
1

Organization Structures

It seems that remarkably early in our lives we become familiar with organizational
structures. The classic management hierarchy appears on an org chart early in our
career, but even by then we’ve already come across the notion in plenty of places. So
in a way it shouldn’t be surprising that organization structures crop up frequently
enough in business software too. I recognized many organizational patterns several
years ago and ever since they keep turning up again.

A good way to start thinking about modeling organization structures is to think of
the obvious way. Imagine a company where people work in departments, which are
organized into divisions. Figure 0.1 shows an explicit model for this where each part of
the structure is a separate class.

Explicit structures have two main disadvantages. They don’t work well if there is
much common behavior between the kinds of organization. They also embed the cur-
rent organizational categories into the design. Should some bright spark decide to add
regions between divisions and departments, you have some modificaitons to do.

Figure 0.1 An explicit, and obvious,organizational structure.

Division Department Person
✻1 ✻1

2

Faced with these problems, the obvious move is to create a supertype for the orga-
nization, which leads you to Organization Hierarchy (7) in Figure 0.2. The organization
hierarchy works best when you don’t have much different behavior between the orga-
nization sructures. It also allows you to stay very flexible if new kinds of organizations
appear. If you do have some varied behavior you can use subtypes to pull this down.

Making a supertype for the organization is a pretty obvious move, another com-
mon, if less obvious, supertype is Party (5): a supertype between the organization and
person, leading to Figure 0.3. Often you find that there isn’t much difference between
the hierarchic association between organizations and the association between person
and organization so you can pull these associations up to the supertype (Figure 0.4).

Figure 0.2 Organization hierarchy

Figure 0.3 Adding Party to an organization hierarchy

Organization

parent

children

✻

1 {hierarchy}

Organization

parent

children

✻

1

{hierarchy}

Party

Person

3

A hierarchy like this is a good choice for many organizations, it certainly captures
the usual org charts pretty well. But as organizations get larger then you tend to see a
number of different kinds of links between your parties. This might be matrix style
organizational structures where people are organized by job function and geographic
location at the same time. Obviously one way to do this is to create a second party
hierarchy, but this only goes so far. You don’t want your party festooned with hierar-
chies.

This situation leads you to Accountability (17), where you make the interparty
releationship an object in its own right, typed according to the kind of link you need
to have (Figure 0.4). Accountabilities represent the most powerful, and also the most
complex way of dealing with organizational strucutres. So like most of these power
tools, you don’t get them out unless you really need them. But when you do account-
abilties give you a very flexible way of handling all sorts of relationships.

When you have accountabilties there are often rules that say what kinds of parties
can be connected together. You can use a Knowledge Level (32) to capture and enforce
these rules.

Figure 0.4 A hierarchy on Party

Party

parent

children

✻

1

{hierarchy}

OrganizationPerson

4

Figure 0.5 Using Accountability for the organization structures

OrganizationPerson

PartyAccountability

Accountability
Type

✻ 1 parent

✻ 1 child
✻

1

Party Type

✻

1

5

Party

An abstraction of people and organizational units

Example: A telephone utility’s customers may be individuals or businesses. Many aspects of
dealing with customers are the same, in which case they are treated as parties. Where they
differ they are treated through their subtype.

Take a look through your address book, what do you see? If its anything like mine you
will see a lot of addresses, telephone numbers, the odd email address… all linked to
something. Often that something is a person, however the odd company shows up. I
call ‘Oak Grove Taxi’ frequently, but there’s no person I want to speak to — I just
want to call a cab.

If I were to model an address book, I might choose to have people and companies,
each of which have postal addresses and telephone numbers, but the resulting dupli-
cation is painful to the eye. So I need a supertype of person and company. This class is
a classic case of an unnamed concept — one that everybody knows and uses but
nobody has a name for. I have seen it on countless data models on various names: per-
son/org, player, legal entity….

The term I prefer is party, and I’ve been glad to see that over the last few years it’s
turned into a fairly standard name.

Party

Person Organization

6

Making it work
I usually define party as the supertype of person and organization. This allows me to

have addresses and phone numbers for departments within companies, or even infor-
mal teams.

Put any behaviror that is common to people and organizational units on Party, only
put things particular to one or the other on the subtype. When you put behavior on
the subtype, think about whether it makes sense on the supertype, often you may be
surprised how well things fit on the supertype

When to use it
The obvious case to use Party (5) is when you have people and organizations in

your model and you see common behavior. However you should also consider this
pattern when you don’t need to distinguish between people and organizations. In this
case it’s useful just to define a party class and not to provide the subtypes.

If you see parties playing different roles in a business, you’ll often see one of the role
patterns in play. Coad in particular is a big fan of Role Object (116). It’s a common pat-
tern with party, but isn’t one to turn to blindly, but take a look at Role Object (116) for
more discussion of that issue.

The main point of this pattern is to look for it to see if you have common behavior,
and if so to use the name Party for that supertype. The name has become quite widely
used these days, so choosing that name helps in communication.

7

Organization Hierarchy

Represents the hierarchy of organizational units within a business

Making it work
Hierarchies are a common structure in organizations. This is because they reflect a
natural and common technique for human beings to deal with complexity. Modeling a
hierarchy is thus a common thing to do, yet it is both easy and complicated.

