
dependences
&

coupling
Daniel Jackson

6898
April 17, 2003

2

why this topic?

2

why this topic?

what is software design?
›choose syntactic interfaces
›…

 to achieve sem
antic function

›…
 in a way that m

inim
izes coupling

2

why this topic?

what is software design?
›choose syntactic interfaces
›…

 to achieve sem
antic function

›…
 in a way that m

inim
izes coupling

despite im
portance

›idea of dependence is still vague
›little research on essential notions
›tools still prim

itive

3

why these papers?

3

why these papers?

Parnas
›a classic: written in 1979 and still fresh
›a big im

provem
ent on its successors

3

why these papers?

Parnas
›a classic: written in 1979 and still fresh
›a big im

provem
ent on its successors

Pfleeger
›Constantine’s coupling and cohesion
›from

 Yourdon & Constantine’s Structured Design
›the idea from

 SA/SD that lasted

3

why these papers?

Parnas
›a classic: written in 1979 and still fresh
›a big im

provem
ent on its successors

Pfleeger
›Constantine’s coupling and cohesion
›from

 Yourdon & Constantine’s Structured Design
›the idea from

 SA/SD that lasted

Liskov & Guttag
›both of these ideas in 6170 setting
›specs begin to play m

ore of a role

4

why these papers? (ctd)

4

why these papers? (ctd)

Gang of Four design patterns
›dependences central
›but no notation!

4

why these papers? (ctd)

Gang of Four design patterns
›dependences central
›but no notation!

UM
L Reference M

anual
›evidence that good ideas can be blurred and lost

4

why these papers? (ctd)

Gang of Four design patterns
›dependences central
›but no notation!

UM
L Reference M

anual
›evidence that good ideas can be blurred and lost

I have identified som
e sim

ple concepts that can help
program

m
ers design software so that subsets and extensions

are m
ore easily obtained. These concepts are sim

ple if you
think about software in the way suggested by this paper.

Program
m

ers do not com
m

only do so.
Parnas

5

structured design

5

structured design

approach
›design system

 as com
m

unicating m
odules

›evaluate using cohesion & coupling m
etrics

5

structured design

approach
›design system

 as com
m

unicating m
odules

›evaluate using cohesion & coupling m
etrics

relation to Parnas’s uses
›recognizes kinds of coupling that ‘uses’ doesn’t capture
›appealing but slippery ideas; not well-defined

5

structured design

approach
›design system

 as com
m

unicating m
odules

›evaluate using cohesion & coupling m
etrics

relation to Parnas’s uses
›recognizes kinds of coupling that ‘uses’ doesn’t capture
›appealing but slippery ideas; not well-defined

kinds of coupling
›norm

al: A calls B, B returns to A, all com
m

s by param
eters

›data: another m
odule passes data from

 A to B
›stam

p: com
posite data (ie, m

ust agree on representation)
›control: A passes a flag to B that controls its behaviour
›com

m
on: A and B refer to sam

e global data area

6

parnas’s ideas

6

parnas’s ideas

a fam
ily of program

s
›every developm

ent creates a fam
ily

›think about this at outset

6

parnas’s ideas

a fam
ily of program

s
›every developm

ent creates a fam
ily

›think about this at outset

bad approaches
›chain of data transform

ations
›com

ponents perform
ing >1 function

›cyclic dependences

6

parnas’s ideas

a fam
ily of program

s
›every developm

ent creates a fam
ily

›think about this at outset

bad approaches
›chain of data transform

ations
›com

ponents perform
ing >1 function

›cyclic dependences

a better approach
›identify subsets in requirem

ents
›inform

ation hiding
›virtual m

achines
›design of uses relation

7

a better approach

7

a better approach

identify subsets in requirem
ents

›engage, but don’t trust, the user
›m

odelling helps a lot here
›like XP’s “the sim

plest thing that works”

7

a better approach

identify subsets in requirem
ents

›engage, but don’t trust, the user
›m

odelling helps a lot here
›like XP’s “the sim

plest thing that works”

inform
ation hiding

›not just about data abstraction
›identify item

s likely to change: “secrets”
›localize secrets in m

odules: one secret/m
odule

›design interface to hide secret

7

a better approach

identify subsets in requirem
ents

›engage, but don’t trust, the user
›m

odelling helps a lot here
›like XP’s “the sim

plest thing that works”

inform
ation hiding

›not just about data abstraction
›identify item

s likely to change: “secrets”
›localize secrets in m

odules: one secret/m
odule

›design interface to hide secret

virtual m
achine

›not steps of processing as in SA/SD, top-down design
›basis for SICP (6.001) approach

