6898: Advanced Topics in Software Design MIT Lab for Computer Science February 11, 2002 Daniel Jackson

course admin

new version of bill's notes online

schedule

- › today: Alloy language
- weds: modelling idioms
- first problem set out; due 2 weeks later
- > mon: holiday
- > weds: peer review
- > mon: JML, OCL, Z

peer review

> 4 students present models for discussion

tasks

- scribe for today
- > organizer for peer review
- > presenters on JML, OCL, Z

software blueprints

what?

- > clear abstract design
- captures just essence

why?

- fewer showstopper flaws
- major refactoring less likely
- easier coding, better performance

how?

- > identify risky aspects
- › develop model incrementally
- > simulate & analyze as you go

alloy: a new approach

alloy

- language & analyzer designed hand-in-hand
- fully automatic checking of theorems
- > simulation without test cases

language

- a flexible notation for describing structure
- static structures, or dynamic behaviours
- > a logic, so declarative: incremental & implicit

analyzer

- > mouse-click automation
- generates counterexamples to theorems
- > based on new SAT technology

roots & influences

Z notation (Oxford, 1980-1992)

elegant & powerful, but no automation

SMV model checker (CMU, 1989)

> 10¹⁰⁰ states, but low-level & for hardware

Nitpick (Jackson & Damon, 1995)

Z subset (no quantifiers), explicit search

Alloy (Jackson, Shlyakhter, Sridharan, 1997-2002)

- full logic with quantifiers & any-arity relations
- flexible structuring mechanisms
- SAT backend, new solvers every month

experience with alloy

applications

- Chord peer-to-peer lookup (Wee)
- Access control (Wee)
- Intentional Naming (Khurshid)
- Microsoft COM (Sullivan)
- Classic distributed algorithms (Shlyakhter)
- > Firewire leader election (Jackson)
- Red-black tree invariants (Vaziri)

taught in courses at

CMU, Waterloo, Wisconsin, Rochester, Kansas State, Irvine, State, Twente Georgia Tech, Queen's, Michigan State, Imperial, Colorado

elements of alloy project

language design flexible, clean syntax, all F.O.

scheme for translation to SAT skolemization, grounding out exploiting symmetry & sharing

customizable visualization

framework for plug-in solvers currently Chaff & BerkMin decouples Alloy from SAT

alloy type system

types

- a universe of atoms, partitioned into basic types
- relational type is sequence of basic types
- sets are unary relations; scalars are singleton sets

examples

- > basic types ROUTER, IP, LINK
- relations

Up: 〈ROUTER〉 ip: 〈ROUTER, IP〉 from, to: 〈LINK,ROUTER〉 table: 〈ROUTER, IP, LINK〉

the set of routers that's up maps router to its IP addr maps link to routers maps router to table

relational operators

join

for set s and relation r, s.r is relational image **q**[**p**] is syntactic variant of **p**.**q** for binary relations, p.q is composition $\mathbf{p} \cdot \mathbf{q} = \{ (\mathbf{p}_1, \dots, \mathbf{p}_{n-1}, \mathbf{q}_2, \dots, \mathbf{q}_m) \mid (\mathbf{p}_1, \dots, \mathbf{p}_n) \in \mathbf{p} \land (\mathbf{q}_1, \dots, \mathbf{q}_m) \in \mathbf{q} \land \mathbf{p}_n = \mathbf{q}_1 \}$

product

 $p \rightarrow q = \{(p_1, \dots, p_n, q_1, \dots, q_m) \mid (p_1, \dots, p_n) \in p \land (q_1, \dots, q_m) \in q\}$ for sets s and t, s → t is cross product

set operators

for scalar e and set s, e in s is set membership p+q, p-q, p&q union, difference, intersection p in q = 'every tuple in p is also in q' for relations p and q, p in q is set subset

alloy declarations

module routing -- declare sets & relations sig IP {}

sig Link {from, to: Router}

sig Router { ip: IP, table: IP ->? Link, nexts: set Router

sig Up extends Router {}

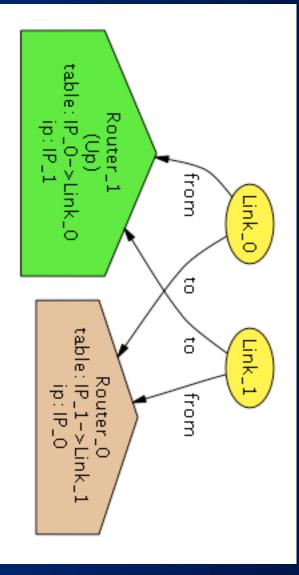
IP: $\langle IP \rangle$

Link: (LINK) from, to: (LINK,ROUTER)

Router: (ROUTER) ip: (ROUTER, IP) table: (ROUTER, IP, LINK) nexts: (ROUTER,ROUTER)

