alloy

Daniel Jackson
MIT Lab for Computer Science
6898: Advanced Topics in Software Design
February 11, 2002

course 3dmin

new version of bill's notes online
schedule

» today: Alloy language
> weds: modelling idioms

first problem set out; due 2 weeks later
> mon: holiday

> weds: peer review
» mon: JML, OCL, Z

peer review
» 4 students present models for discussion

tasks
» scribe for today

» organizer for peer review
» presenters on JML, OCL, Z

software blueprints

what?
> clear abstract design
» captures just essence

why?
» fewer showstopper flaws
> major refactoring less likely
» easier coding, better performance

how?
> identify risky aspects
> develop model incrementally
» simulate & analyze as you go

alloy: a new approach

alloy
» language & analyzer designed hand-in-hand
» fully automatic checking of theorems
» simulation without test cases

language
> a flexible notation for describing structure
» static structures, or dynamic behaviours
> a logic, so declarative: incremental & implicit

analyzer
> mouse-click automation
> generates counterexamples to theorems
> based on new SAT technology

roots & influences

Z notation (Oxford, 1980-1992)
> elegant & powerful, but no automation

SMV model checker (CMU, 1989)
» 10190 states, but low-level & for hardware

Nitpick (Jackson & Damon, 1995)
» Z subset (no quantifiers), explicit search

Alloy (Jackson, Shlyakhter, Sridharan, 1997-2002)
» full logic with quantifiers & any-arity relations
> flexible structuring mechanisms
> SAT backend, new solvers every month

experience with alloy

applications

» Chord peer-to-peer lookup (Wee)

» Access control (Wee)
Intentional Naming (Khurshid)
Microsoft COM (Sullivan)
Classic distributed algorithms (Shlyakhter)
Firewire leader election (Jackson)
Red-black tree invariants (Vaziri)

taught in courses at
» CMU, Waterloo, Wisconsin, Rochester, Kansas State, Irvine,
Georgia Tech, Queen’s, Michigan State, Imperial, Colorado
State, Twente

elements of alloy project

translator

visualizer

dot

SATLab
Chaff
Berkmin

RelSAT

language design
flexible, clean syntax, all F.O.

scheme for translation to SAT
skolemization, grounding out

exploiting symmetry & sharing

customizable visualization

framework for plug-in solvers
currently Chaff & BerkMin
decouples Alloy from SAT

alloy type system

types
» a universe of atoms, partitioned into basic types

» relational type is sequence of basic types
» sets are unary relations; scalars are singleton sets

examples
» basic types ROUTER, IP, LINK
» relations
Up: (ROUTER) the set of routers that’s up
ip: (ROUTER, IP) maps router to its IP addr
from, to: ({LINK,ROUTER) maps link to routers
table: (ROUTER, IP, LINK) maps router to table

relational operators

join
P-q ={(Pp -+ -Pn-1y 2 -+ Guw) |(P1> - PH) EP A (g,
for binary relations, p.q is composition
for set s and relation r, s.r is relational image
qlp] is syntactic variant of p.q

product

P->q = Py P Qu> -+ G | (P1 - PR)EP A (qy, -
for sets s and t, s->t is cross product

set operators
p+q, P-4, p&q union, difference, intersection
p in q = ‘every tuple in p is also in q’
for scalar e and set s, e in s is set membership
for relations p and q, p in q is set subset

alloy declarations

module routing
-- declare sets & relations

sig IP {}
sig Link {from, to: Router}

sig Router {
ip: 1P,
table: IP ->? Link,
nexts: set Router

¥

sig Up extends Router {}

IP: (IP)

Link: (LINK)
from, to: (LINK,ROUTER)

Router: (ROUTER)

ip: (ROUTER, IP)

table: (ROUTER, IP, LINK)
nexts: (ROUTER,ROUTER)

Up: (ROUTER)

a sample network

interlude: identity etc

constants
> iden|t] identity: maps each atom of type of t to itself
> univ [t] universal: contains every tuple of type t
> none [t] zero: contains no tuple of type t

examples

> sig Router {
ip: 1P,
table: IP ->? Link,
nexts: set Router
}

> fact NoSelfLinks {all r: Router | r !in r.nexts}

» fact NoSelfLinks’ {no Router$nexts & iden [Router]}

alloy constraints

fact Basics {

all r: Router {
// router table refers only to router's links
r.table[IP].from =r
// nexts are routers reachable in one step
r.nexts = r.table[IP].to
// router doesn't forward to itself
no r.table[r.ip] }

// 1p addresses are unique

no disj rl, r2: Router | rl.ip =12.1p }

fun Consistent () {
// table forwards on plausible link
all r: Router, 1: IP | r.table[1].to 1n 1.~1p.*~nexts }

simulation commands

-- show me a network that satisfies the Consistent constraint
run Consistent for 2

-- show me one that doesn’t
fun Inconsistent () {not Consistent ()}
run Inconsistent for 2

_il

0 dl

o I_i!

~dl

|92

d

<-T 4| :

()

AU

|23

=

-0 dl
dl1no ,-_-|

A

T
U<

1"

1IN0

d

A

14} .-l

11 | L

."

