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Abstract. We present a modular specification technique for frame prop-
erties. The technique uses modifies clauses and abstract fields with de-
clared dependencies. Modularity is guaranteed by a programming model
that restricts aliasing, and by modularity requirements for dependen-
cies. For concreteness, we adapt this technique to the Java Modeling
Language, JML.

1 Introduction

In an interface specification language, a frame property describes what loca-
tions a method may modify, and, implicitly, what locations it may not modify
[BMR95]. This is often specified using a modifies clause [GHG+93,Win87].

We address three problems for specification and verification of frame proper-
ties: (1) Information hiding—The concrete (e.g., private) fields of a class should
be hidden from its clients, even in specifications, yet the frame properties of
(public) specifications must somehow permit those locations to be modified.
(2) Extended state—When a subclass overrides a method, it may need to mod-
ify additional fields it declared; yet the demands of behavioral subtyping (e.g.,
[LW94,DL96]) would seem to prohibit modification of these additional fields
[Lei98]. (3) Modularity—A modular solution to the frame problem must allow
one to precisely specify the frame properties of methods and to verify their im-
plementations, without knowing the context in which the methods will be used.
However, in general one cannot know what locations might be found in a pro-
gram that extends a given class or interface.

Leino’s work [Lei95] solves problems (1) and (2) by introducing abstract fields
with explicitly declared dependencies and a refined semantics of modifies clauses
(see below). This paper explains part of Müller’s thesis [Mül01], which builds on
Leino’s work and provides a modular sound solution to problem (3).

1.1 Related Work

When modeling objects as records containing possibly abstract locations, one
needs a way to specify the correspondence between abstract and concrete loca-
tions. To do this, Leino introduced depends and represents clauses [Lei95,Lei98].
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A represents clause says how an abstract location’s value is determined from
various concrete locations. To a first approximation, a depends clause says what
concrete locations are used to determine the abstract location’s value. More pre-
cisely, a dependency declaration allows dependees to be modified whenever the
abstract location is named in a modifies clause. Thus, in JML, “depends absloc
<- concloc” says that concloc can be modified whenever absloc is modifiable.

To support the specification of extended state, a subtype may declare that
an inherited abstract field depends on the fields it declares. Such dependencies
allow overriding methods in subclasses to modify their extended state.

Leino and Nelson distinguish static dependencies, of the form “depends f
<- g”, and dynamic dependencies, of the form “depends f <- p.g”, in which
abstract field f depends on field g of the pivot object p. Leino and Nelson handle
static and dynamic dependencies in different ways, that is, by different desugar-
ing of modifies clauses, and different modularity rules. Although Müller’s thesis
[Mül01] treats both cases uniformly, in this paper, to avoid introducing addi-
tional concepts, we also distinguish them.

Leino and Nelson use scope-dependent depends relations [Lei95], which lead
to a scope-dependent meaning of modifies clauses. Soundness is not immediate,
because proofs for smaller scopes do not necessarily carry over to larger scopes;
indeed, Leino and Nelson have not yet proved modular soundness of their tech-
nique for dynamic dependencies.

1.2 Approach

To solve the first two problems described above, we follow Leino and Nelson
[Lei95,LN00], using abstract fields and explicitly declared dependencies. We
explain the ideas by applying them to the Java Modeling Language (JML)
[LBR01,LBR99], which allows the specifier to declare abstract fields by using
the modifier “model”. JML also allows one to declare dependencies, although it
does not yet incorporate the restrictions we propose here.

Our solution to the modularity problem entails three steps: (1) We define a
programming model that hierarchically structures the object store into so-called
contexts and restricts references between contexts [MPH00,MPH01,Mül01].

(2) Dependency declarations generate a theory for dependencies declared in
a given set of modules. This depends relation does not specify dependencies for
extensions to the given set of modules. Because of this underspecification one
can only prove properties about a module that hold in well-formed extensions.
Thus modular soundness is much simpler to prove than with a scope-dependent
semantics of the modifies clause. The restricted programming model guarantees
that this weaker semantics is still strong enough to verify method invocations.

(3) We impose three modularity requirements to restrict the permissible de-
pendencies of abstract locations. These restrictions allow us to prove a modu-
larity theorem that makes modular verification of frame properties in method
implementations possible.