Up: (ROUTER)

a sample network



interlude: identity etc

constants

- iden[t] identity: maps each atom of type of t to itself
- > univ [t] universal: contains every tuple of type t
- > none [t] zero: contains no tuple of type t

examples

- > sig Router {
 ip: IP,
 table: IP ->? Link,
 nexts: set Router
 }
- fact NoSelfLinks {all r: Router | r !in r.nexts}
- fact NoSelfLinks' {no Router\$nexts & iden [Router]}

alloy constraints

fact Basics { all r: Router { no disj r1, r2: Router | r1.ip = r2.ip } // ip addresses are unique no r.table[r.ip] } // router doesn't forward to itself r.nexts = r.table[IP].to // nexts are routers reachable in one step r.table[IP].from = r// router table refers only to router's links

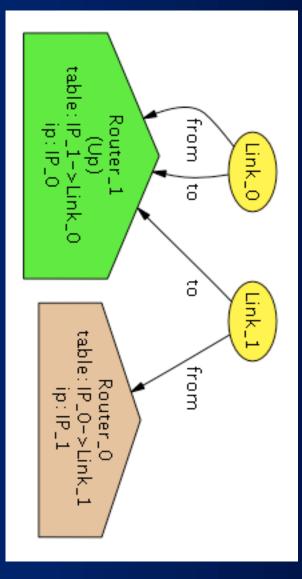
fun Consistent () { all r: Router, i: IP | r.table[i].to in i.~ip.*~nexts } // table forwards on plausible link

simulation commands

run Consistent for 2 -- show me a network that satisfies the Consistent constraint

-- show me one that doesn't fun Inconsistent () {not Consistent ()} run Inconsistent for 2

an inconsistent state

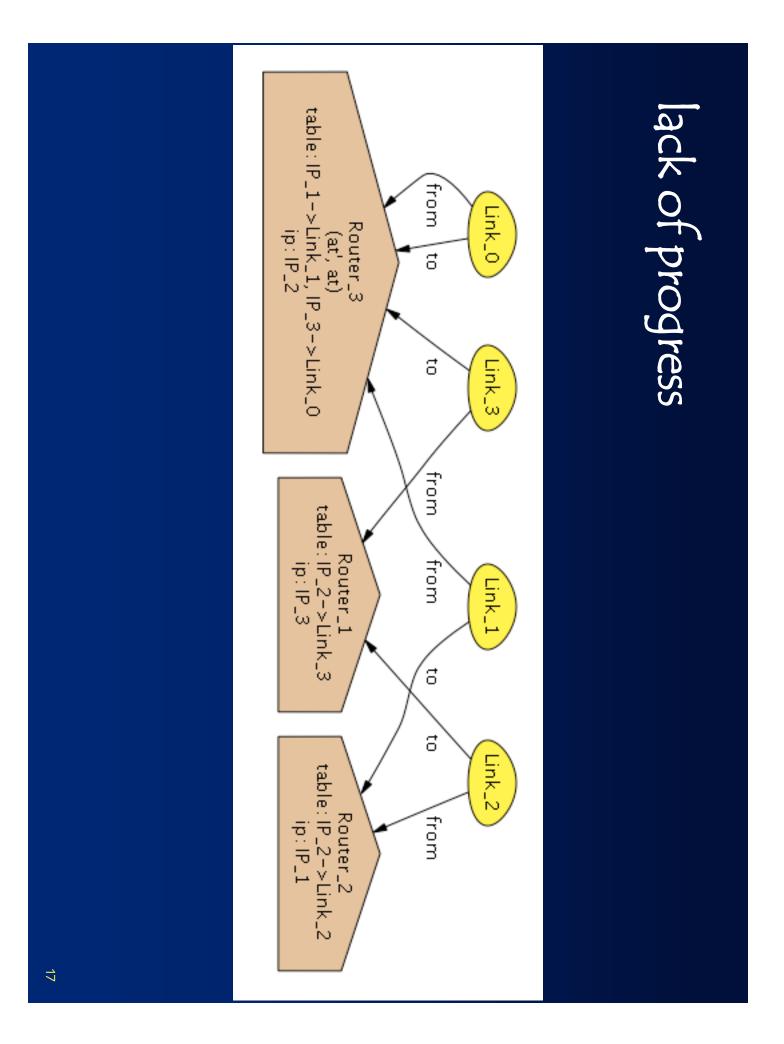


assertions & commands -- define forwarding operation

fun Forward (d: IP, at, at': Router) { -- packet with destination d goes from at to at' at' = at.table[d].to

assert Progress { -- assert that packet doesn't get stuck in a loop all d: IP, at, at': Router Consistent() && Forward (d, at, at') => at != at'