ISUooUl ue

-
(D
o)
~
\vp
=
Q)
~
(D

3ssertions & commands

-- define forwarding operation
-- packet with destination d goes from at to at’
fun Forward (d: IP, at, at": Router) {

at' = at.table[d].to

j

-- assert that packet doesn’t get stuck in a loop
assert Progress {
all d: IP, at, at”: Router |
Consistent() && Forward (d, at, at') => at != at’

j

-- 1ssue command to check assertion
check Progress for 4

lack of progress

Link_0 (Tink 3) (Tink 1)

fram \to fram fram to
_M.,_H_M_M_H mm_hﬁ.”_m Fouter_1
: tahle: IP_2-=Link_3

table: IP_1-=Link_1, IP_3-=Link_0Q

in: 1IP_2 P2

Link_2

to from

Fouter_2
tahle: IP_Z2-=Link_Z
ip:IFP_1

introducing mutation

-- links now depend on state
sig Link {from, to: State ->! Router}

-- one table per state
sig Router {ip: IP, table: State -> IP ->? Link}

-- state 1s just an atom
-- put router connectivity here
sig State {nexts: Router -> Router}

state in constraints

fact {
all r: Router, s: State {
(r.table[s][IP].from)[s] =1
s.nexts[r] = (r.table[s] [IP].to)[s]
no r.table[s][r.1p]

s
no disj rl, r2: Router | rl.1ip = r2.1p

¥

fun Consistent (s: State) {
all r: Router, 1: IP |
(r.table[s][1].to)[s] in 1.~1p.*~(s.nexts)
}

propagation

in one step, each router can ...
> 1Incorporate a neighbour’s entries
> drop entries

fun Propagate (s, s': State) {
all r: Router |
r.table[s'] in r.table[s] + r.~(s.nexts).table[s]

¥

declarative spec
> more possibilities, better checking
> easier than writing operationally

does propagation work!?

assert PropagationOK {
all s, s': State |
Consistent (s) && Propagate (s,s') => Consistent (s')
J

check PropagationOK for 2

Fouter_1 Fouter_0

tahle: IP_0O-=Link_0 tahle: IP_1-=Link_1

ip:IF_1 ip: IF_0

Fouter_1 Fouter_0O

tahle: IP_0O-=Link_0 tahle: IP_1-=Link_1
ip:IF_1 ip: IP_0

try aqgain...

fun NoTopologyChange (s,s': State) {
all x: Link {
x.from|[s] = x.from|s']
x.to[s] = x.to[s']
)
}

assert PropagationOK' {
all s, s': State |
Consistent (s) && NoTopologyChange (s,s')
&& Propagate (s,s') => Consistent (s')

check PropagationOK' for 4 but 2 State

S

_

Fouter_3
tahle: IP_3-=Link_0, IP_1-=Link_0O

ip:IP_2

f

Fouter_2

tahle: IP_2->Link_1, IP_1-=Link_2
ip:IP_3

Router_1
table: IP_3-=Link_3, IP_2-=Link_3
ip:IP_1

Router_1

table: IP_3-=Link_3
ip:IP_1

Router_3
table: IP_3->Link_0, IP_1-=Link_0O
g IP_Z

Router_2
table: IP_1-=Link_2
ip:IP_3

lanquage recap (1)

sig X {f: Y} declares
» aset X
» a type TX associated with X

» a relation f with type (TX,TY)
> a constraint (all x: X | x.fin Y && one x.f)

fact {...}
introduces a global constraint

funF (...) {...}
declares a constraint to be instantiated

assert A {...}
declares a theorem intended to follow from the facts

lanquage recap (2)

run F for 3 instructs analyzer to
» find example of F
» using 3 atoms for each type

check A for 5 but 2 X instructs analyzer to
» find counterexample of A
» using 5 atoms for each type, but 2 for type TX

other features (3)

arbitrary expressions in decls
» sig PhoneBook {friends: set Friend, number: friends -> Numj

signature extensions
> sig Man extends Person {wife: option Womanj

polymorphism
» fun Acyclic[t] (r: t->t) {no "r & iden][t]}

modules
> open models/trees

integers
» #r.table[IP] < r.fanout

models, validity & scopes

semantic elements
» assignment: function from free variables to values
> meaning functions
E : Expression -> Ass -> Relation
F : Formula -> Ass -> Bool

examples
> expression: Alice.~likes
> assignment:
Alice = {(alice)}
Person = {(alice),(bob),(carol)}
likes = {(bob, alice),(carol, alice)}

» value: {(bob),(carol)}

formula: Alice in p.likes
assignment:

p = {(bob)j

Alice = {(alice)}

Person = {(alice),(bob),(carol)}

likes = {(bob, alice),(carol, alice)}
value: true

formula: all p: Person | Alice in p.likes
assignment:

Alice = {(alice)}

Person = {(alice),(bob),(carol)}

likes = {(bob, alice),(carol, alice)}
value: false

validity, satisfiability, etc

meaning of a formula
Ass (f) = {set of all well-typed assignments for formula f}
Models (f) = {a: Ass(f) | F[f]a = truej}
Valid (f) = all a: Ass (f) | a in Models(f)

Satisfiable (f) = some a: Ass (f) | a in Models(f)
! Valid (f) = Satisfiable (!f)

checking assertion
> SYSTEM => PROPERTY
> intended to be valid, so try to show that negation is sat
» model of negation of theorem is a counterexample

scope

a scope is a function
» from basic types to natural numbers

assignment a is within scope s iff
> for basic type t, #a(t) < s(t)

‘small scope hypothesis’
> many errors can be found in small scopes
> ie,
for the theorems f that arise in practice
if f has a counterexample, it has one in a small scope

what you've seen

simple notation
expressive but first-order
properties in same notation
static & dynamic constraints
flexible: no fixed idiom

fully automatic analysis
» simulation, even of implicit operations
> checking over large spaces
» concrete output

tractable
inexpressive

expressive
intractable

incrementality

h declarative all behaviours

q operational

a safety property

no behaviours

next time

idioms
mutation
frame conditions
object-oriented structure
operations and traces

reading
> questions are on web page
> answers to me by mail before class