A detailed presentation of these ideas, including all formalizations and proofs,
but not their application to JML, is found in [Mül01].
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Fig. 1. Nodes in a context (the oval). The owner object sits atop the context it owns.

2 The Programming Model

To achieve modularity, dependencies must be controlled. There are two problems,
both of which involve aliasing: (1) Representation exposure occurs when objects
inside the representation of an object X may be referenced by objects outside of
X’s representation. (2) Dependencies on argument objects occur when an object
X’s abstract value is determined by the abstract values of objects, called argu-
ment objects, outside X’s representation. Both problems allow modification of an
object’s abstract value in ways that cannot be controlled by its implementation.

To prevent representation exposure, the object store is structured into a
hierarchy of contexts. Contexts are disjoint groups of objects. There is a root
context. All other contexts have an owner object in their parent context. Aliasing
is controlled by the following invariant: Every reference chain from objects in the
root context to an object in a context C passes through C’s owner. Thus, an
owner object can control access to objects in its context. This structure of the
object store is called the ownership model [CPN98].

The ownership model is not sufficient to prevent dependencies on argument
objects because it allows objects inside a context to reference argument objects in
ancestor contexts. We refined the ownership model in two ways [MPH01,Mül01]:
(a) references to argument objects are made explicit by marking them readonly,
and (b) readonly references can point to any object, not only to objects in ances-
tor contexts. Access via readonly references is restricted to reading operations
without side-effects. This refined ownership model is more general than the orig-
inal one. In this refined model, we prevent dependencies on argument objects by
forbidding dependencies via readonly references.

Figure 1 illustrates our refined ownership model. The nodes of a linked list are
contained in a context owned by the list header. The objects stored in the list are
outside the context and are referenced readonly (dashed arrows). Consequently,
abstract fields of the list must not depend on fields of these objects.

To enforce the refined ownership model’s invariant, we use the universe type
system [MPH01,Mül01]. Besides tagging types as readonly, this type system also
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distinguishes between references that remain inside a context and references
to objects that belong to the descendant context owned by the this-object.
References of the latter kind are tagged with the keyword rep [CPN98].

3 Specification of frame properties in JML

3.1 Data abstraction in JML

Data abstractions in JML are specified using abstract locations, i.e., model fields.
For example, consider the specifications of List in Figure 2 and Node in Figure 3.

//@ model import edu.iastate.cs.jml.models.*;

public abstract class List {

//@ public model non_null JMLObjectSequence listValue;

protected /*% rep %*/ Node first, last;

//@ protected depends listValue <- first, first.values, last;

/*@ protected represents listValue <-

@ (first == null ? new JMLObjectSequence() : first.values); @*/

/*@ public normal_behavior

@ requires o != null;

@ modifies listValue;

@ ensures listValue.equals(\old(listValue.insertBack(o))); @*/

public void append(/*% readonly %*/ Object o) {

if (last==null) {

last = new /*% rep %*/ Node(null, null, o);

first = last;

} else {

last.next = new /*% rep %*/ Node(null, last, o);

last = last.next;

}

}

/* ... */

}

Fig. 2. A JML specification of the Java class List, of doubly-linked lists.

The class List declares a public model field listValue, which describes the
abstract value of a List object. In the class Node, the model field values forms
part of the abstract value of Node objects. In JML, method specifications precede
the method header, preconditions are introduced by the keyword requires and
postconditions by the keyword ensures. For example, in the specification of
List’s method append, the postcondition describes the abstract effect of append
on the model field listValue.
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//@ model import edu.iastate.cs.jml.models.*;

public class Node {

//@ public model non_null JMLObjectSequence values;

public Node next, prev;

public /*% readonly %*/ Object val;

//@ public depends values <- next, next.values, prev, val;

/*@ public represents values <-

@ (next == null ? new JMLObjectSequence(val)

@ : next.values.insertFront(val)); @*/

Node(Node nextp, Node prevp, /*% readonly %*/ Object valp) {

next = nextp; prev = prevp; val = valp;

}

}

Fig. 3. The JML specification of the Java class Node.

