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ABSTRACT
We present Jiazzi, a system that enables the construction of large-
scale binary components in Java. Jiazzi components can be thought
of as generalizations of Java packages with added support for exter-
nal linking and separate compilation. Jiazzi components are practi-
cal because they are constructed out of standard Java source code.
Jiazzi requires neither extensions to the Java language nor special
conventions for writing Java source code that will go inside a com-
ponent. Our components are expressive because Jiazzi supports
cyclic component linking and mixins, which are used together in
an open class pattern that enables the modular addition of new fea-
tures to existing classes. This paper describes Jiazzi, how it en-
hances Java with components, its implementation, and how type
checking works. An implementation of Jiazzi is available for down-
load.

1. INTRODUCTION
Current Java constructs for code reuse, including classes, are in-
sufficient for organizing programs in terms of reusable software
components [26]. Although packages, class loaders, and various
design patterns [11] can implement forms of components in ad hoc
manners, the lack of an explicit language construct for components
places a substantial burden on programmers, and obscures a pro-
grammer’s intent to the compiler or to other programmers. As
object-oriented software systems increase in size and complexity,
components are becoming central to the design process, and they
deserve close integration with the language.

Components should support separate compilation, which enables
development of large programs and deployment of components in
binary form, and external linking, which eliminates hard-coded de-
pendencies to make components as flexible as possible for client
programmers [7]. In addition, components integrated into a class-
based language, such as Java, should also fit well with the class
system:

R1. Components should import classes that can be both instanti-
ated and subclassed within the component. Inheritance across
component boundaries is necessary for grouping classes and
class extensions into reusable components.

R2. Components should accept imported classes that supply more
methods than the component requires or expects. Requiring
an exact match on methods of an imported class would pro-
hibit the composition of class-extending components; e.g.,
mixins [4].
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Figure 1: Jiazzi components are constructed from Java classes and
other components, and can be loaded in Java Virtual Machines for
execution.

R3. Cyclic component linking should be allowed to resolve mu-
tually recursive dependencies among components. Mutually
recursive “has a” relationships are especially common at the
class level, and naturally span component boundaries.

Jiazzi is our new component system for Java based on program
units [10]. Jiazzi provides the first combination of components and
classes that supports all of the above features. Figure 1 illustrates at
a high level how Jiazzi works: a Jiazzi component can be built from
Java classes and other Jiazzi components. The resulting component
can execute directly on a Java Virtual Machine.

Jiazzi makes two contributions to component programming in Java
that also apply to other statically typed, object-oriented languages.
First, no special core language extensions or conventions need to be
used in the Java code used to construct a component. Instead, Jiazzi
integrates with Java using a stub generator and an external linker.
Because subclassing across component boundaries and cyclic com-
ponent linking is supported, component boundaries can be placed
in the design naturally. This also allows easy retrofitting of legacy
Java code into component-based designs.

Second, Jiazzi can support the addition of features to classes with-
out editing their source code or breaking existing class variant re-
lationships. Such functionality is already provided by languages
that support open classes [6]. A combination of mixins and cyclic
component linking is used to simulate open classes with what we
call the open class pattern. Using the open class pattern in Jiazzi
provides a solution to the extensibility problem [7], which arises
from the tension between adding features to and creating variants
of a class. With the open class pattern, we can replace the use of
many design patterns used to implement modular feature addition,



such as abstract factories and bridges, with a combination of exter-
nal linking and Java’s in-language constructs for subclassing and
instantiation.

Section 2 gives an overview of Jiazzi components and shows how
they can be used in program designs. Section 3 describes how Ji-
azzi can be used to modularly add features to classes with mixins
and the open class pattern. Section 4 explains how type checking in
the presence of separate compilation works in Jiazzi. Section 5 de-
scribes our implementation of Jiazzi and the interactions between
Java and Jiazzi. Section 6 discusses related work. Section 7 dis-
cusses future work, and summarizes our conclusions.

2. OVERVIEW
Components in Jiazzi are constructed as units [10]. A unit is con-
ceptually a container of compiled Java code with support for “typed”
connections. There are two types of units: atoms, which are built
from Java classes (including Java interfaces), and compounds, which
are built from atoms and other compounds.

Units import and export Java classes. Classes imported into a unit
are exported from other units; classes exported from a unit can be
imported into other units. Linking specified by compounds deter-
mines how connections are made between exported and imported
classes. Groups of classes are connected together when units are
linked; we call these groups of classes packages to emphasize their
similarity to packages in standard Java. Using package-grained
connections reduces the quantity of explicit connections between
units, which allows the component system to scale to larger de-
signs.

Jiazzi includes a component language that provides a convenient
way for programmers to build and reason about units. Using this
language, the structure of classes in a unit’s imported and exported
packages can be described using package signatures. Because pack-
age signature can be used in multiple unit descriptions, they en-
hance the component language’s scaling properties.

We introduce Jiazzi using a simple example that composes a user
interface (UI) library with an application into a complete program.
Because they are used to describe units, we will first describe pack-
age signatures.

2.1 Package Signatures
Package signatures are constructs that are used to describe the visi-
ble structure of classes in a Java package. In Figure 2, the package
signature ui s describes a UI library with classes Widget, But-
ton, and Window; the package signature applet s describes
an application with class Program. In the package signature the
structure of a class is described using a class signature. The class
signature of Window in ui s specifies that the class has the super-
class ui p.Widget and has the public methods add and show . In
our example, only the methods and superclasses of classes are de-
scribed, but class signatures can also describe interface subtyping
and class members such as fields, constructors, and inner classes.
Class signatures can also describe Java interfaces as well as class
and member modifiers (e.g., protected, abstract).

