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why this topic?

what is software design?
›choose syntactic interfaces
›…

 to achieve sem
antic function

›…
 in a way that m

inim
izes coupling

despite im
portance

›idea of dependence is still vague
›little research on essential notions
›tools still prim

itive
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why these papers?

Parnas
›a classic: written in 1979 and still fresh
›a big im

provem
ent on its successors

Pfleeger
›Constantine’s coupling and cohesion
›from

 Yourdon & Constantine’s Structured Design
›the idea from

 SA/SD that lasted

Liskov & Guttag
›both of these ideas in 6170 setting
›specs begin to play m

ore of a role
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why these papers? (ctd)

Gang of Four design patterns
›dependences central
›but no notation!

UM
L Reference M

anual
›evidence that good ideas can be blurred and lost

I have identified som
e sim

ple concepts that can  help
program

m
ers design software so that subsets and extensions

are m
ore easily obtained. These concepts are sim

ple if you
think about software in the way suggested by this paper.

Program
m

ers do not com
m

only do so.
Parnas
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structured design

approach
›design system

 as com
m

unicating m
odules

›evaluate using cohesion & coupling m
etrics

relation to Parnas’s uses
›recognizes kinds of coupling that ‘uses’ doesn’t capture
›appealing but slippery ideas; not well-defined

kinds of coupling
›norm

al: A calls B, B returns to A, all com
m

s by param
eters

›data: another m
odule passes data from

 A to B
›stam

p: com
posite data (ie, m

ust agree on representation)
›control: A passes a flag to B that controls its behaviour
›com

m
on: A and B refer to sam

e global data area
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parnas’s ideas

a fam
ily of program

s
›every developm

ent creates a fam
ily

›think about this at outset

bad approaches
›chain of data transform

ations
›com

ponents perform
ing >1 function

›cyclic dependences

a better approach
›identify subsets in requirem

ents
›inform

ation hiding
›virtual m

achines
›design of uses relation
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a better approach

identify subsets in requirem
ents

›engage, but don’t trust, the user
›m

odelling helps a lot here
›like XP’s “the sim

plest thing that works”

inform
ation hiding

›not just about data abstraction
›identify item

s likely to change: “secrets”
›localize secrets in m

odules: one secret/m
odule

›design interface to hide secret

virtual m
achine

›not steps of processing as in SA/SD, top-down design
›basis for SICP (6.001) approach
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definition of ‘uses’

A uses B = correct execution of B m
ay be necessary for A to

com
plete the task described in its specification

invokes != uses
›A m

ust just invoke B but expect no response
›B m

ay be an interrupt handler that m
ust preserve invariants

elegance vs. independence
›elegant: shared use of subcom

ponents
›independent: parts duplicate functionality



9

layered system
s



9

layered system
s

if uses is acyclic, can define levels
›level 0: com

ponents use no others
›level K: use at least one com

ponent from
 level K-1 and none

from
 a level higher than K-1



9

layered system
s

if uses is acyclic, can define levels
›level 0: com

ponents use no others
›level K: use at least one com

ponent from
 level K-1 and none

from
 a level higher than K-1

Parnas claim
s

›each level offers a testable subset



9

layered system
s

if uses is acyclic, can define levels
›level 0: com

ponents use no others
›level K: use at least one com

ponent from
 level K-1 and none

from
 a level higher than K-1

Parnas claim
s

›each level offers a testable subset

com
m

ents
›layers are usually of non-uniform

 thickness
›often useful to aggregate into packages to see layers
›Parnas says m

odules do not correspond to layers
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when m
ay A

 use B?

criteria
›A is m

ade sim
pler by using B

›B is not m
ade substantially m

ore com
plex

›som
e subset  contains B and not A

›no subset contains A and not B
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other ideas in the paper

subtyping
›“An AFM

 can be m
ade com

patible with an ASM
”

critique of kernel approach to O
S design

›not sufficient to bundle key services into tangled kernel
›rem

iniscent of Kaashoek’s Exokernel

flexibility vs. generality
›generality: can be used without change for m

any purposes
›flexibility: can be adapted to m

any purposes
›unlike in m

athem
atics, generality is not always a good thing

No one can tell a designer how m
uch flexibility and generality

should be built into a product, but the decision should be a
conscious one. Often, it just happens.
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problem
s with ‘uses’

why ‘uses’ is not good enough
›not adequate to describe m

odern software
no notion of replaceability, for exam

ple
›by definition, uses is transitive!
›uses is binary; no m

easure of extent of coupling
›certain kinds of coupling not captured
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som
e new ideas

status
›developed for 6170

inadequacy of M
DD for explaining design patterns

›recently, joint work with Allison W
aingold

›influenced by SM
L, self-updating software

›sim
ilar to units

›still in early stages

two key ideas
›use m

ediated by spec
›nam

e dependence
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the role of specs

a spec is
›a description of a service provided or required
›not a m

odule with dependences
›m

ay or m
ay not be expressible in program

m
ing language

eg, in Java, som
e (but not all) specs will be Java interfaces

two relations
›requires: Com

ponent -> Spec
›provides: Com

ponent -> Spec

‘uses’ becom
es

›m
odule A requires a service S

›m
odule B provides a service S

AB S
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how does this differ from
 ‘uses’?

m
akes specs explicit

›actually the key design elem
ents!

not transitive
›m

odule sees service, not m
odule

m
ultiple specs

›the sam
e service can be used under different specs

›can explain plugins: m
odule provides different services

m
odule requires service

›does not depend on nam
e of m

odule providing service
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correctness reasoning

argum
ent

›given services Sb and Sc
›code of m

odule A
›correctly provides service Sa

A

Sb

Sa

Sc
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spec ordering

S’ extends S iff
›any m

odule that requires S
will be satisfied
by a m

odule that provides S’
›any m

odule that provides S’
provides S

properties
›a partial order
›S extends S
›if S’ extends S, and S extends S’, S = S’
›if S’ extends S, and S’’ extends S’, S’’ extends S

SS’
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fine structure of dependences

full structure
›deps: M

odule -> Spec -> Spec
›deps[M

][P] is
set of required specs
for m

odule M
 to provide service

requires & provides
›defined in term

s of deps

configuration described by
›link: M

odule -> Spec -> M
odule

›link[M
][R] is the m

odule linked to M
that provides service that fulfills requirem

ent R
›well-form

ed iff enough services provided
and provided services extend required services

A

Sb

Sa1

Sc

Sa2
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nam
e dependence

A has a nam
e dependence on B iff

›m
odule A refers to the nam

e of m
odule B

›so A won’t run without presence of B

in languages like Java
›alm

ost all uses have nam
e deps

›dynam
ic dispatch helps narrow to constructor

›and factory pattern narrows further

AB
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challenges for class discussion

polym
orphic container

›equality with ==
›elem

ent-specific equality
›container as elem

ent

standard idiom
 to reduce coupling

›I x = new C ();

design patterns
›abstract factory
›observer
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m
ore …

data abstraction
›rep exposure
›rep independence

inheritance, delegation, etc
›when subclass sees only public interface
›when subclass sees internals
›when superclass relies on subclass
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unresolved issues

couplings that don’t follow control
›passing argum

ents between clients
›read/write file form

at
›com

m
on coupling

relation to requirem
ents

›duplicated functionality
›axiom

atic design m
ay help?