3.2 Explicit dependencies in JML

Although Müller’s thesis [Mül01] uses a quite general form of dependencies,
we use a syntax for depends clauses like that in Leino’s thesis [Lei95]. Besides
simplicity, this syntax also permits the restrictions discussed in Section 4 to be
statically checked easily. We leave extensions to this syntax as future work.

For example, in the class List, the model field listValue is represented by
a sequence determined by first and first.values. Hence listValue is also
declared to depend on these fields. Although the represents clause for List does
not use the field last, that field is listed in the depends clause, to permit it to be
modified whenever listValue is modifiable. Similarly, in class Node, the model
field values depends on next, next.values, prev, and val.

3.3 Modifies Clauses in JML

An example of a modifies clause in JML appears in the specification of List’s
append method. It says that the method may modify listValue.

The semantics of the modifies clause is that all relevant locations that either
are named in the clause or on which such locations depend may be modified. A
location is relevant to the execution of a non-static method m if it is either in
the context that contains m’s receiver or a descendant context of the one that
contains m’s receiver. For example, if myList is an object of type List, then for
the call myList.append(o), the relevant locations are those in the context that
contains myList, and locations in descendant contexts. Since the field first in
List is declared using the keyword rep, the object myList.first points to is in
the context owned by myList (see Figure 1), which is thus a descendant context
of the context that contains myList. Since the next fields of Node objects are not
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//@ model import edu.iastate.cs.jml.models.*;

public abstract class Set {

//@ public model non_null JMLObjectSet setValue;

protected /*% rep %*/ /*@ non_null @*/ List theList;

//@ protected depends setValue <- theList, theList.listValue;

/*@ protected represents setValue \such_that

@ (\forall Object o; o != null;

@ theList.listValue.has(o) <==> setValue.has(o)); @*/

/*@ public normal_behavior

@ requires o != null;

@ modifies setValue;

@ ensures setValue.has(o); @*/

public void insert(/*% readonly %*/ Object o) {

if (!theList.contains(o)) { theList.append(o); }

}

}

Fig. 4. The JML specification of the Java class Set.

declared using rep, the objects reachable via next are all in the same context.
It follows that all the nodes are in the context owned by myList, and hence that
the fields of these nodes are also relevant locations. That is, the call may modify
myList.first, myList.first.values, myList.last, and all the fields of the
nodes reachable from myList.first via the next field.

To explore the modularity consequences of this semantics, consider an ex-
tended program, in which the type List is used to implement the type Set, speci-
fied in Figure 4. Set’s model field setValue depends on its concrete field theList
and theList.listValue. Since the specification of Set’s insert method lists
setValue in its modifies clause, a call such as mySet.insert(o) may modify
mySet.setValue and all the other relevant locations on which it depends. Since
theList is declared using rep, it is in the context owned by mySet, and so
is in a descendant context of the one containing mySet (see Figure 5). There-
fore mySet.theList is a relevant location, and since it is also a dependee, it can
be modified. Similarly, mySet.theList.listValue, mySet.theList.first, and
the fields of the nodes are relevant, and so these dependees can be modified.

The modularity of the semantics is shown by the call theList.append(o)
in Set’s insert method. How does the semantics allow List’s append method
to modify the set’s model field setValue, which it does when it modifies the
abstract value of theList? The semantics allows this because it underspecifies
the locations that append can modify, since it only describes the modification of
relevant locations, and setValue is not relevant for the call theList.append(o).
The reason for this is that a context’s owner is not contained in the context it
owns, and theList is in the context owned by the receiver in Set’s insert
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Fig. 5. Object Structure for a Set object.

method (see Figure 5). Hence in Set’s insert method, this.setValue is not a
relevant location for the call to theList.append(o).

Responsibility for verifying frame properties is divided. A method’s imple-
mentor is responsible for the locations relevant to its executions, as specified in
its modifies clause, and the method’s caller is responsible for other locations.
For example, append’s implementor is responsible for verifying the frame prop-
erties in its modifies clause. When verifying the call to append in Set’s insert
method, one uses append’s modifies clause and Set’s depends clauses to reason
about modification of Set’s fields theList and setValue.