-- issue command to check assertion check Progress for 4



introducing mutation

-- links now depend on state sig Link {from, to: State ->! Router}

sig Router {ip: IP, table: State -> IP ->? Link} -- one table per state

- -- state is just an atom
- -- put router connectivity here
- sig State {nexts: Router -> Router}

state in constraints

```
fact {
                                                                                                                                                           all r: Router, s: State {
no disj r1, r2: Router | r1.ip = r2.ip
                                                                                            s.nexts[r] = (r.table[s] [IP].to)[s]
                                                             no r.table[s][r.ip]
                                                                                                                          (r.table[s][IP].from)[s] = r
```

```
fun Consistent (s: State) {
                                  all r: Router, i: IP
(r.table[s][i].to)[s] in i.~ip.*~(s.nexts)
```

propagation

in one step, each router can ...

- > incorporate a neighbour's entries
- > drop entries

fun Propagate (s, s': State) { all r: Router r.table[s'] in r.table[s] + r.~(s.nexts).table[s]

declarative spec

- > more possibilities, better checking
- easier than writing operationally

does propagation work?

assert PropagationOK { all s, s': State l Consistent (s) && Propagate (s,s') => Consistent (s')

check PropagationOK for 2

0

from

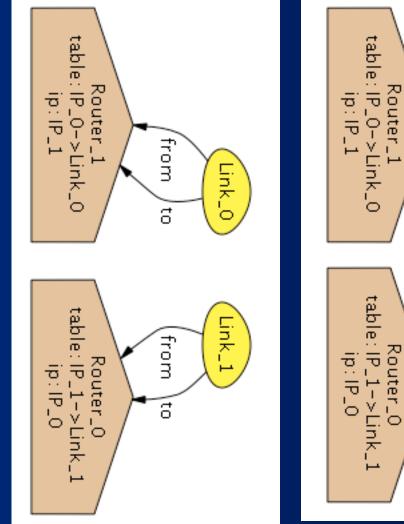
đ

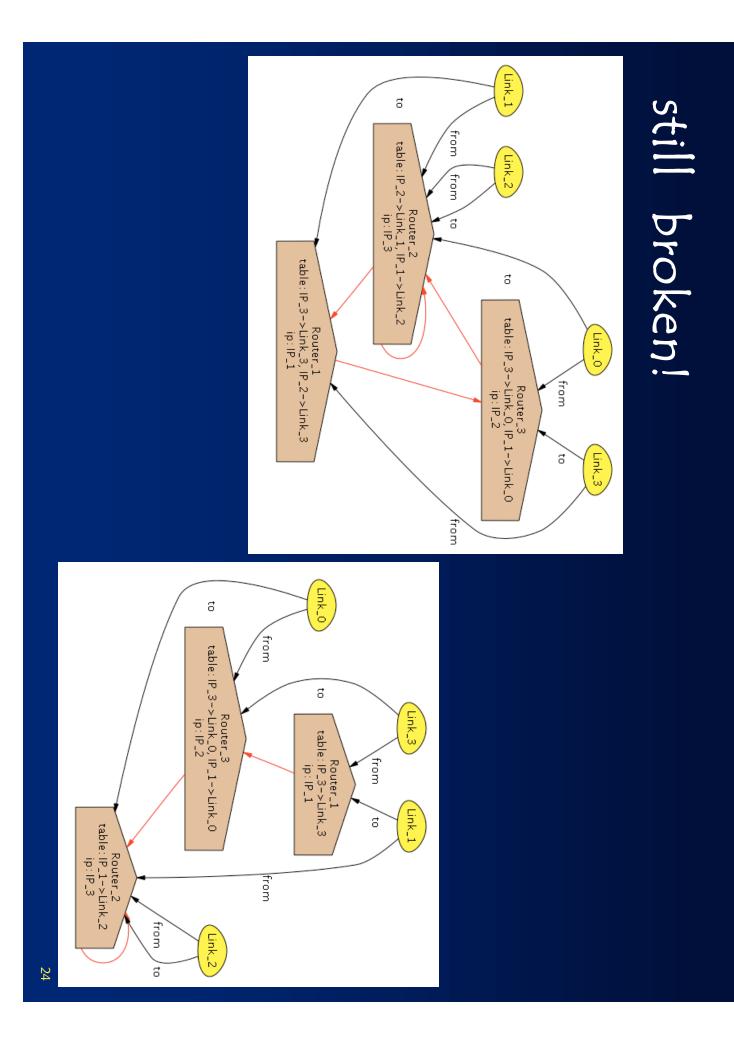
đ

from

Link_0

Link_1





language recap (1)

sig X {f: Y} declares

- a set X
- a type TX associated with X
- a relation f with type 〈TX,TY〉 a constraint (all x: X | x.f in Y && one x.f)

fact {...} introduces a global constraint

declares a constraint to be instantiated fun F (...) {...}

declares a theorem intended to follow from the facts assert A $\{\ldots\}$

language recap (2)