Organization

parent

children

✻

1 {hierarchy}

Associated Coffee
Makers: Organization

sales : Organization purchasing :
Organization

Boston sales :
Organization

London sales :
Organization

8

It’s easy because you can show it with a recursive association, my old data model
teachers called it a “pigs ear”. However the recursive association does not tell the
whole story. In most cases there is one parent, but how about for the one at the top?
Hierarchies also have rules, such as the fact that you can’t have cycles (your grandpar-
ent cannot be your grandchild). There is no standard notation for dealing with this in
the UML. I use a constraint {hierarchy} on the association to suggest what is going
on.

Even the {heirarchy} constraint, however, is strictly imprecise. It doesn’t tell you
the difference between a tree (one top) and a forest (multiple tops). If this is impor-
tant to you model you should say what it is, most of the time I find it isn’t that vital.

In the sketch I use the terms parent and children. Naming these association roles
can be tricky. Parent works well with most companies, but child isn’t as good as sub-
sidiaries. However I’ve come to the view that children is the best name. The use of
parent and child is a very useful metaphor when discussing hierarchies, or indeed any
other kind of directed graph structure. I can use such phrases as “sales in London is a
cousin of purchasing in Java” and, although it sounds wacky, you can easily figure out
what I mean. The metaphor gives us a useful vocabulary which is worth the fact that it
often sounds a little odd.

When to use it
You need to use this pattern when you have a hierarchic corporate structure that

affects the software you are using.

• hierarchic: because the pattern handles a hierarchy not anything more complex.
If your needs are more complicated you can tweak the pattern (there are some
suggestions below) or use Accountability (17) instead.

• affects the software: because you only need to capture the corporate organization
if it really affects what you are doing. It’s important to ask yourself what would
happen if you didn’t capture the hierarchy. If the consequences are not painful
then it’s not worth carrying the cost of the links (and above all the costs of main-
taining the links). Remember that it’s easy to add this pattern in later to an
exisiting list of organizations or parties.

GOF fans will note that this pattern is an application of the GOF composite pat-
tern, although a somewhat degenerate one as the composite and leaf classes aren’t
pulled out. Certainly you should consider using composite when you implement it,
and bear in mind that it’s quite common not to have distinguishing behavior between
composites and leaves in this use.

You don’t need to limit yourself to a single hierarchic association. If an organiza-
tion has different structures for regional vs functional management, you can use a pair

9

of hierarchies as in Figure 0.6 This allows sales in the London office to have sales as
its functional parent and the London office as its regional parent. Of course as you get
more hierarchies this will get messy, and this is the point where you’ll want to use
Accountability (17).

Similar logic can lead to abandoning the heirarchy in favor of a more general graph
structure to allow you to have multiple parents. Here I would be more cautious. Ask
yourself whether you really have different kinds of parents that should be distin-
guished. In many cases you’ll find that multiple hierarchies or Accountability (17) will
serve you better. Once you lose the single parent, you lose the ability to easily aggre-
gate up the hierarchy, in particualar you won’t be able to use Aggregating Attribute
(14).

Sample Implementation

The key thing about implementing this pattern is to get the right kind of interface on
the classes. This means providing the right mix of operations to navigate the structure
how you need it to be navigated.

For this sample implementation I’m using the static variable as a Registry (2) for
organizations.

Figure 0.6 Using a pair of hierarchies

Organization

functional
parent

functional
children

✻

1 {hierarchy}

regional parent

regional
children

{hierarchy}

✻

1

10
class Organization ...
private static Map instances = new HashMap();
private String name;
void register () {

instances.put(name, this);
}
static void clearRegistry() {

instances = new HashMap();
}
static Organization get(String name) {

return (Organization) instances.get(name);
}

At the core, we need operations to get hold of the parent and the children. In this
case I use a field to store the parent, and determine the children by a lookup from the
registry.

class Organization ...
private Organization parent;
Organization (String name, Organization parent) {

this.name = name;
this.parent = parent;

}
Organization getParent() {

return parent;
}
Set getChildren() {

Set result = new HashSet();
Iterator it = instances.values().iterator();
while (it.hasNext()) {

Organization org = (Organization) it.next();
if (org.getParent() != null)

if (org.getParent().equals(this)) result.add(org);
}
return result;

}
With these methods in place, we can then add other methods to navigate the struc-
ture further. Here are some examples.

11
public Set getAncestors() {
Set result = new HashSet();
if (parent != null) {

result.add(parent);
result.addAll(parent.getAncestors());

}
return result;

}

public Set getDescendents() {
Set result = new HashSet();
result.addAll(getChildren());
Iterator it = getChildren().iterator();
while (it.hasNext()) {

Organization each = (Organization) it.next();
result.addAll(each.getDescendents());

}
return result;

}

public Set getSiblings() {
Set result = new HashSet();
result = getParent().getChildren();
result.remove(this);
return result;

}
Notice how using the familial metaphor means that the method names clearly

communicate what’s being returned by these queries.
Not just are these queries useful for navigation, they are also essential to ensure

that you don’t include a cycle in the hierarchy. The cycle can be prevented with
check along the following lines.

void setParent(Organization arg) {
assertValidParent(arg);
parent = arg;

}
void assertValidParent (Organization parent) {

if (parent != null)
Assert.isFalse(parent.getAncestors().contains(this));

}

Notice that you only need the check on the modifier, you don’t need it on creation.
Also if you’re thinking of setting the parent and then trying the assert, run a test
before you release it.