Class signatures are parameterized by the enclosing package sig-
nature’s package parameters, which must be bound to packages
when the package signature is used. The only package parameter

file: ./ui s.sig

signature ui s<ui p> f
class Widget extends Object
f void paint(); g
class Button extends ui p.Widget
f void setLabel(String); g
class Window extends ui p.Widget
f void add(ui p.Widget); void show(); g
g
file: ./applet s.sig

signature applet s<ui p> f
class Program extends ui p.Window
f void run(); g
g

Figure 2: Package signatures ui s, which describes a UI library,
and applet s, which describes an application; as conventions in
this example, package signature names end with s, and package
parameters end with p.

file: ./applet.unit

atom applet f
import ui in : ui s<ui in>;
export app out : applet s<ui in>;
g

Figure 3: An atom applet that imports a UI library and exports an
application; as conventions in this example, the names of imported
packages end with in, and the names exported packages end with
out.

of ui s is ui p. We assume Object and String are built-in
for the purposes of this example, which also reflects the close cou-
pling of these classes to the Java Virtual Machine (see Section 5
for more details). Classes other than Object and String must
be referred to through one of the package signature’s package pa-
rameters. In ui s, the direct superclass of Window is specified as
ui p.Widget, which only comes from the same package as Win-
dow if ui p is bound to the same package that provides Window.
Allowing a package to implicitly reference itself would limit the
package signature’s use; using the open class pattern in Section 3
depends on the flexibility of package signatures that do not implic-
itly use self-reference.

2.2 Atoms
The atom applet shown in Figure 3 imports Java classes in the
package ui in that implement a user interface library described by
package signature ui s, and exports classes in a package app out
that implement an applet described by package signature applet s.
Within a unit, the package parameters in the package signatures
used to describe each imported and exported package must be bound
only to the unit’s imported and exported packages. Therefore, class
signatures of imported and exported classes only refer to the unit’s
imported and exported classes. For example, after package signa-
ture applet s is used in applet, the superclass of app out.-
Program is ui in.Window because the package parameter ui p
is bound to ui in.

A unit’s declarations of imported and exported packages constitutes
its unit signature. Class signatures provided by the unit signature
are necessary to implement separate type checking in Jiazzi. Inside
a unit, the implementation of the unit’s imported classes are not



file: ./applet/app out/Program.java

package app out;
public class Program
extends ui in.Window f
ui in.Button b = new ui in.Button();
public Program() f
b.setLabel("start"); add(b);
g
public void run() f show(); g
g

Figure 4: The Java source implementation of app out.Program
in atom applet.
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Figure 5: The files and development process of building applet;
files with source shown in other figures are in the dashed rectangle,
tools are in rectangles, files are in rounded rectangles, archive files
are shaded rounded rectangles.

visible; outside the unit, the implementation of the unit’s exported
classes are not visible. We explain separate type checking in more
detail in Section 4.

Atoms are built from Java classes that can be compiled from nor-
mal Java source code. Shown in Figure 4 is the Java source for
applet’s exported class app out.Program. The Java source
can instantiate and subclass imported classes. For example in the
implementation of app out.Program, the class ui in.Window
can be subclassed and the class ui in.Button can be instan-
tiated. Java source can only refer to imported classes, exported
classes, or private classes contained in the atom.

Figure 5 shows how the atom applet is developed in our imple-
mentation of Jiazzi. Files provided by the developer, unit defini-
tions, package signatures, and Java source, are located in separate
source files. Since the implementation of imported classes are un-
available, standard Java source compilers (e.g., javac or jikes) can-
not automatically know about the structure of imported classes. For
this reason, our implementation provides a stub generator that uses
the class signatures of imported classes to generate stub class files.
In our example, stub class files are generated for the imported user
interface classes in package ui in. These class files are then used
to compile Program.java into Program.class using a stan-
dard Java source compiler.

After Java source compilation, the Jiazzi component linker per-
forms type checking to ensure that the atom’s compiled Java code
conforms to its unit signature. The class files for classes contained
in the atom are placed into a Java archive (JAR) file, which is the
atom’s binary form. For example, Program.class is placed
into the atom applet’s binary form, applet.jar. The atom’s
unit signature is also placed into the JAR file as component meta

file: ./ui.unit

atom ui f
export ui out : ui s<ui out>;
g
file: ./linkui.unit

compound linkui f
export ui out : ui s<ui out>,

app out : applet s<ui out>;
g f
local u : ui, a : applet;
link u@ui out to a@ui in, u@ui out to ui out,

a@app out to app out;
g

Figure 6: An atom ui that exports a UI library, a compound
linkui that links atoms ui and applet together.

data. More information about developing with Jiazzi can be found
in the user manual [1].

2.3 Compounds
The atom ui in Figure 6 exports a package of classes that im-
plement the user interface library described by package signature
ui s from Figure 2. The compound linkui in Figure 6 links this
atom to the atom applet from Figure 3. The unit signature of a
compound has the same form as that of an atom; linkui exports
packages described by the package signatures from Figure 2. Fol-
lowing its unit signature is the compound’s link section. In the link
section, the Java classes contained in units are conceptually copied
by instantiating the units into unit instances using the local state-
ment. In linkui, the atoms applet and ui are respectively
instantiated into the unit instances a and u.

The link statement makes connections from source packages on
the left to sink packages on the right of each to clause. A source
package is either an imported package of the compound or an ex-
ported package of one of the compound’s unit instances. A sink
package is either an imported package of one of the compound’s
unit instances or an exported package of the compound. We write
v@p as the notation for the imported or exported package p of unit
instance v.