run F for 3 instructs analyzer to

- > find example of F
- v using 3 atoms for each type

check A for 5 but 2 X instructs analyzer to

- > find counterexample of A
- v using 5 atoms for each type, but 2 for type TX

other features (3)

arbitrary expressions in decls > sig PhoneBook {friends: set Friend, number: friends -> Num}

signature extensions

> sig Man extends Person {wife: option Woman}

polymorphism

> fun Acyclic[t] (r: t->t) {no ^r & iden[t]}

modules

> open models/trees

integers > #r.table[IP] < r.fanout</pre>

models, validity & scopes

semantic elements

- assignment: function from free variables to values
- meaning functions
- E : Expression -> Ass -> Relation
- F : Formula -> Ass -> Bool

examples

- > expression: Alice.~likes
- > assignment: Alice – {(al
- Alice = {(alice)} Person = {(alice),(bob),(carol)} likes = {(bob, alice),(carol, alice)}
- $\cdot \text{ value: } \{(bob), (carol)\}$

- > formula: Alice in p.likes
- > assignment:

 $p = \{(bob)\}$

Alice = {(alice)} Person = {(alice),(bob),(carol)} likes = {(bob, alice),(carol, alice)}

- value: true
- › formula: all p: Person | Alice in p.likes
- assignment:

Alice = {(alice)} Person = {(alice),(bob),(carol)} likes = {(bob, alice),(carol, alice)}

value: false

validity, satisfiability, etc

meaning of a formula

- Ass (f) = {set of all well-typed assignments for formula f}
- > Models (f) = $\{a: Ass(f) \mid F[f]a = true\}$
- Valid (f) = all a: Ass (f) | a in Models(f)
- Satisfiable (f) = some a: Ass (f) | a in Models(f)
- > ! Valid (f) = Satisfiable (!f)

checking assertion

- > SYSTEM => PROPERTY
- intended to be valid, so try to show that negation is sat
- > model of negation of theorem is a counterexample

scope

a scope is a function

From basic types to natural numbers

assignment a is within scope s iff

> for basic type t, $#a(t) \le s(t)$

'small scope hypothesis'

- many errors can be found in small scopes
- > ie,

for the theorems f that arise in practice if f has a counterexample, it has one in a small scope

what you've seen

tractable inexpressive

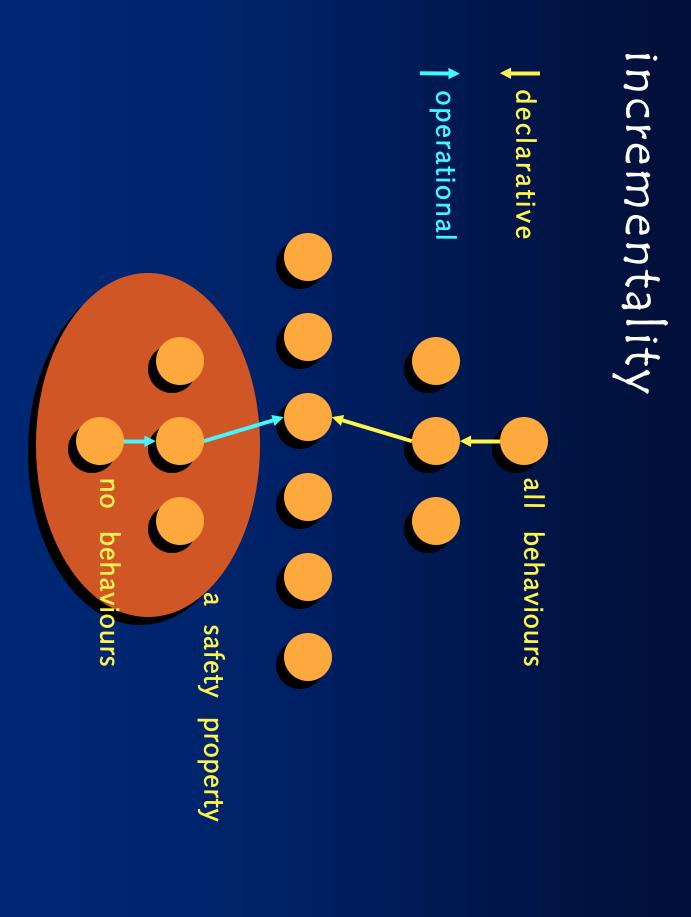
simple notation

- > expressive but first-order
- > properties in same notation
- static & dynamic constraints
- > flexible: no fixed idiom

fully automatic analysis

- simulation, even of implicit operations
- checking over large spaces
- > concrete output

expressive intractable



next time

idioms

- > mutation
- frame conditions
- object-oriented structure
- > operations and traces

reading

- > questions are on web page
- > answers to me by mail before class