Variation: Subtypes for Levels

In some cases you may find variation between the various levels in the heirarchy. So
an enterprise may be divided into divisions that are divided into departments. If there

12
is no specific behavior to the organizations at these three levels, then a single organi-
zation class will do the trick for all of them. However if there is variation, then it can
be worthwhile to form subtypes for them as in Figure 0.7

In this case you have a choice, is it better to put the association on the supertype,
or have several associations on the subtypes. The decision rests on how you work the
navigation. If you more often find you navigate around organizations, then it’s better
on the organization. If the explicit levels tend to matter more, then put the associa-
tions on the subtype. If both occur then you can provide both interfaces. I usually find
the single association on organization easier to work with as it usually removes dupli-
cate behavior. You can enforce the constraint when you assign the parent.

If there is no common behavior between the organizational groups, then you can
ditch the organization class completely, although I confess I’ve never done this. Usu-
ally I find there’s some duplicate behavior lying around somewhere that I’d rather
have on the parent.

Sample Implementation

One way of doing the parent checking is to override the parent checking code to put a
run time type check into place.

Figure 0.7 Using subtypes for the various levels

Organization

parent

children

✻

1 {hierarchy}

Company Division Department

{a company is thee
parent of divisions
which are parents of
departments}

13
class Division extends Organization ...
void assertValidParent (Organization parent) {

Assert.isTrue(parent instanceof Company);
super.assertValidParent(parent);

Of course this is only a run time check, and you may prefer a compile time check.
You can partly do this by restricting the type on the constructor.

class Division...
Division (String name, Company parent) {

super(name, parent);
}

Putting this checking into the modifier is more awkward. To get it right you need
to remove the Organization’s modifier and put appropriate modifiers only on the sub-
types.

14
Aggregating Attribute

Allow a child to use an attribute value from a parent

Often you may find that an organization shares attributes from its parents to its chil-
dren. Thus the head company, the sales division, and the Boston sales group all use
US dollars as their accounting currency. This is not a coincidence, in fact the intent is
that a child uses the accounting currency of the parent unless there is a specific over-
ride.

Making it work
Showing this on a model can be awkward. From the specification perspective we

would say that every organization has an accounting currency, ie the multiplicity is 1.
But the implementation picture says the currency is optional. You need a field, but a
null would indicate you should look at the parent.

I model this with a stereotype to show an aggregating association as in Figure
0.8 .Again there’s no standard UML way to show this, so a little light extending
makes sense. This notion of an aggregating association or attribute can crop up when-
ever you have some form of composite, so it’s a handy extension.

tbd ref to SanFrancisco

Figure 0.8 Aggregating association for currency

Organization

parent

children

✻

1 {hierarchy}

Currency
✻1

accounting currency
«aggregating»

15
When to use it
I find this pattern comes naturally with any form of hierarchic structure. The key

question to ask is whether a change in a value for a parent should affect all the chil-
dren. If so, then is sounds like Aggregating Attribute (14). (If the parent provides a
default which is adopted by a child but subsequent changes to the parent do not
change children with the same value, then that’s not Aggregating Attribute (14).)

Of course this will only work well when there is a clear, single parent. If you have
multiple hierarchies, or you’re using Accountability (17) this becomes more compli-
cated. In these situations you need to indicate clearly which parent you’re using as the
basis for the aggregating behavior, and be sure that you are dealing with a hierarchy
rather than a more general graph structure. If you have a more general graph structure
which really does need multiple parents, then you’re hosed and can’t use Aggregating
Attribute (14), which is a good reason to try to avoid multiple parents.

Sample Implementation

An aggregating attribute needs a query method that checks the parent if the appropri-
ate field is null.

class Organization...
Currency getAccountingCurrency() {

if (accountingCurrency != null)
return accountingCurrency;

else {
if (parent != null)

return parent.getAccountingCurrency();
else {

Assert.unreachable();
return null;

}
}

}

Since the association is mandatory, it is an error for the accounting currency to return
a null, so instead it raises an exception. That way should a bug sneak in, you’ll get an
exception closer to the pesky insect. Of course a chance of a virtual cockroach can be
reduced, if not eliminated, by ensuring the setter checks for the correct values.

16
void setAccountingCurrency(Currency arg) {
assertValidAccountingCurrency(arg);
accountingCurrency = arg;

}

void assertValidAccountingCurrency(Currency arg) {
Assert.isFalse (arg == null && getParent() == null);

}

Obviously, if you have a deep hierarchy with frequent access than looking up the
hierarchy each time will be rather slow. So in those cases you can cache the parent’s
value in the children. While this alters the internal behavior it doesn’t alter the exter-
nal behavior, so the pattern is still present and any tests written for the slow imple-
mentation should still work for the optimized version.