In the compound linkui, the exported package u@ui out is
connected to the imported package a@ui in. The meaning of this
connection is that all references to classes in the package ui in
are replaced with references to classes in u@ui out in the unit
instance a using name equivalence of the unqualified class name.
For example, references to ui in.Widget inside the implemen-
tation of classes in unit instance a are replaced with references to
Widget.ui out in u.

An exported package of a unit instance is available outside of the
linking compound if it is connected to one of the compound’s ex-
ported packages. Encapsulation at the component level is hierar-
chical; linking compounds are only aware of the compound’s unit
signature, and are unaware of the units that initially provided the
exported packages. In linkui, the exported package u@ui out
is connected to the package ui out that is exported by the com-
pound. Compounds that instantiate linkui can use this exported
package, but will not know that these classes are initially exported
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Figure 7: A graphical illustration of the connections made by
linkui.
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Figure 8: The files and development process of building and exe-
cuting linkui.

by the atom ui.

An illustration of linkui’s linking is shown in Figure 7. Unit in-
stances and the enclosing compound are represented as alternately
shaded rounded rectangles. Packages are represented as boxes that
are black tabbed on the left and rounded on the right. Imported
packages come into a unit from the left, while exported packages
leave the unit from the right. Connections are represented as lines
from the right rounded part of a package to the left black tabs of
other packages.

The same unit can be used to create multiple unit instances, each
of which can be used in different contexts. The imports of each
unit instance can be connected differently, and each unit instance
exports a distinct group of classes. There is no restriction on the
number of unit instances, within a single compound or complete
program, that can be created using the same unit.

Informally, a compound can be reduced to an atom by:

1. Copying the (reduced) bodies of all units used to create a unit
instances;

2. Concatenating all of the copied bodies, and renaming class
references according to the mapping specified by the link
section; this rewriting is analogous to the way that a linker
finds and updates offsets at link time.

The result can itself be used to create unit instances that undergo
further linking within larger compounds. Of course, there is no
guarantee that the concatenated bodies are well-formed unless some
form of checking has been applied to units during linking. We ex-
plain these rules in Section 4.

The development of linkui is shown in Figure 8. Both atoms
applet and ui must be linked into their binary forms before

file: ./color s.sig

signature color s<orig p> f
class Widget extends orig p.Widget
f void setColor(int); g
class Button extends orig p.Button fg
class Window extends orig p.Window fg
g
file: ./font s.sig

signature font s<orig p> f
class Widget extends orig p.Widget
f void setFont(int); g
class Button extends orig p.Button fg
class Window extends orig p.Window fg
g
file: ./both s.sig

signature both s<orig p> f
class Widget extends orig p.Widget
f void setColor(int); void setFont(int); g
class Button extends orig p.Button fg
class Window extends orig p.Window fg
g
file: ./nop s.sig

signature nop s<orig p> f
class Widget extends orig p.Widget fg
class Button extends orig p.Button fg
class Window extends orig p.Window fg
g

Figure 9: Package signatures color s, font s, and both s
that describe packages which respectively add color, font, and both
color and font features to the package parameter orig p, and
nop s, which is an empty extension of orig p.

linkui can be linked. The Jiazzi component linker performs
type checking and copies the class files from each atom, which are
rewritten according to how connections are made in the compound.
In our example, the linker creates the JAR file linkui.jar, which
is linkui’s binary form. The class file Program.class is
copied from applet.jar into linkui.jar. Since u@ui out
is connected to a@ui in, Program.class’s references of im-
ported classes in the package ui in are changed in the copy to
be references of the exported classes in u@ui out, which are also
copied into linkui.jar. The format of a compound’s binary
form is the same as an atom’s binary form; after linking there is no
distinction between atoms and compounds. Since the compound
linkui has no imports, its classes can safely be executed in a
Java Virtual Machine by placing linkui.jar in the classpath.

3. FEATURE EXTENSIBILITY
In addition to decomposing a design into many classes, it is also
useful to decompose a design into multiple features [21]. Features
cross cut class boundaries and benefit from being implemented in
separate components [13]. To demonstrate Jiazzi’s expressiveness,
we show how Jiazzi can be used to decompose class library features
into multiple components. We continue with our example of a UI
library by adding the color and font feature to the UI library using
the package signatures in Figure 9. We present two approaches:
the pure mixin approach, which utilizes mixins to add features to
classes, and the open class pattern, which is an improvement of the
pure mixin approach that uses cyclic linking to solve the extensi-
bility problem.



file: ./mix.color.unit

atom mix.color f
import ui init : ui s<ui init>,

ui in : nop s<ui init>;
export ui out : color s<ui in>;
g
file: ./mix.font.unit

atom mix.font f
import ui init : ui s<ui init>,

ui in : nop s<ui init>;
export ui out : font s<ui in>;
g
file: ./mix.both.unit

compound mix.both f
import ui init : ui s<ui init>,

ui in : nop s<ui init>;
export ui out : both s<ui in>;
g f
local c : mix.color, f : mix.font;
link ui init to c@ui init,

ui init to f@ui init, ui in to c@ui in,
c@ui out to f@ui in, f@ui out to ui out;

g

Figure 10: Units mix.color, mix.font, and mix.both,
which use mixin constructions to add color, fonts, and both color
and fonts to a package of UI library classes.

3.1 Mixins
Units are powerful enough to express a kind of mixin [4], where
an exported class subclasses an imported class. Such an exported
class will have all methods present in the actual class connected to
the imported superclass: if a method m is visible in a class imported
into a unit, then outside of the unit m is visible in any exported class
that subclasses the imported class, even if m is not visible in the
imported class’s signature within the unit.

