expressions for constructing standard
expressions in Alloy. These expressions are as follows:

Expression | Type Signature Meaning

Given a relation r, returns the empty relation {}

nonelr| (t1,t2) = (t1,12) within the same domain as r

Given an expression e of basic type t, returns the
idene] t— (1) relation {(a,a) | a € t} — that is, the relation that
maps each element to itself.

Given a relation r : (f1,t2), returns the relation
{{a,b) | a € t1,b € to} — that is, the universal relation
that maps every element of type ¢; to every element
of type ts.

univir] (t1,t2) — (t1,t2)

In the use of these constants in the following sections, we are slightly sloppy about the arguments
that are passed to the constructors. This issue will become clear in the following lectures once we
talk about declaring signatures.



2.5.3 Closure

We can now define the closure operators:

Operator Meaning
cr r+rr+rrr+...
T iden[r] + ~r
For example, ancestor = “parent .

2.5.4 Navigation Expressions

Let’s compare the use of the join operator as a navigator for relations with the navigation of Java
fields and methods via the same syntax. In both Alloy and Java, you could write something like
x.f.g . The difference is that in Alloy, x could map to either none, one, or many variables, whereas
in Java it can map to either one or none (if the object is null).

In addition, Alloy allows branching and iterative constructors as part of join operations, which
further tightens the syntax. An example of branching is Daniel. (spouse + sibling), which gives
both the spouse and siblings of Daniel. An example of iteration is Daniel. friend, which gives the
entire network of Daniel’s friends. As another example, if next is a list, then 1. next gives all the
elements of the list. Finally, the following assertion states that there are no cycles in a list:

“next & iden[list] = none[list]

2.6 Properties of Operators

We could consider the following properties of binary relations (we give them with their Alloy syntax):
e Homogeneous. The types in the relation are the same.
e Heterogeneous. The types in the relation are different.
e Functional. Each atom is mapped to at most one other: no a:t | #a.r > 1

e Injective. No two disjoint elements map to the same element. We have to express this in set
terms in case the relation is not functional (an element maps to more than one element):

no a:t | #a.”r > 1
e Reflexive. all a:t | a->a in r
e Symmetric. all a:t | a->b in r => b->a in r
e Transitive. all a,b,c:t | (a->b in r && b->c in r) => (b->c in r)
e Irreflexive. no a:t | a->a in r

e Anti-symmetric. all a,b:t | (a->b in r && b->a in r) => a=b

2.7 Examples

Finally, we consider some examples of binary relations and the properties that these relations might
have. In designing software, it is useful to think about these properties before doing an implemen-
tation.



Containment

folderContents: <FOLDER, MSG>

This relation is heterogeneous, which implies that folders can’t contain other folders. Also, it is
usually injective in most implementations, where a message is only in one folder. However, it
wouldn’t have to be this way (you could have overlapping folders).

groupContains: <0BJ, 0BJ>

This is a homogeneous relation. We would expect it to be irreflexive, since groups shouldn’t contain
each other.

Labeling
ip: <MACHINE, IP>

This relation maps machines to IP addresses. We would expect it to be injective at any given time,
since no two machines have the same IP address at once. However, since a time is not specified as
part of the tuple, the relation as written could cover many times and thus might not be injective.

Security
canReadDoesBy: <PERSON, PERSON>

This relation is expressing if one person can read what another person does. We would expect it to
be transitive, but not symmetric.

Graphics
occludes: <WINDOW, WINDOW>

This relation expresses whether or not a window on the screen occludes another. We would expect
it to be asymmetric, since windows can’t occlude each other. However, it is not transitive (even in
one dimension!)

Grouping

conflicts: <MACHINE, MACHINE>
We didn’t have time to talk about this one.
Linking

links: <URL, URL>

We didn’t have time to talk about this one.

3 Next Time

Next week, we’ll look at the Alloy language itself on Monday and use it to consider software idioms
on Wednesday.



	Course Overview
	Contacting the Lecturer
	Expectations
	Collaboration Policy
	Course Outline
	The Lecturer's Biases
	Topics to be Covered


	Introduction to Alloy
	Overview
	Atoms
	Basic Types
	Relations
	Operators
	Binary Operators
	Constants
	Closure
	Navigation Expressions

	Properties of Operators
	Examples

	Next Time

