
JML: A Notation for Detailed Design

by Gary T. Leavens, Albert L. Baker, and Clyde Ruby

This paper is adapted from Haim Kilov, Bernhard Rumpe, and William Harvey (editors),
Behavioral Specifications for Businesses and Systems, chapter 12, pages 175-188. Copyright
c© Kluwer Academic Publishers, 1999. Used by permission.

Chapter 1: Behavioral Interface Specification 1

1 Behavioral Interface Specification

Abstract

JML is a behavioral interface specification language tailored to Java. It is
designed to be written and read by working software engineers, and should re-
quire only modest mathematical training. It uses Eiffel-style syntax combined
with model-based semantics, as in VDM and Larch. JML supports quanti-
fiers, specification-only variables, and other enhancements that make it more
expressive for specification than Eiffel and easier to use than VDM and Larch.

JML [Leavens-Baker-Ruby01], which stands for “Java Modeling Language,” is a behav-
ioral interface specification language (BISL) [Wing87] designed to specify Java [Arnold-
Gosling98] [Gosling-Joy-Steele96] modules. Java modules are classes and interfaces.

A behavioral interface specification describes both the details of a module’s interface
with clients, and its behavior from the client’s point of view. Such specifications are not
good for the specification of whole programs, but are good for recording detailed design
decisions or documentation of intended behavior, for a software module.

The goal of this chapter is to explain JML and the concepts behind its approach to
specification. Since JML is used in detailed design of Java modules, we use the detailed
design of an interface and class for priority queues as an example. The rest of this section
explains interfaces and behavioral interface specification. In the next section we describe
how to specify new types as conceptual models for detailed design. Following that we finish
the example by giving the details of a class specification. We conclude after mentioning
some other features of JML.

1.1 Interfaces

A module’s interface consists of its name, and the names and types of its fields and
methods. Java interfaces declare such interface information, but class declarations do as
well. As in the Larch family of BISLs [Guttag-Horning93] [LeavensLarchFAQ] [Wing87]
[Wing90a], interface information in JML is declared using the declaration syntax of the
programming language to which the BISL is tailored; thus, JML uses Java declaration
syntax.

An example is given in the file ‘PriorityQueueUserInterface.java-refined’, which
is shown below. This example gives the information a Java program needs to use a
PriorityQueueUser object, including the package to which it belongs, the accessibility
of the methods (public), the names of the methods, the types of their arguments and
results, and what exceptions they can throw.

package edu.iastate.cs.jml.docs.kluwer;
public interface PriorityQueueUser {
/*@ pure @*/ boolean contains(Object argID);
/*@ pure @*/ Object next() throws PQException;
void remove(Object argID);
}

Also included in the above file are two annotations. These annotations are enclosed
within annotation comments of the form /*@ . . . @*/; one can also write annotation com-
ments using the form //@, and such comments extend to the end of the corresponding line.

Chapter 1: Behavioral Interface Specification 2

Java ignores both kinds of annotation comments, but they are significant to JML. The an-
notations on the methods next and contains require both methods to be pure, meaning
that they cannot have any externally-visible side effects.

1.2 A First Example of Behavioral Specification

In JML, behavioral specification information is also given in the form of annotations.
As in the Larch approach, such specifications are model-based. That is, they are stated in
terms of a mathematical model [Guttag-Horning93] [Hoare72a] [Wing83] [Wing87] of the
states (or values) of objects. Unlike most Larch-style specification languages, however, in
JML such models are described by declaring model fields, which are only used for purposes
of specification. In JML, a declaration can include the modifier model, which means that
the declaration need not appear in a correct implementation; all non-model declarations
must appear in a correct implementation.

As an example, the file ‘PriorityQueueUserModel.java-refined’ below specifies a
model for priority queues. This specification is a refinement of the one given in the file
(shown above) ‘PriorityQueueUserInterface.java-refined’, which is why the refine
clause appears in the specification following the package declaration. The meaning of the
refine clause is that the given specification adds to the one in the file named, by im-
posing additional constraints on that specification. Such a refinement might be done, for
example, when one is starting to make detailed design decisions or when starting to specify
the behavior of existing software modules. In a refinement, existing specification informa-
tion is inherited; that is, the method declarations in the interface PriorityQueueUser are
inherited, and thus not repeated below

package edu.iastate.cs.jml.docs.kluwer;

//@ refine PriorityQueueUser <- "PriorityQueueUser.java-refined";
//@ model import edu.iastate.cs.jml.models.*;

public interface PriorityQueueUser {

/*@ public model instance JMLValueSet entries
@ initially entries != null && entries.isEmpty();
@*/