17
Accountability

Represents a complex graph of relationships between parties

If you are dealing with an organization with a single hierarchy, or even a couple, then
Organization Hierarchy (7) is the simplest way to deal with things. However larger
organizations grow beyond this. You often find a host of different relationships
between parties, all of which carry their own meaning. If your hierarchies start breed-
ing like viagra infused rabbits, it’s time to look to Accountability (17).

Making it work
Accountability (17) uses a Typed Relationship (117) to provide the necessary flexibil-

ity. Each instance of accounability represents a link between two parties, the account-
ability type indicates the nature of the link. This allows you to handle any number of
organizaational relationships. Create an instance of accountability type for each kind
of relationship you need, and connect together the patries with accountabilities of
those types (see Figure 0.9)

PartyAccountability

Accountability
Type

✻ 1 parent

✻ 1 child
✻

1

18
You can then use accountabilities to provide similar navigational behavior to what
you have with Organization Hierarchy (7). The main difference is that much of this
behavior is now qualified by the accountability type. So instead of saying “who are the
parents of Boston Sales” you say “who are the regional parents of Boston Sales”.

Accountability (17) tends to encourage more complicated variations, the most sig-
nificant one is to use a knowledge level to capture rules about what kinds of parties
can be connected together (See page 22).

When to use it
Use Accountability (17) when you need to show organizational structures but Orga-

nization Hierarchy (7) won’t suffice. Remember that Accountability (17) is a good bit
more complicated to use than Organization Hierarchy (7), so don’t use it until you
need it. The main driver is that you have to record several different lines of authority.
If you only need a couple, then using Organization Hierarchy (7) will do the trick, but if
the lines increase in number, then Accountability (17) ends up being simpler.

It’s not difficult to refactor an Organization Hierarchy (7) into using Accountability
(17). Initially you can use both patterns together on the party. The first step is to
rationalize the interface so that clients can use the Accountability (17) interface to
manipulate links held on the original hierarchies. Once you’ve done that you can

Figure 0.9 An instance diagram showing BostonSales as a child of NewEngland under the regional
sturcture and a child of Sales under the functional structure.

BostonSales

New England Sales

:Accountability :Accountabilityregional :
accountability type

regional :
accountability type

type

parent parent

type

childchild

19
choose either to dropthe old interface, or to retain it for convenience. You can keep
the old implementation side by side with the new for as long as it’s not getting in the
way. The interface is the thing to sort out first.

Sample Code

The basic implementation for accountability involves three classes: party, account-
ability, and accountability type. In the simple form accountability type has no interest-
ing behavior.

class AccountabilityType extends mf.NamedObject {
public AccountabilityType(String name) {

super(name);
}

}

In this sample I use bidirectional relationships to link accountability and party.
class Accountability {

private Party parent;
private Party child;
private AccountabilityType type;

Accountability (Party parent, Party child, AccountabilityType type) {
this.parent = parent;
parent.friendAddChildAccountability(this);
this.child = child;
child.friendAddParentAccountability(this);
this.type = type;

}
Party child() {

return child;
}
Party parent() {

return parent;
}
AccountabilityType type() {

return type;
}

}

20
class Party extends mf.NamedObject {
private Set parentAccountabilities = new HashSet();
private Set childAccountabilities = new HashSet();
public Party(String name) {

super(name);
}
void friendAddChildAccountability(Accountability arg) {

childAccountabilities.add(arg);
}
void friendAddParentAccountability(Accountability arg) {

parentAccountabilities.add(arg);
}

}

This is the code needed to create structures. Much of the navigation of the structure
then involves code that is along the similar lines to the sample code for Organization
Hierarchy (7). However the code for finding parents and children is a little more com-
plicated.

class Party...
Set parents() {

Set result = new HashSet();
Iterator it = parentAccountabilities.iterator();
while (it.hasNext()) {

Accountability each = (Accountability) it.next();
result.add(each.parent());

}
return result;

}
Set children() {

Set result = new HashSet();
Iterator it = childAccountabilities.iterator();
while (it.hasNext()) {

Accountability each = (Accountability) it.next();
result.add(each.child());

}
return result;

}

You then can set up and use these objects with code like this.

21
class Tester...
 AccountabilityType supervision = new AccountabilityType("Supervises");

Party mark = new Party("mark");
Party tom = new Party("tom");
Party stMarys = new Party ("St Mary's");

public void setUp() {
new Accountability (stMarys, mark, appointment);
new Accountability (stMarys, tom, appointment);

}
public void testSimple() {

assert(stMarys.children().contains(mark));
assert(mark.parents().contains(stMarys));

}

Also you often need to carry out navigation along a single accountability type.
class Party...

Set parents(AccountabilityType arg) {
Set result = new HashSet();
Iterator it = parentAccountabilities.iterator();
while (it.hasNext()) {

Accountability each = (Accountability) it.next();
if (each.type().equals(arg)) result.add(each.parent());

}
return result;

}
class Tester...