To use mixins in feature addition, suppose we are writing a unit
that adds a feature to a single package of classes. The unit must
import an “initial” construction of the classes before any features
are added, which we call the init-package. The init-package estab-
lishes variant relationships and provides initial functionality. The
unit also imports the “previous” construction of the classes that are
the result of the last feature added, which we call the in-package.
The in-package is an extended version of the init-package. The
unit exports an out-package, which is the extended version of the
in-package: each class in the out-package subclasses a class in the
in-package with the same unqualified name, forming a series of
mixins. The features added by the unit are added to classes in the
out-package.

Figure 10 uses mixins in the atom mix.color to add the color
feature to a package of classes that implement a UI library. The
imported packages ui in and ui init and the exported package
ui out are a UI library’s in-, init-, and out-packages, respectively.
The package signature ui s from Figure 2 describe the UI library’s
initial structure. The package signature nop s is used to describe
the imported package ui in as an extension of ui init without
any new methods. The package signature color s from Figure 9
adds the new method setColor to class Widget and establishes
normal mixin relationships between classes in ui out and ui in.

mix.both

c : mix.colorui_in

ui_init ui_out

ui_out

ui_in

ui_init

f : mix.fontui_in

ui_init ui_out

Figure 11: A graphical illustration of connections made in the com-
pound mix.both.
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void paint();

Button
void setLabel(String);

ui_outWidget
void setColor(int)

Button

ui_in Widget Button

Figure 12: A graphical illustration of the subclassing relationships
local to the atom mix.color in Figure 10; black arrows point to
subclasses, the grey-dashed arrow points to a desired subclassing
relationship that cannot be achieved using mixins alone.

The atom mix.font in Figure 10 adds the font feature to a UI
library in the same way that the atom mix.color adds the color
feature. The compound mix.both composes both mix.color
and mix.font together to create a unit that adds both the font and
color features (using package signature both s from Figure 9) to
a UI library. Inside mix.both, the method setColor is visi-
ble in the class ui out.Widget exported from the unit instance
f because it is a subclass of ui out.Widget exported from the
unit instance c. This allows both methods setColor and set-
Font to be visible in the class ui out.Widget exported from
mix.both. The linking is illustrated in Figure 11.

Mixins in Jiazzi enable reuse of class implementations only; they
do not provide a common type to describe the functionality they
add, unlike language-level mixin proposals such as the Java lan-
guage extension JAM [2]. Jiazzi mixins address a different design
space: they are link-time abstractions that enable transparent class
inheritance across component boundaries, as opposed to abstrac-
tions in the core language that enable fine-grained mixin-oriented
programming.

problematic as we can see in Figure 12, which shows the subclass-
ing relationship of Widget and Button inside open.color
(the subclassing relationships of Window are similar to Button’s).
Subclassing is used to make the class Button a variant of Wid-
get by having ui init.Button subclass ui init.Widget.
The feature of color is added to Widget in the class ui out.-
Widget. Using mixins fails, however, because we cannot combine
classes ui out.Button and ui out.Widget to create “color
buttons.” The problem that occurs when trying to add features
(a.k.a. vertical class extension) and create variants (a.k.a. hori-



file: ./open.color.unit

atom open.color f
import ui in : ui s<ui fixed>,

ui fixed : nop s<ui out>;
export ui out : color s<ui in>;
g

Figure 13: An atom open.color that uses the open class pattern
to add color feature to a UI library.

zontal class extension) is known as the extensibility problem [7].
We can solve this problem by using an approach that utilizes cyclic
component linking as well as mixins.

3.2 Open Class Pattern
A general solution to the extensibility problem must not only allow
the modular addition of new features to existing classes; it must
also ensure that added features are visible in all variants of the up-
dated class. For example, the new method setColor added to
Widget must be visible in instances of Widget’s variant But-
ton. Open classes in MultiJava [6] satisfies this requirement when
features are new methods. Jiazzi does not directly support open
classes, but the open class pattern utilizes Jiazzi’s expressive link-
ing facilities to simulate open classes.

The open class pattern utilizes mixins and “upside-down” mixins,
which behave the same as normal mixins, just from a different per-
spective: imported classes subclass exported ones. Method visibil-
ity is the reverse as that for mixins: if a method m is visible in a
class exported from a unit, then inside of the unit m is visible in
any imported class that subclasses the exported class, even if m is
not visible in the exported class’s signature outside the unit. Us-
ing “upside-down” mixins necessarily requires cyclic component
linking.

To apply the open class pattern, suppose we are writing a unit that
adds a feature to a single package of classes. Like the pure mixin
approach, the unit must import an in-package and export an out-
package. The new feature is still implemented in the out package’s
classes, which is the extended version of the in-package (forming
normal mixins). The key to the open class pattern is that instead
of importing an initial-package, the unit instead imports a fixed-
package, which is the result of all features applied to the package
of classes. The fixed-package is the extended version of the out-
package (forming the “upside-down” mixins).

Figure 13 uses the open class pattern in the atom open.color to
add the color feature to classes in a UI library. The imported pack-
ages ui in and ui fixed and the exported package ui out are
the UI library’s in-, fixed-, and out-packages, respectively. The
package signature ui s from Figure 2 is used to describe the struc-
ture of ui in. The package signature nop s from Figure 9 is
used to establish the “upside-down” mixin relationship between
ui fixed and ui out. As with the pure mixin approach, the
new method setColor is added to the class Widget in ui out.