8

definition of ‘uses’

8

definition of ‘uses’

A uses B = correct execution of B m
ay be necessary for A to

com
plete the task described in its specification

8

definition of ‘uses’

A uses B = correct execution of B m
ay be necessary for A to

com
plete the task described in its specification

invokes != uses
›A m

ust just invoke B but expect no response
›B m

ay be an interrupt handler that m
ust preserve invariants

8

definition of ‘uses’

A uses B = correct execution of B m
ay be necessary for A to

com
plete the task described in its specification

invokes != uses
›A m

ust just invoke B but expect no response
›B m

ay be an interrupt handler that m
ust preserve invariants

elegance vs. independence
›elegant: shared use of subcom

ponents
›independent: parts duplicate functionality

9

layered system
s

9

layered system
s

if uses is acyclic, can define levels
›level 0: com

ponents use no others
›level K: use at least one com

ponent from
 level K-1 and none

from
 a level higher than K-1

9

layered system
s

if uses is acyclic, can define levels
›level 0: com

ponents use no others
›level K: use at least one com

ponent from
 level K-1 and none

from
 a level higher than K-1

Parnas claim
s

›each level offers a testable subset

9

layered system
s

if uses is acyclic, can define levels
›level 0: com

ponents use no others
›level K: use at least one com

ponent from
 level K-1 and none

from
 a level higher than K-1

Parnas claim
s

›each level offers a testable subset

com
m

ents
›layers are usually of non-uniform

 thickness
›often useful to aggregate into packages to see layers
›Parnas says m

odules do not correspond to layers

10

when m
ay A

 use B?

10

when m
ay A

 use B?

criteria
›A is m

ade sim
pler by using B

›B is not m
ade substantially m

ore com
plex

›som
e subset contains B and not A

›no subset contains A and not B

11

other ideas in the paper

11

other ideas in the paper

subtyping
›“An AFM

 can be m
ade com

patible with an ASM
”

11

other ideas in the paper

subtyping
›“An AFM

 can be m
ade com

patible with an ASM
”

critique of kernel approach to O
S design

›not sufficient to bundle key services into tangled kernel
›rem

iniscent of Kaashoek’s Exokernel

11

other ideas in the paper

subtyping
›“An AFM

 can be m
ade com

patible with an ASM
”

critique of kernel approach to O
S design

›not sufficient to bundle key services into tangled kernel
›rem

iniscent of Kaashoek’s Exokernel

flexibility vs. generality
›generality: can be used without change for m

any purposes
›flexibility: can be adapted to m

any purposes
›unlike in m

athem
atics, generality is not always a good thing

11

other ideas in the paper

subtyping
›“An AFM

 can be m
ade com

patible with an ASM
”

critique of kernel approach to O
S design

›not sufficient to bundle key services into tangled kernel
›rem

iniscent of Kaashoek’s Exokernel

flexibility vs. generality
›generality: can be used without change for m

any purposes
›flexibility: can be adapted to m

any purposes
›unlike in m

athem
atics, generality is not always a good thing

No one can tell a designer how m
uch flexibility and generality

should be built into a product, but the decision should be a
conscious one. Often, it just happens.

12

problem
s with ‘uses’

12

problem
s with ‘uses’

why ‘uses’ is not good enough
›not adequate to describe m

odern software
no notion of replaceability, for exam

ple
›by definition, uses is transitive!
›uses is binary; no m

easure of extent of coupling
›certain kinds of coupling not captured

13

som
e new ideas

13

som
e new ideas

status
›developed for 6170

inadequacy of M
DD for explaining design patterns

›recently, joint work with Allison W
aingold

›influenced by SM
L, self-updating software

›sim
ilar to units

›still in early stages

13

som
e new ideas

status
›developed for 6170

inadequacy of M
DD for explaining design patterns

›recently, joint work with Allison W
aingold

›influenced by SM
L, self-updating software

›sim
ilar to units

›still in early stages

two key ideas
›use m

ediated by spec
›nam

e dependence

14

the role of specs

AB S

14

the role of specs

a spec is
›a description of a service provided or required
›not a m

odule with dependences
›m

ay or m
ay not be expressible in program

m
ing language

eg, in Java, som
e (but not all) specs will be Java interfaces

AB S

14

the role of specs

a spec is
›a description of a service provided or required
›not a m

odule with dependences
›m

ay or m
ay not be expressible in program

m
ing language

eg, in Java, som
e (but not all) specs will be Java interfaces

two relations
›requires: Com

ponent -> Spec
›provides: Com

ponent -> Spec
AB S

14

the role of specs

a spec is
›a description of a service provided or required
›not a m

odule with dependences
›m

ay or m
ay not be expressible in program

m
ing language

eg, in Java, som
e (but not all) specs will be Java interfaces

two relations
›requires: Com

ponent -> Spec
›provides: Com

ponent -> Spec

‘uses’ becom
es

›m
odule A requires a service S

›m
odule B provides a service S

AB S

15

how does this differ from
 ‘uses’?