 AccountabilityType appointment = new AccountabilityType("Appointment");
public void testParents() {

Accountability.create(tom, mark, supervision);
assert(mark.parents().contains(stMarys));
assert(mark.parents(appointment).contains(stMarys));
assertEquals(2, mark.parents().size());
assertEquals(1, mark.parents(appointment).size());
assertEquals(1, mark.parents(supervision).size());
assert(mark.parents(supervision).contains(tom));

}

Cycle Checking

Just as with Organization Hierarchy (7) we have to follow certain rules about how we
connect together our parties, in particular we have to ensure that we don’t create
cycles in our accountability structure.

Here there is a difference to Organization Hierarchy (7) in that we treat account-
abilities as immutable objects. As such we need to do the checking when we create
the accountability. We’ll follow the approach of first checking to see if we can create
an accountability, and only then do we create it. We can’t do this in a constructor, so
we need a factory method.

22
class Accountability...
private Accountability (Party parent, Party child, AccountabilityType type) {

...
}
static Accountability create (Party parent, Party child, AccountabilityType type) {

if (!canCreate(parent, child, type))
throw new IllegalArgumentException ("Invalid Accountability");

else return new Accountability (parent, child, type);
}
static boolean canCreate (Party parent, Party child, AccountabilityType type) {

if (parent.equals(child)) return false;
if (parent.ancestorsInclude(child, type)) return false;
return true;

}

class Party...
boolean ancestorsInclude(Party sample, AccountabilityType type) {

Iterator it = parents(type).iterator();
while (it.hasNext()) {

Party eachParent = (Party) it.next();
if (eachParent.equals(sample)) return true;
if (eachParent.ancestorsInclude(sample, type)) return true;

}
return false;

}

Not the fastest algorithm in the world, but nothing that a well placed cache couldn’t
solve.

This checking now allows us to prevent cycles.
class Tester...

public void testCycle() {
Accountability.create(mark, tom, supervision);
try {

Accountability.create(tom, mark, supervision);
fail("created accountability with cycle");

} catch (Exception ignore) {}
assert(!mark.parents().contains(tom)); //just be sure!
AccountabilityType modelMentor = new AccountabilityType();
Accountability.create(tom, mark, modelMentor); // okay to create with different type
assert(!mark.parents().contains(tom)); //now okay

}

Using a Knowledge Level

The basic form of accountability is quite loose, allowing any combination of parties
to be organized in any fashion with any accountability types. While this works well for
some applications, often you want to put some constraints into place to limit the way

23
accountabilties can be organized. You can do this by using a Knowledge Level (32). The
knowledge level for accountability requires a set of party types, and sets up the
accountability types to describe how the party types should be connected together.

Connection Rules

Connection rules (Figure 0.10) provide a simple yet very flexible form of knowl-
edge level. In this form each accountability type contains a group of connection rules
each of which defines one legal pairing of parent and child party types. Figure 0.11
shows an example of how you might configure one of these knowledge levels.

Figure 0.10 Knowledge level for directed graphs.

1

1

Time Period

Accountability

-- checks validity of
accountabilities

Accountability
Type

Party

1parent

child

Party Type

Connection Rule
✻1

✻ ✻

✻

allowed parent 1 allowed child1

✻ ✻

{the accountability type must have a
connection rule where the parent's
type is the allowable parent and the
child's type is the allowable child

1

✻

24
You then use the knowledge level to check accountabilities. Whenever you create
an accountability, the accountability uses uses its type to check to see if the account-
ability is valid. It is best to place the checking behavior on the accountability type
because different accountability types will define different rules about connectivity. So
if you want to change the rules by just replacing a single object, the accountability
type is the point of replacement.

Figure 0.11 This example shows two accountability types. The appointment accountability type
allows consultants and doctors to be appointed to hospitals. The patient care accountability type records
consultants’ responsibility towards patients.

appointment:
accountability type

hospital : Party Type

consultant : Party
Type

: connection rule

patient : Party Type

doctor : Party Type : connection rule

allowable
 child

allowable
 child

allowable
 parent

allowable
 parent

: connection rule

allowable
 parent

allowable
 child

patient care:
accountability type

25
Sample Code

Here is an example that adds knowledge level connection rules to our exisiting sample
code.

We need a simple structural change to party to include the party type.
class PartyType extends mf.NamedObject {

public PartyType(String name) {
super(name);

}
}
class Party ...

private PartyType type;
public Party(String name, PartyType type) {

super(name);
this.type = type;

}
PartyType type() {

return type;
}

}

The rules are added to the accountability type. As we shall see there are more than
one way you can set up rules like this, so I’ll make a subclass to hold the connection
rules.

class ConnectionAccountabilityType extends AccountabilityType ...
Set connectionRules = new HashSet();
public ConnectionAccountabilityType(String name) {

super(name);
}
void addConnectionRule (PartyType parent, PartyType child) {

connectionRules.add(new ConnectionRule(parent, child));
}

Structurally, the connection rule just holds its allowable parent and child types.
class ConnectionRule {

PartyType allowedParent;
PartyType allowedChild;
public ConnectionRule(PartyType parent, PartyType child) {

this.allowedChild = child;
this.allowedParent = parent;

}
}

We can then set up an accountability type with connection rules.