Figure 14 shows the subclassing relationship of Widget and But-
ton inside open.color (again, the subclassing relationships of
Window’s is like that of Button). Only classes in the fixed-
package should be instantiated or subclassed to create variants. For
example, ui fixed.Widget, not only ui in.Widget, is a su-

open.color

ui
_i

n Widget
void paint()

Button
void setLabel(String)

Widget
void setColor(int)

int getColor()
Button

ui
_o

ut

Widget Button

ui
_f

ix
ed

Figure 14: A graphical illustration of the subclassing relationships
local to the atom open.color in Figure 13.

file: ./open.color/ui out/Widget.java

package ui out;
public class Widget
extends ui in.Widget f
private int clr;
public void setColor(int c) f
clr = c;
g
protected int getColor() f
return clr;
g
g
file: ./open.color/ui out/Button.java

package ui out;
public class Button
extends ui in.Button f
public void paint() f
... = this.getColor() ...;
super.paint();
g
g

Figure 15: The Java source implementations of ui out.Widget
and ui out.Button in color.

perclass of ui in.Button since Button is a variant of Widget.
As can be seen in the figure, the class ui out.Widget, which
adds the new method setColor, is inserted as a superclass of
ui fixed.Widget, which establishes the “upside-down” mixin
relationship.

Shown in Figure 15 is the Java source for classes Widget and
Button in package ui out. The method getColor is hidden
outside of the atom open.color by ui out.Widget’s class
signature. Because of ui fixed.Widget’s “upside-down” mixin
relationship with ui out.Widget, inside open.color’s imple-
mentation the method getColor is visible in ui out.Button, as
shown in the Java source for ui out.Button.

Figure 16 shows how multiple feature-adding components can be
combined into one feature-adding component using a compound.
The atom open.font uses the open class pattern to add the font
feature to a UI library. The compound open.both instantiates
both open.color and open.font and applies the resulting
unit instances to its in-package import of the UI library. The com-



file: ./open.font.unit

atom open.font f
import ui in : ui s<ui fixed>,

ui fixed : nop s<ui out>;
export ui out : font s<ui in>;
g
file: ./open.both.unit

compound open.both f
import ui in : ui s<ui fixed>,

ui fixed : nop s<ui out>;
export ui out : both s<ui in>;
g f
local c : open.color, f : open.font;
link ui fixed to c@ui fixed,

ui fixed to f@ui fixed, ui in to c@ui in,
c@ui out to f@ui in, f@ui out to ui out;

g

Figure 16: An atom open.font that uses the open class pattern to
add the font feature to a UI library, and a compound open.both
that adds both the color and font feature to a UI library .

file: ./open.init.unit

atom open.init f
import ui fixed : nop s<ui out>;
export ui out : ui s<ui fixed>;
g
file: ./fixed s.sig

signature fixed s<ui p> f
class Widget extends Object
f void setFont(int); void setColor(int);
void paint(); g

class Button extends ui p.Button
f void setLabel(String); g
class Window extends ui p.Window
f void add(ui p.Widget); void show(); g
g
file: ./open.fixed.unit

compound open.fixed f
export ui fixed : fixed s<ui fixed>;
g f
local i : open.init, b : open.both;
link i@ui out to b@ui in,

b@ui out to i@ui fixed,
b@ui out to b@ui fixed,
b@ui out to ui fixed;

g

Figure 17: A compound open.fixed that fixes the features of a
UI framework.

pound open.both itself uses the open class pattern so that it ap-
pears to directly add both the color and font features to a UI library.

Figure 17 shows how the open class pattern can be used end-to-
end to create a UI library. The compound open.fixed uses
the atom open.init and compound open.both to create a
feature-complete UI library. The atom open.init provides the
initial implementation of the UI library, so it does not need to im-
port an in-package. Inside open.fixed, the features of the UI
library are “fixed” by taking the out-package of unit instance b and
connecting it to the fixed-package imports of both unit instances i
and b. Figure 18 illustrates the linking done in both the compounds

open.fixed

b : open.both

i : open.init
ui_fixed ui_out

f : open.fontui_in

ui_fixed ui_out

c : open.colorui_in

ui_fixed ui_out

ui_out

ui_in

ui_fixed

ui_fixed

Figure 18: A graphical illustration of connections made in com-
pounds open.fixed and open.both.

open.fixed

b :
open.both

f : open.font

c : open.color

ui_outWidget
void setColor(int) Button

ui_outWidget
void setFont(int) Button

i : open.init

ui_outWidget
void paint(int)

Button
void setLabel(String)

Figure 19: A graphical illustration of the global inheritance rela-
tionships established by open.fixed.

open.fixed and open.both.

No more features can be added to open.fixed using the open
class pattern. The compound’s exported package ui fixed ap-
pears outside of the compound to be a UI library that provides the
color and font features. All intermediate classes, those not exported
from open.fixed, are hidden from clients of the UI library. As
a result, clients of open.fixed are isolated from the fact that the
UI library was built using the open class pattern.

Figure 19 shows the global class inheritance hierarchy established
by the compound open.fixed. Classes in independently devel-
oped units can exist between each other in the class inheritance
hierarchy! A color Button is both a subclass of the original But-
ton and a subclass of a color Widget, which solves the extensi-
bility problem in Figure 12.

When combined with cyclic component linking, mixins have a non-



trivial effect on type checking. Inheritance cycles could be intro-
duced into the class hierarchy or method collisions could occur
when two ambiguous methods exist in the same scope. As we
show in Section 4, separate type checking in Jiazzi can disallow
these constructions.

The open class pattern is not unique to Jiazzi; it can also be useful
as a convention in Java code outside of Jiazzi components when
separate compilation, and especially separate type checking, is not
important and source code is open to modification. However, Jiazzi
makes the open class pattern’s use more realistic, and also enables
configuration of features with external linking. The open class pat-
tern, but not Jiazzi itself, necessarily causes a shift in the program-
ming model of Java code that uses it to add features. At present,
we are adding better support for the open class pattern in Jiazzi to
minimize the effects of this shift.