4 Modularity and Dependencies

To achieve modularity, we impose three requirements on dependencies:

Locality Requirement: Abstractions of an object X can only depend on lo-
cations in the context that contains X or its descendants. That is, they may
depend on locations in X’s representation, but not on argument objects.

Authenticity Requirement: The declaration of an abstract location L in a
context C must be visible in every scope that contains a method m that
could—if invoked on a target object in C—modify L. Thus the verifier of m
can determine all relevant locations that m might modify.

Visibility Requirement: Whenever two locations are declared in a scope S,
the dependencies in S must allow one to determine whether these locations
depend on each other or not.

We enforce these requirements by statically checking the following rules for
single depends clauses of the form “depends f <- g” or “depends f <- p.g”.

Locality Rule: For dynamic dependencies, the pivot field must not hold a read-
only reference; that is, p must not be of a readonly type.
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Authenticity Rule: For static dependencies and for dynamic dependencies
where the pivot field is not of a rep type, f must be declared in the scope of
g. For dynamic dependencies where the pivot field is of a rep type, f must
be declared in the scope of the owner type of p. In most implementations
such as in our examples, the owner type of a field is its declaration type (see
[Mül01] for a precise definition).

Visibility Rule: Static and dynamic dependencies where the pivot field is not
of a rep type must be declared in the scope of g. Dynamic dependencies
where the pivot field is of a rep type must be declared in the scope of p’s
owner type.

To verify frame properties of a method m, one has to prove that m leaves all
relevant locations that are not covered by m’s modifies clause unchanged. This
proof obligation can be shown for those locations that are declared in the scope
of m by referring to their representations and dependencies. For all other relevant
locations, the locality and authenticity requirements guarantee that they are not
modified by m, as stated by the following modularity theorem:

A method m can only modify relevant locations that are declared in m’s scope.

A sketch of this theorem’s proof is contained in the appendix. A formalization of
the theorem and the full proof can be found in [Mül01]. The modularity theorem’s
proof shows that the modularity requirements in combination with the universe
programming model are strong enough to enable modular verification of frame
properties. Similar requirements are used in [LN00].

5 Conclusions

We extended the Java Modeling Language by constructs to specify frame prop-
erties in a modular way. The extension is based on a refined ownership model:
The programmer can hierarchically structure the object store into contexts to
which only designated owner objects have direct access. All other references
crossing context boundaries have to be declared readonly. The ownership model
is enforced by the universe type system. It provides the basis to refine the se-
mantics of the modifies clause and to define context conditions that guarantee
the modularity of specification and verification of frame properties.

The JML extensions are based on a more general framework that was de-
veloped for modular verification of Java programs [Mül01]. In that work, these
ideas are also applied to the modular treatment of class invariants, by consider-
ing invariants to be boolean-valued abstract fields. Thus these ideas also lead to
modular specification and verification of invariants.

Although our technique can express common implementation patterns such
as containers with iterators and mutually recursive types [Mül01], some exten-
sions might be useful in practice. For instance, unique variables would allow
objects to migrate from one context to another, and less restrictive modular-
ity rules would provide better support for inheritance [Mül01]. We leave such
extensions for future work.
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A Sketch of the Modularity Theorem’s Proof

In the following, we sketch the field update case of the proof of the modularity
theorem from Section 4. The proof for method invocations is similar.

Proof Sketch. Let m be executed in context C (i.e., the receiver is in C). If m
updates Y.g, the universe type system guarantees that Y is in C or in one of
C’s immediate descendents. Consider an abstract location X.f that is relevant
for m. If X.f does not depend on Y.g, X.f is not affected by updates of Y.g.
Otherwise, we show that f is declared in m’s scope:

Case 1: Y is in C. If X.f is relevant for m, then by the the locality rule
X is in C. Thus, X and Y are in the same context, and the authenticity rule
ensures that f is declared in g’s scope. Since g is accessible in m, f is in m’s
scope.

Case 2: Y is in an immediately-descendent context D of C. Due to
locality, X is in D or in C. The former case is analogous to Case 1. In the latter
case: a dynamic dependency must be involved with a pivot field p of a rep type,
the owner type of p is in the scope of m (by the universe type system), and f
is declared in the scope of p’s owner type (by the authenticity rule). Thus, f is
declared in m’s scope.