26
class Tester...
private PartyType hospital = new PartyType("Hospital");
private PartyType doctor = new PartyType("Doctor");
private PartyType patient = new PartyType("Patient");
private PartyType consultant = new PartyType("Consultant");
private ConnectionAccountabilityType appointment

= new ConnectionAccountabilityType("Appointment");
private ConnectionAccountabilityType supervision

= new ConnectionAccountabilityType("Supervises");

public void setUp()...
appointment.addConnectionRule(hospital, doctor);
appointment.addConnectionRule(hospital, consultant);
supervision.addConnectionRule(doctor, doctor);
supervision.addConnectionRule(consultant, doctor);
supervision.addConnectionRule(consultant, consultant);

mark = new Party("mark", consultant);
tom = new Party("tom", consultant);
stMarys = new Party ("St Mary's", hospital);

With the structure out of the way, now let’s look at the validation behavior. The
accountability already has behavior for checking basic cycle rules. With the knowl-
edge level in place we can add to this behavior to request the accountability type to
check for the correct party types (Figure 0.12).

class Accountability...
static boolean canCreate (Party parent, Party child, AccountabilityType type) {

if (parent.equals(child)) return false;
if (parent.ancestorsInclude(child, type)) return false;
return type.canCreateAccountability(parent, child);

}

The accountability type can now check the parent and the child through the con-
nection rules.

27
class AccountabilityType...
boolean canCreateAccountability(Party parent, Party child) {

return areValidPartyTypes(parent, child);
}

class ConnectionRuleAccountabilityType...
protected boolean areValidPartyTypes(Party parent, Party child) {

Iterator it = connectionRules.iterator();
while (it.hasNext()) {

ConnectionRule rule = (ConnectionRule) it.next();
if (rule.isValid(parent, child)) return true;

}
return false;

}

class ConnectionRule...
boolean isValid (Party parent, Party child) {

return (parent.type().equals(allowedParent) &&
child.type().equals(allowedChild));

}

With this in place any attempt to create an accountability without a connection
rule should fail.

Figure 0.12 Interactions for checking an accountability with the knowledge level

Accountability

create

can create

appointment :
Accountability Type

can create accountability

are valid party types

a connection rule

* is valid

return result

new Accountability
[result is true] new

28
class Tester...
public void testNoConnectionRule() {

try {
Accountability.create(mark, stMarys, appointment);
fail("created accountability without connection rule");

} catch (Exception ignore) {}
assert(!stMarys.parents().contains(mark)); // am I paranoid?

}

Hierarchic Accountability Type

When you’re using accountabilties, you may well find that some of your accountability
types need to maintain a hierarchy, while others don’t need that. You can enforce
hierarchic rules selectively within the validation method of the accountability type.

Sample Code

For the code sample I do this with a flag on the accountability type.
class AccountabilityType ...

private boolean isHierarchic = false;
void beHierarchic() {

isHierarchic = true;
}
boolean canCreateAccountability(Party parent, Party child) {

if (isHierarchic && child.parents(this).size() != 0) return false;
return areValidPartyTypes(parent, child);

}
}

Levelled Accountability Type

Connection rules are the most common way of representing the rules for an account-
ability type. However from time to time you run into situations where there is a strict
set of of levels of party types. An example of this is a regional breakdown where
national parties have children that are states, which have children that are counties,
that have children that have cities.

29
You can represent this with connection rules, but a simpler alternative is to list the
levels on the accountability type.

Sample Code

Setting up levels needs a different test fixture.

Figure 0.13 Levelled Accountability types

Accountability Type

Levelled
Accountability Type Party Type

✻ ✻

levels
{ordered}

30
public class LevelledTester extends junit.framework.TestCase {
private PartyType nation = new PartyType("nation");
private PartyType state = new PartyType("state");
private PartyType county = new PartyType("county");
private PartyType city = new PartyType("city");
private Party usa, ma, nh, middlesex, melrose;
private LevelledAccountabilityType region = new LevelledAccountabilityType();

public LevelledTester(String name) {
super(name);

}
public void setUp() {

PartyType[] levels = {nation, state, county, city};
usa = new Party("usa", nation);
ma = new Party("ma", state);
nh = new Party("nh", state);
middlesex = new Party("usa", county);
melrose = new Party("usa", city);
region.setLevels(levels);
Accountability.create(usa, ma, region);
Accountability.create(usa, nh, region);
Accountability.create(ma, middlesex, region);
Accountability.create(middlesex, melrose, region);

}
public void testLevels() {

assert(melrose.ancestorsInclude(ma, region));
}
public void testReversedLevels() {

try {
Accountability.create(ma, usa, region);
fail();

} catch (Exception ignore) {}
}
public void testSameLevels() {

try {
Accountability.create(ma, nh, region);
fail();

} catch (Exception ignore) {}
}
public void testSkipLevels() {

try {
Accountability.create(ma, melrose, region);
fail();

} catch (Exception ignore) {}
}

}

However the behavior of the levelled accountability type is quite simple. We need
to be able to set the list of levels and to check for valid party types from the exisiting
method in accountability type.