4. TYPE CHECKING
The Java classes used in the construction of an atom are checked
according to the Java Language Specification [12]. Jiazzi uses a
conventional Java compiler to perform these checks; stubs are gen-
erated for imported classes to ensure that they are used correctly
in classes that the atom contains. A Jiazzi component linker then
ensures that the atom’s classes are consistent with the atom’s unit
signature. For compounds, the linker must ensure that the link-
ing of units within a compound is consistent with the compound’s
unit signature and the unit signature of units used to create unit in-
stances in the compound. All of these checks are performed by type
checking connections. Type checking each connection requires the
matching of classes in a source package with classes in a sink pack-
age.

Classes contained in an atom are in potential source packages, while
classes exported in an atom’s unit signature are in sink packages.
An atom’s source packages are implicitly connected to the atom’s
sink packages by package name equivalence. Classes imported in a
compound’s unit signature and exported in the unit signatures of a
compound’s unit instances are in potential source packages, while
classes exported in a compound’s unit signature and imported in
the unit signature of a compound’s unit instances are in sink pack-
ages. A compound’s source packages are explicitly connected to
sink packages; source packages are on the left and sink packages
are on the right of to clauses in a compound’s link statements.

To compare the class signatures of sources and sinks, Jiazzi ex-
pands package signatures by replacing each package signature’s
package parameters with the names of the packages they are bound
to. Expansion checks are made to ensure that a package parameter
is bound to a package that provides all classes referred to through
the package parameter. Package signatures have no other purpose
during type checking other than being expanded to generate unit
signatures.

The indirect properties of a class, such as subclasses, superclasses,
and inherited methods, require that the class exist in an environ-
ment of other classes, over which references to classes in the signa-
tures of these classes are closed. Properties for source classes are
extracted from the source environment of a connection, and prop-
erties for sink classes are extracted from the sink environment of
a connection. The source environment is the same for all connec-
tions in a unit, and is created using the union of the class signatures

for all classes in potential sources and the class signatures of the
unit’s imported classes. For classes contained inside an atom, class
signatures are extracted directly from their class definitions. The
sink environment is created using the union of the class signatures
for all classes imported and exported into the unit or unit instance
where the sink package is located.

Type checking thus amounts to source–sink class matching in the
context of a source environment and sink environment. Consider a
connection from packages source to sink inside a unit u. If a
class C is described in sink, then C must be described in source,
otherwise u is rejected. In addition, the following rules must hold
for u to be well-typed:

R1. If method m is introduced in sink.C, then m must either be
introduced in or an inherited method of source.C according
to the source environment.

R2. If p.D is a subclass of sink.C and a method m is introduced
in p.D according to the sink environment, then m must not
be introduced in nor be an inherited method of source.C
according to the source environment.

R3. If class p.D is the direct superclass of sink.C according to
the sink environment, then each direct and indirect superclass
of source.C is either the class q.D (where q is connected to
p), a superclass of q.D according to the source environment,
or a class that is not visible in the sink environment.

The first rule is straightforward; Rule R1 ensures that method re-
quirements are met. A method provided to the sink class could be
found in either the source class or one of its superclasses. Rule R2
rejects constructions that would cause method collisions. We have
chosen an interpretation of method collision that disallows both
silent overriding, where the signatures of colliding methods are the
same, and ambiguous method calls, where the signatures of collid-
ing methods differ only by return type.

Rule R3 ensures that superclass relationships are consistent be-
tween connections and it also prevents some subclassing relation-
ships from being hidden. A class is not visible in the sink envi-
ronment if is not exported from or imported into the unit that con-
tains the sink. The rule ensures that subclassing relationships that
are true locally within a unit are also true globally in correct unit
compositions, while still allowing subclass relationship hiding to
accommodate class hiding. The open class pattern in Section 3 re-
lies on subclass relationship hiding, since intermediate classes in an
open class construction are hidden to units that only import fixed
classes.

Rule R2 depends on method scoping, in that it only checks for
method collisions using methods visible in class signatures. We
explain method scoping in more detail in Section 4.1. We discuss
type checking in the presence of abstract methods in Section 4.2.

4.1 Method Scoping
A method collision occurs when two methods have conflicting types
and are visible in the same class. Since not everything is visible in
the source and sink environments used to check connections, then
according to Rule R2, two methods can collide only if they are



file: .//icon/Icon.java

package icon;
public class Icon
extends Object f
public void paint() f
... draw(); ...
g
void draw() f ... g
g
file: .//cw/Cowboy.java

package cw;
public class Cowboy
extends icon.Icon f
public void duel() f
... draw(); ...
g
int draw() f ... g
g

Figure 20: Valid conventional Java source code that demonstrates
Java’s built-in package scoping.

visible in the same scope. This is important since, in order to re-
ject method collisions modularly in the presence of mixins, method
scope must be accounted for.

Without considering method scope, a method collision occurs in
the conventional (non-Jiazzi) Java code of Figure 20. Even though
the method void draw() already exists in its superclass Icon,
the class Cowboy introduces the method int draw(). However
because of package scoping, this Java code is valid. Both draw
methods are visible only in the enclosing package, because both
lack public or protected access declarations. Since each class is in
a different package, the scopes of the methods do not overlap and
no ambiguity occurs. This observation is similar to the one made
by Riecke and Stone [22] and elaborated on by Vouillon [28] with
respect to class-based typing.

This same protocol is implemented in Jiazzi for unit scopes. Rule R2
does not consider methods that are hidden in class signatures. A
method that is not mentioned in the class signature of an imported
class is hidden from that unit; a method that is not mentioned in the
class signature of an exported class is hidden outside of the unit.
This hiding establishes method scopes, and if two methods do not
exist in overlapping scopes, they cannot collide.

