OEmQTm
Cam

Daniel Jackson
MIT Lab for Computer Science
6898: Advanced Topics in Software Design
March 18, 2002

topics for today

familiar notions (from Scheme)
» let bindings, functions, closures, lists

new notions (from ML)
» inferred types and parametric polymorphism
» side-effects and the unit type
» datatypes (variants)

functions

applying an anonymous function
(funx->2*x) 3;;
-:int =6

declaring a function and applying it
#letdbl = funx -> 2 * x;;

val dbl : int -> int = <fun>

dbl 3;;

-:int=6

functionals, or higher-order functions
let twice = fun f -> (fun x -> (f (f x)));;
val twice : ('a -> "a) -> 'a -> 'a = <fun>

(twice dbl) 3;;

-:int =12

let bindings

a let expression binds a variable to a value
#letx=3andy=4inx +y;
-:int =7

read-eval-print-loop uses let instead of define
#let x = 5;;

valx:int=5

X5

-:int =5

recursive let

letrecfacti=ifi=0then1elsei* fact (i-1);
val fact : int -> int = <fun>

fact 4s;

-:int = 24

let vs. define

#letk = 5;;
valk:int=5
#letf=funx->x+k;;
val f: int -> int = <fun>
#13;;

-:int =8

#letk = 6;;
valk:int=6

#13;;

-:int =8

let is lexical
> no side-effecting top-level define built-in

tuples

tuple constructor
#letx =1, 2;

val x:int*int=1, 2
fst x;;

-:int=1

snd x;;

-:int =2

empty tuple, used instead of ‘void’
(05

- : unit = ()

print_string;;

- : string -> unit = <fun>

function arguments

tupled form: like in an imperative _m:mcmmm
let diff (i Lv = if i < j then j-i else i-j;;

val diff : int * int -> int = <fun>

diff (3, 4);;

-:int=1

(diff 3 4);;

This function is applied to too many arguments

curried form: stages the oOB@EmﬂOb
#let diffij = if i <j then j-i else i-j;;
val diff : int -> int -> int = <fun>

(diff 3) 4

-:int=1

(diff 3 4);;

-:int=1

lists

[1;2];;

- :int list = [1; 2]
#1:2:];;

- :int list = [1; 2]

lists are homogeneous

(11115

- : int list list = [[1]]

[L;[2]]5

This expression has type 'a list but is here used with type int

empty list is polymorphic
15
-:'alist = []

polymorphic functions

the simplest polymorphic function
fun x -> x;;
-:'a->'a = <fun>

a polymorphic function over lists

#letconsel=¢e::1;

val cons : 'a ->'a list -> 'a list = <fun>

#cons 12;;

This expression has type int but 1s here used with type 'a list
#cons 1 [];;

- . 1nt list = [1]

datatypes

a simple datatype

type color = Red | Green | Blue;;
type color = Red | Green | Blue

Red;;

- : color = Red

[Red ; Green];;

- : color list = [Red; Green]

constructors can take arguments

type numtree = Empty | Tree of numtree * int * numtree;;

type numtree = Empty | Tree of numtree * int * numtree

Empty;;

- . numtree = Empty

Tree (Empty, 3, Empty);;

- : numtree = Tree (Empty, 3, Empty) 10

patterns

a function on number trees
type numtree = Empty | Tree of numtree * int * numtree;;
let rec treesum t =
match t with Empty -> 0
| Tree (t1, 1, t2) ->1 + treesum tl + treesum t2;;
val treesum : numtree -> int = <fun>
let tt = Tree (Tree (Empty, 1, Empty), 3, Tree (Empty, 2,Empty));;
... # treesum tt;:;
-:int=6

a function on lists

let rec sum 1 = match 1 with [] ->0 | e :: rest -> e + sum rest;;

val sum : int list -> int = <fun>

#sum [1:;2;3:4];;

-:mt=10 "

puzzle: poly functional over lists

write the function map
> val map : ('a ->'b) -> "alist -> 'b list

solution
#letrecmap fl=
match I with [] -> [] | x = xs -> (f x) :: (map f xs);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map dbl [1;2];;
- - int list = [2; 4]

12

puzzle: user-defined poly datatypes

a polymorphic tree
type 'a tree = Empty | Tree of (‘a tree) * 'a * (‘a tree);;
type 'a tree = Empty | Tree of 'a tree * 'a * 'a tree

what is the type of treefold?
let rec treefold fb t =

match t with Empty -> b
| Tree (left, v, right) -> f (treefold f b left, v, treefold f b right);;

val treefold : ('a*'b * 'a -> 'a) -> 'a -> 'b tree -> 'a = <fun>

13

side-effects

mutable cells
let seed = ref O;;
val seed : int ref = {contents=0}

dereference
!seed;;
-:mt=0

assignment
#seed :=1;;
- unit = ()
!seed;;
-:int=1

14

puzzle

write a function next
» which produces 0, 1, 2, etc
» takes no arguments

15

closures and cells

let next =

(let seed =ref O 1n

function () -> seed := !seed+1; !seed);;

val next : unit -> int = <fun>
(next);;
- : unit -> int = <fun>
next ();;
-:int=1
next ();;
-:int=2

16

lazy lists or ‘streams’

define a datatype for streams
type 'a stream = Nil | Cons of 'a * (unit -> 'a stream);;
type 'a stream = Nil | Cons of 'a * (unit -> 'a stream)

let cons x s = Cons (X, fun () -> s);;

val cons : 'a ->'a stream -> 'a stream = <fun>

let hd s = match s with Cons (x,f) -> Xx;;

Warning: this pattern-matching 1s not exhaustive.
Here 1s an example of a value that 1s not matched: Nil
val hd : 'a stream ->'a = <fun>

let tl s = match s with Cons (x, f) -> 1 ();;

Warning: this pattern-matching 1s not exhaustive.
Here 1s an example of a value that 1s not matched: Nil
val tl : 'a stream -> 'a stream = <fun>

17

using streams

let rec from k = Cons (k, fun () -> from (k+1));;
val from : 1nt -> 1nt stream = <fun>

(from 3);;

- : int stream = Cons (3, <fun>)

hd (tl (from 3));;

-:int=4

18

puzzle

given
type 'a tree = Empty | Tree of 'a * 'a tree list;;
type 'a tree = Empty | Tree of 'a * 'a tree list

write a function that
» performs a depth-first traversal of a tree
» gives result as a stream

you can assume an infix function @
» for appending streams

19