31
class LevelledAccountabilityType extends AccountabilityType {
private PartyType[] levels;
public LevelledAccountabilityType(String name) {

super(name);
}
void setLevels(PartyType[] arg) {

levels = arg;
}
protected boolean areValidPartyTypes(Party parent, Party child) {

for (int i=0; i<levels.length; i++) {
if (parent.type().equals(levels[i]))

return (child.type().equals(levels[i+1]));
}
return false;

}
}

This sample does not allow you to skip levels, i.e. you can’t have a city as a child of
state. If you want to allow level skipping it’s easy to amend areValidPartyTypes to sup-
port this (an exercise for the reader). However if you want to skip some levels but not
others then you’re better off with connection rules.

32
Knowledge Level

A group of objects that describe how another group of objects should behave (also known as
a meta level)

Knowledge Level (32) is one of those abstract patterns that is difficult to describe on it’s
own, although one that you soon recognize in more complex object systems. You have
a Knowledge Level (32) when you have a group of objects whose instances affect the
behavior of a group of operational objects, typically allowing you to alter a system
“without programming” but instead by creating and wiring together some of these
knowledge objects.

Employee

Employee Type Pay StrategyRetirement Plan

✻

1
✻1

✻ 1

Operational Level

Knowledge Level

Department
✻ 1

33
Figure 0.14 shows an example of using a knowledge level for employees. The inten-
tion here is that employee types are created with common combinations of payment
and retirement policies. Employee’s are then marked with an employee type to indi-
cate which policies they use. If you need to customize how employees work you would
create a new instance of Employee Type connected to new instances of payment strat-
egy and retirement plan. This choosing and wiring together of objects is how the sys-
tem is configured.

Terminology

In this book, as with the previous edition, I use the term Knowledge Level (32). How-
ever I can’t claim that this is a completly standard term in design circles. There isn’t
such a standard term as yet, which is why I stick with knowledge level.

I started using the terms operational and knowledge levels while working on the
Cosmos project for the UK National Health Service. In this project I worked on a
joint team with doctors and nurses. We coined the terms together because they
seemed to fit the way we looked at the model. The objects in the operational level rep-
resented the day to day operational behavior of the clinicians, while the knowledge
level represented their clinical knowledge.

Another term you commonly come across is meta as in meta-data. Meta is greek for
‘about’ so meta-data means ‘data about data’. You often hear people talk about meta-

Figure 0.14 An example knowledge level using employees

Employee

Employee Type Pay Strategy

Hourly Pay StrategyMonthly Salary
Strategy

Retirement Plan

Match Cap
Retirement Plan

Wage Proportion
Retirement Plan

✻

1
✻1

✻ 1

Operational Level

Knowledge Level

Department
✻ 1

34
objects, or meta-levels. If I had to do a poll on terms for this concept using meta some-
thing would probably top the list. However I still prefer knowledge level as I think it
means more to non-software people.

Another term is ‘Active Object Model’. The rationale behind this is that the
knowledge objects take an active part in determining the behavior for the operational
objects. However the term isn’t that widely used, and I don’t like the connotation that
the operational level is somehow passive.

Another personal convention is my habit of drawing the knowledge level at the top
of the diagram and the operational level at the bottom often, but not always, sepa-
rated by a dashed line. Again this is a Cosmos habit which I’ve stuck with as I find it
useful. However it’s not part of any standard, I guess my influence in the world is more
limited than I might like!

It’s a common convention to make the connection between the knowledge and
oeprational level through associations between a ‘thing’ and a ‘thing type’. This has
become so prevalent that I would now hesitate before using any other naming scheme.
The thing type is often referred to as the ‘type object’ of the thing, following the type
object pattern.

Making it work
Knowledge levels are pretty complicated things to put together, and as such people
usually look upon them as an advanced OO technique. The difficulty lies in choosing
a set of objects that really does allow you to handle most changes without touching
much, or any of the source code. It’s often hard to see what combinations will work in
advance, so like with most complicated frameworks, the design needs to evolve.

It’s not possible to say how to do this in the abstract. Instead you need to look at
specific patterns that involve knowledge levels and see what you can learn from them.
It may be that you can use that specific pattern. Or it may be that looking at knowl-
edge levels will help you with a knowledge level for your circumstances.

When to use it
When people start using, or considering to use, a knowledge level; the common

hope is that this will allow non-programmers to change the system behavior ‘without
programming’. While this may occur from time to time, in my experience it is an eldo-
rado. Understanding how the knowledge works and how to configure it is still a pretty
complicated exercise, not one suited for casual programmers. Indeed often experi-
enced programmers find knowledge levels hard to work with.

In my view the benefit of a knowledge level is that it allows people who are experi-
enced with the design to make changes much more quickly than they would otherwise
be able to do.

35
The fact that many of these changes can be made at run time is also appealing.
However this also comes with warnings. Just because you can change the system
‘without programming’ doesn’t mean you can change it without testing. Indeed testing
can be more critical for knowledge levels and often harder to do. Knowledge levels are
there because what they capture is very dynamic, so testing becomes quite an exercise.

Also the fact that changes are done ‘without programming’ means that you usually
have to do your changes without tools. Debugging does not go away with knowledge
levels, nor does configuration control. If your ‘non-programming’ environment doesn’t
provide debugging, configuration, and testing tools (as it won’t) then you’ll either
have to do without or roll your own. I often see people building graphical editors for
knowledge levels, but actually editing is rarely the hardest part of ‘non-programming’.