In some cases, method scope can be explicitly used to eliminate ac-
cidental method collisions through wrapping units in compounds.
In Figure 21, the atom mix.cowboy exports a class Cowboy
with both methods duel and draw . A unit instance created using
mix.cowboy is connected in the compound cowboy.wrong.
Because the class Icon imported into the compound also contains
the method draw , a method collision occurs and cowboy.wrong
is rejected.

Instead of rewriting the unit mix.cowboy to hide draw in Cow-
boy, a programmer can wrap the compound hide.draw around
mix.cowboy , as shown in Figure 22. hide.draw hides the
method draw from its public interface, which allows hide.draw
to be used in cowboy.right.

file: ./cw e s.sig

signature cw e s<icon p> f
class Cowboy extends icon p.Icon
f void duel(); int draw(); g
g
file: ./icon e s.sig

signature icon e s<> f
class Icon extends Object
f void paint(); void draw(); g
g
file: ./cw s.sig

signature cw s<icon p> f
class Cowboy extends icon p.Icon
f void duel(); g
g
file: ./icon s.sig

signature icon s<> f
class Icon extends Object

f void paint(); g
g
file: ./mix.cowboy.unit

atom mix.cowboy f
import icon in : icon s<>;
export cw out : cw e s<icon in>;
g
file: ./cowboy.wrong.unit

compound cowboy.wrong f
import icon in : icon e s<>;
export cw out : cw s<icon in>;
g f
local cw : mix.cowboy ;
link icon in to cw@icon in,

cw@cw out to cw out;
g

Figure 21: cowboy.wrong creates a method collision.

file: ./hide.draw.unit

compound hide.draw f
import icon in : icon s<>;
export cw out : cw s<icon in>;
g f
local cw : mix.cowboy;
link icon in to cw@icon in,

cw@cw out to cw out;
g
file: ./cowboy.right.unit

compound cowboy.right f
import icon in : icon e s<>;
export run out : run s<>;
g f
local cw : hide.draw ;
link icon in to cw@icon in,

cw@cw out to cw out;
g

Figure 22: hide.draw hides an unwanted method allowing the
composition of a valid cowboy.right.



In some situations, a programmer would like to expose a pair of
colliding methods to clients (e.g., both draw methods may need
to be visible in Cowboy), and let the client programmer choose
one. In Jiazzi, ambiguous methods that cannot be resolved using
scope during composition are always rejected as method collisions.
Moby [9], in contrast, allows ambiguous methods to be exposed
in the same scope, and leaves the complexity of resolution to the
caller.

4.2 Abstract Methods
In addition to instance methods and subclassing, other Java lan-
guage features can be expressed in class signatures. Instance fields,
static methods, and static fields are checked like instance methods.
Constructors must be matched directly in the source class, because
they are not inherited. Checking of abstract methods, however, de-
serves extra discussion.

Unlike concrete virtual methods, an abstract method within a class
or interface cannot be hidden by a class signature. Otherwise, a
non-abstract subclass of the class described by the class signature
could contain hidden abstract methods. This restriction is present
in MultiJava’s open classes for the same reason [6].

Because of the need to upgrade libraries, Java allows abstract meth-
ods to be unimplemented in concrete classes [18]. Successive ver-
sions of Java core libraries have added abstract methods to exist-
ing classes (e.g., compare the initial and current version of class
java.awt.Graphics). In Java, an abstract method invoked with-
out an implementation will raise a runtime error. Jiazzi’s require-
ment that concrete classes have no abstract methods conflicts with
Java’s binary compatibility support.

5. IMPLEMENTATION
Our current implementation of Jiazzi consists of a stub generator
and an offline linker that operates on class files. The linker per-
forms unit-level type checking, and it rewrites class files to form
the binary forms of units. The binary forms of units can be used to
create unit instances in a compound, or can be loaded into a Java
Virtual Machine (JVM). Only the class file’s constant pools, which
contains its symbols, are rewritten by the linker: there is no need to
parse and inspect the bytecode instructions in method bodies. Class
file features such as debug attributes, which are important for com-
patibility with existing Java development tools, are preserved in the
rewritten class files.

When compounds are linked, class file symbol rewriting is used
to update references to imported classes in class files when con-
nections are made in compounds, and to rename classes based on
whether they are hidden or exported from the compound. Class file
rewriting is also used to establish method scopes. Since method
scopes are dependent on unit boundaries and not on class or pack-
age boundaries, we cannot depend on any built-in JVM mecha-
nisms to delineate method scopes at runtime. Instead, class file
rewriting renames hidden methods. So that no accidental collisions
can occur in valid constructions, renaming is applied across mul-
tiple unit compositions so that distinct methods remain uniquely
named.

The only run-time performance penalty due to using units arises
from the duplication of the binary forms of units during linking.
That is, using a single unit to create many different unit instances

could lead to binary bloat, which can have negative performance
effects (e.g., due to instruction cache and native compilation). On
the other hand, units used in different contexts could be optimized
independently. For example, method scoping could be used to de-
virtualize method calls [29] as units are linked.

Although the symbols used in Java class files can easily be rewrit-
ten, Symbols referred to in Java native methods cannot. A Java na-
tive method is bound to a method based on the name of the method
and its containing class. Changing either the name of the class or
method breaks this connection. Therefore, only classes without na-
tive methods can be contained within units. Such renaming also
interferes with some uses of the Java Reflection API where sym-
bols are referred to at runtime.