15

how does this differ from
 ‘uses’?

m
akes specs explicit

›actually the key design elem
ents!

15

how does this differ from
 ‘uses’?

m
akes specs explicit

›actually the key design elem
ents!

not transitive
›m

odule sees service, not m
odule

15

how does this differ from
 ‘uses’?

m
akes specs explicit

›actually the key design elem
ents!

not transitive
›m

odule sees service, not m
odule

m
ultiple specs

›the sam
e service can be used under different specs

›can explain plugins: m
odule provides different services

15

how does this differ from
 ‘uses’?

m
akes specs explicit

›actually the key design elem
ents!

not transitive
›m

odule sees service, not m
odule

m
ultiple specs

›the sam
e service can be used under different specs

›can explain plugins: m
odule provides different services

m
odule requires service

›does not depend on nam
e of m

odule providing service

16

correctness reasoning

A

Sb

Sa

Sc

16

correctness reasoning

argum
ent

›given services Sb and Sc
›code of m

odule A
›correctly provides service Sa

A

Sb

Sa

Sc

17

spec ordering

SS’

17

spec ordering

S’ extends S iff
›any m

odule that requires S
will be satisfied
by a m

odule that provides S’
›any m

odule that provides S’
provides S

SS’

17

spec ordering

S’ extends S iff
›any m

odule that requires S
will be satisfied
by a m

odule that provides S’
›any m

odule that provides S’
provides S

properties
›a partial order
›S extends S
›if S’ extends S, and S extends S’, S = S’
›if S’ extends S, and S’’ extends S’, S’’ extends S

SS’

18

fine structure of dependences

A

Sb

Sa1

Sc

Sa2

18

fine structure of dependences

full structure
›deps: M

odule -> Spec -> Spec
›deps[M

][P] is
set of required specs
for m

odule M
 to provide service

A

Sb

Sa1

Sc

Sa2

18

fine structure of dependences

full structure
›deps: M

odule -> Spec -> Spec
›deps[M

][P] is
set of required specs
for m

odule M
 to provide service

requires & provides
›defined in term

s of deps

A

Sb

Sa1

Sc

Sa2

18

fine structure of dependences

full structure
›deps: M

odule -> Spec -> Spec
›deps[M

][P] is
set of required specs
for m

odule M
 to provide service

requires & provides
›defined in term

s of deps

configuration described by
›link: M

odule -> Spec -> M
odule

›link[M
][R] is the m

odule linked to M
that provides service that fulfills requirem

ent R
›well-form

ed iff enough services provided
and provided services extend required services

A

Sb

Sa1

Sc

Sa2

19

nam
e dependence

AB

19

nam
e dependence

A has a nam
e dependence on B iff

›m
odule A refers to the nam

e of m
odule B

›so A won’t run without presence of B

AB

19

nam
e dependence

A has a nam
e dependence on B iff

›m
odule A refers to the nam

e of m
odule B

›so A won’t run without presence of B

in languages like Java
›alm

ost all uses have nam
e deps

›dynam
ic dispatch helps narrow to constructor

›and factory pattern narrows further

AB

20

challenges for class discussion

20

challenges for class discussion

polym
orphic container

›equality with ==
›elem

ent-specific equality
›container as elem

ent

20

challenges for class discussion

polym
orphic container

›equality with ==
›elem

ent-specific equality
›container as elem

ent

standard idiom
 to reduce coupling

›I x = new C ();

20

challenges for class discussion

polym
orphic container

›equality with ==
›elem

ent-specific equality
›container as elem

ent

standard idiom
 to reduce coupling

›I x = new C ();

design patterns
›abstract factory
›observer

21

m
ore …

21

m
ore …

data abstraction
›rep exposure
›rep independence

21

m
ore …

data abstraction
›rep exposure
›rep independence

inheritance, delegation, etc
›when subclass sees only public interface
›when subclass sees internals
›when superclass relies on subclass

22

unresolved issues

22

unresolved issues

couplings that don’t follow control
›passing argum

ents between clients
›read/write file form

at
›com

m
on coupling

22

unresolved issues

couplings that don’t follow control
›passing argum

ents between clients
›read/write file form

at
›com

m
on coupling

relation to requirem
ents

›duplicated functionality
›axiom

atic design m
ay help?