All of these are serious caveats for using a knowledge level, if they scare you a bit,
then that’s the point. This is not a pattern to be used lightly. However in a complex
business system there always seem to be a few spots where knowledge levels are worth
their cost. When you have a large amount of volatile rules, then a knowledge level can
make a lot of sense. We don’t really have enough of a handle yet on what the guide-
lines are for using them, but we do know know that they should be used rarely, but
when you need them they are essential. Rather like parachutes.

36
Object Graph

A group of objects connected together in a graph structure.

Object graphs are a common way of representing situations where many objects of the
same fundamental type can be connected in a recursive structure. You see them in
organizational structures, work breakdown structures, product structures... the list
goes on and on.

When talking about object graphs in the abstract, you usually talk about nodes and
links. So in the sketch organizations are the nodes, and the instances of the parents/
children association are the links.

Organization

parents

children

✻

✻ {dag}

Associated Coffee
Makers: Organization

sales : Organization London : Organization

Boston sales :
Organization

London sales :
Organization

37
However I find it hard to talk sensibly about object graphs in the abstract. So I’ve
included this pattern in the organizational structures chapter because organizational
structures provide a good example of how to use Object Graph (36) in practice. For
this pattern I’m really just going to coin some terms that you may find useful in talking
about object graphs when you run into them, and to point out the abstract nature of
the ideas.

Most graph structures you come across in practice are acyclic. That means that if
you look at your ancestors you won’t find yourself.

Variations

There are a number of common variations on the object graph theme
Object Hierarchies have only one parent to each node. Although hierarchies are

more restricitive they do permit some useful behaviors based onthe fact that there is
only one parent, such as Aggregating Attribute (14). Organization Hierarchy (7) is an
example of an object hierarchy. Structures that permit multiple parents are often
referred to lattices, networks, or the intimidating (but mathematically correct)
directed acyclic graph (or dag for short).

The links in a structure may be represented through an association or through a
separate association object. Organization Hierarchy (7) just uses the association while
Accountability (17) uses an association object. In Accountability (17) the accountability
class is the association object. Often when you find association objects you’ll find the
association is typed, allowing you to define multiple graphs over the same set of nodes,
as in the multiple organizing structures discussed in Accountability (17).

You may find the leaf and non-leaf nodes broken out into separate subtypes as in
Figure 0.15. You should do this if there is significant differences in the behavior for the
leaf and non-leaf cases. However it is a good idea to try to put as much of interface up
on the parent as possible, even when it doesn’t look like it makes sense.

An example of this would be a method numberOfChildren. On first sight it seem
that such a method should be on organization as only organizations have children.
However it is useful to define the interface on party and implement it in person to
return 0. If you do that you’ll find that a method such as numberOfDescendents is much
easier to write.

Patterns afficionados will recognise Figure 0.15 as the classic shape of the compos-
ite pattern. Indeed composite usually applies to hierarchic object graphs.

38
Making it work
I’ve discussed the issues in making Object Graph (36) work in the organizational pat-
terns: in particular Organization Hierarchy (7) and Accountability (17). Much of what
you need for any use of Object Graph (36) you can find in there.

One point worth reiterating is the way to name the links. These days I always try to
use parent/child, even if that naming does not fit the domain very well. Familial rela-
tionships are a powerful metaphor for these kinds of relationships: if I say the market-
ing department is my grand-uncle it sounds silly, but you know exactly what the
relationship is.

There is a huge body of academic work on representing graph structures in com-
puter programs. Most of this is far more than you would ever need to know, but it
repeatidly suprises me how many people don’t know about this work. If you’re having
difficultiy doing something with a graph structure, dig out some abtruse work on graph
theory, algorithms, or data structures — you may well find an answer to your problem.

When to use it
The choice of when to use the structure is usually better discussed with respect to

the particular applications of the pattern in particular domains. So it’s more useful to
say “when should I use Organization Hierarchy (7) or Accountability (17)” than to ask
“when should I use Object Graph (36) and if so what kind?”

However reading the narrative and discussions around Organization Hierarchy (7)
and Accountability (17) will give you some useful guidelines. In particular bear in mind

Figure 0.15 Breaking out the leaf and non leaf nodes in an object graph.

Party

Organization Person

✻

1parent

children

{hierarchy}

39
that using association objects is a good bit more complicated than a simple associa-
tion, so only go that far if you need to.

40

	h1 - Organization Structures
	PatternName - Party
	how - Making it work
	when - When to use it

	PatternName - Organization Hierarchy
	how - Making it work
	when - When to use it
	variation - Variation: Subtypes for Levels

	PatternName - Aggregating Attribute
	how - Making it work
	when - When to use it

	PatternName - Accountability
	how - Making it work
	when - When to use it
	h3 - Cycle Checking

	h2 - Using a Knowledge Level
	h3 - Connection Rules

	h2 - Hierarchic Accountability Type
	h2 - Levelled Accountability Type

	PatternName - Knowledge Level
	h3 - Terminology
	how - Making it work
	when - When to use it

	PatternName - Object Graph
	h3 - Variations
	how - Making it work
	when - When to use it