A linked unit can be loaded and linked directly by the JVM. Since
such linking is primarily performed in the class loader, we refer to
this as class loader linking, in contrast to Jiazzi linking, which has
been described so far. The exported classes of the unit appear as
normal Java classes, which can be loaded and be made available
through the class loader.

Compared to Jiazzi linking, class loader linking is fragile. A class’s
imports can be bound to classes that differ from the classes com-
piled (and type checked) against. Since there is no description of
the classes originally compiled against, like those provided by Ji-
azzi with a unit’s signature, type checking during class loader link-
ing is implemented in the JVM with incremental whole-program
analysis (using constraints [17]) and runtime checks (e.g., check-
ing that abstract methods are implemented when invoked).

Currently, component-based programs in Jiazzi must use a combi-
nation of Jiazzi and class loader linking. Many classes in the stan-
dard language library, such as Object and String, are strongly
tied to the language and can only be linked through the class loader.
Also, because they depend on reflection or native methods, many
class libraries cannot be repackaged as Jiazzi components.

6. RELATED WORK
Many of the techniques and concepts used in Jiazzi have been ex-
plored previously: the core component model is derived from pro-
gram units [7, 10] and Jiazzi’s method-scoping rules resemble those
of Riecke and Stone [22] and Vouillon [28]. Our contribution in
Jiazzi is demonstrating how these techniques can be combined to
define a practical component system for Java that also applies to
other statically typed object-oriented languages. In doing so, we
have solved the type challenge left open by Findler and Flatt [7].

The language ComponentJ [24] is a unit-like component system for
Java. ComponentJ is a language extension in which components are
objects that import and export methods but not types. Components
in ComponentJ are also first-class values.

Moby [8, 9] is a structurally typed object-oriented language that
supports ML-style modules. Methods can be hidden in modules:
object types created in these modules do not propagate the hid-
den methods in their type. However, a hidden method can still be
invoked by explicitly specifying its originating class type. Since
Moby does not use subclassing relationships implicitly when typ-
ing method invocations, module applications that create method
collisions are allowed. To resolve ambiguous methods, Moby relies



on object-view coercion to explicitly coerce the type of an expres-
sion from a class to one of its superclasses. Moby does not support
the cyclic linking of modules.

Mixins were pioneered in CLOS [15]. JAM [2] extends Java with
in-language mixins. The module system of Objective Caml [16]
supports external class connections. Since classes can be defined in
modules, these classes can also form something like mixins. How-
ever, Objective Caml does not permit a class supplied to a compo-
nent (functor) to provide more methods than required by the com-
ponent.

JavaMod [3] is a theoretical module calculus for Java. It supports
the import and export of classes and cyclic module linking. How-
ever, they do not consider situations where imported classes inherit
from exported classes. JavaMod supports subclassing across mod-
ule boundaries, but extra methods provided for an imported class
must be explicitly hidden, and resulting subclasses will not contain
those hidden methods.

Jiazzi’s open class pattern provides a modular way to add features
to classes in object-oriented systems. Odersky [19] addresses the
similar problem of class adaptability by adding views to objects.
A view is an unnamed function that adds methods and fields to an
existing class. Views cannot be implemented with separate compi-
lation.

MultiJava [6] is a Java language extension that addresses adding
new methods (but not fields) to existing classes with open classes.
New methods can be added to a class using scoped compilation
units. Separate compilation is supported since clients of the class
explicitly choose which scopes they can view. It is possible for
new compilation units in MultiJava to add new methods to classes
after execution begins, in contrast to Jiazzi where new methods and
fields can only be added when the units undergoes link-time con-
struction.

Work in separation of concerns, such as subject-oriented program-
ming [13], address the issues of separating class features into sepa-
rate modules. Feature-oriented programming [21] and role compo-
nents [27] use individual mixin-like structures to decompose de-
signs into feature hierarchies. An approach similar to the open
class pattern is used in Mixin Layers [25]. Instead of using indi-
vidual mixins, Mixin Layers provides constructs that apply mixins
to multiple classes at once. Java Layers [5] is an implementation of
Mixin Layers for Java.

Jiazzi does not provide a solution for the configuration of run-
time behavior as do other component systems such as COM [23],
CORBA [20], and JavaBeans [14]. Such components are used at
design time to configure runtime behavior and do not provide a
good solution for system deployment. Configuration of code versus
runtime behavior address reusability at different times and granu-
larities. Jiazzi complements these component systems. For exam-
ple, since a Bean in JavaBeans exists as a set of Java classes, it can
be contained inside a Jiazzi unit.

7. CONCLUSIONS AND FUTURE WORK
We have presented the design and implementation of Jiazzi, which
enhances Java with externally linked, hierarchical, and separately
compiled components. Jiazzi’s support for mixin constructions and

cyclic linking allows open classes to be simulated leading to clean
functional decomposition of features in programs. Jiazzi does not
change existing Java development practice: programs are still writ-
ten in the Java language and still execute on conventional Java vir-
tual machines. Although we have finished Jiazzi’s core component
model and initial implementation, we are still enhancing Jiazzi in
many areas:

- Providing more integrated support for open classes in Jiazzi;

- Adding more flexibility to component composition by pro-
viding more control over method scopes and the hiding of
abstract methods;

- Add support for online linking of components, and a meta-
programming protocol that allows for configuration of com-
ponent linking at runtime instead of statically in the Jiazzi
component language;

- Integrating Jiazzi more closely into a JVM so class loader
linking and bytecode duplication can be avoided, and to al-
low reflection and native methods inside components.

We expect that more areas of improvement will be revealed as we
gain experience in using Jiazzi to build large systems. An imple-
mentation of Jiazzi for Java is available for download at:
http://www.cs.utah.edu/plt/jiazzi.
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