/*@ public invariant entries != null
@ && (\forall JMLType e; entries.has(e);
@ e instanceof QueueEntry);
@ public invariant
@ (\forall QueueEntry e1; entries.has(e1);
@ (\forall QueueEntry e2;
@ entries.has(e2) && !(e1.equals(e2));
@ e2.iD != e1.iD
@ && e2.timeStamp != e1.timeStamp));
@*/

}

Following the refine clause above is a model import declaration. This has the effect
like a Java import declaration for JML, but the use of model means that the import does

Chapter 1: Behavioral Interface Specification 3

not have to appear in an implementation, as it is only needed for specification purposes.
The package being imported, edu.iastate.cs.jml.models, consists of several pure classes
including sets, sequences, relations, maps, and so on, which are useful in behavioral spec-
ification. These fill the role of the built-in types used for specification in VDM and Z, or
the traits used in Larch. Since they are pure (side-effect free) classes, they can be used in
assertions without affecting the state of the computation, which allows assertions to have
a well-defined mathematical meaning (unlike Eiffel’s assertions). However, since they are
Java classes, their methods are invoked using the usual Java syntax.

In the specification above we use the class JMLValueSet as the type of the model field
entries. That is, for purposes of specification, we imagine that every object that imple-
ments the interface PriorityQueueUser has a public field entries of type JMLValueSet.
This model field appears (to clients) to have started out initially as empty, as stated in the
initially clause attached to its declaration [Ogden-etal94] [Morgan94].

The two invariant clauses further describe the intended state of entries. The first
states that it is not null, and that all of its elements have type QueueEntry. The \forall
notation is an addition to the Java syntax for expressions; it gives universal quantification
over the declared variables. Within such an expression of the form (\forall T x; R(x);
P(x)), the expression R(x) specifies the range over which the bound variable, x, can take
on values; it is separated from the term predicate, P(x), by a semicolon (;). For example,
the first invariant means that for all JMLType objects e such that entries.has(e), e has
type QueueEntry. The second invariant states that every such QueueEntry object has a
unique iD and timeStamp.

In the file ‘PriorityQueueUser.java’ below we make yet another refinement, to specify
the behavior of the methods of PriorityQueueUser. This specification, because it refines
the specification in ‘PriorityQueueUserModel.java-refined’, inherits the model fields
specified there, as well as the initially and invariant clauses. (Inheritance of specifica-
tions is explained further below.)

package edu.iastate.cs.jml.docs.kluwer;
//@ refine PriorityQueueUser <- "PriorityQueueUserModel.java-refined";
//@ model import edu.iastate.cs.jml.models.*;
public interface PriorityQueueUser {

/*@ public normal_behavior
@ ensures \result <==>
@ argID != null
@ && (\exists QueueEntry e; entries.has(e);
@ e.iD == argID);
@*/

/*@ pure @*/ boolean contains(Object argID);

/*@ public normal_behavior
@ requires !entries.isEmpty();
@ ensures
@ (\exists QueueEntry r;
@ entries.has(r) && \result == r.iD;
@ (\forall QueueEntry o;
@ entries.has(o) && !(r.equals(o));

Chapter 1: Behavioral Interface Specification 4

@ r.priorityLevel >= o.priorityLevel
@ && r.timeStamp < o.timeStamp));
@ also
@ public exceptional_behavior
@ requires entries.isEmpty();
@ signals (PQException);
@*/

/*@ pure @*/ Object next() throws PQException;

/*@ public normal_behavior
@ requires argID != null && contains(argID);
@ assignable entries;
@ ensures (\exists QueueEntry e;
@ \old(entries.has(e)) && e.iD == argID;
@ entries.equals(\old(entries.remove(e))));
@ also
@ public normal_behavior
@ requires argID == null || !contains(argID);
@ ensures \not_modified(entries);
@*/

void remove(Object argID);
}

The specification of contains above shows the simplest form of a behavioral specification
for a method: a single public normal_behavior clause followed by a method header. This
specification says that the method returns true just when its argument is non-null and
is the same as some object in the queue. The public normal_behavior clause in this
specification consists of a single ensures clause. This ensures clause gives the method’s
total-correctness postcondition; that is, calls to contains must terminate (as opposed to
looping forever or aborting) in a state that satisfies the postcondition. The public keyword
says that the specification is intended for clients; while the “normal” in normal_behavior
prohibits throwing exceptions. The meaning of && and == are as in Java; that is, && is short-
circuit logical conjunction, and e.iD == argID means that e.iD and argID are the same
object. The keyword \result denotes the return value of the method, which in this case
is a boolean. The operator <==> means “if and only if”; it is equivalent to == for booleans,
but has a lower precedence. The notation \exists is used for existential quantification.
Like universal quantifiers, existential quantifiers can also have a range expression that is
separated from the term expression by a semicolon (;).

The specification of the method next shows one way to specify methods with excep-
tions in JML. This uses a public normal_behavior clause for the case where no excep-
tions are thrown, and an public exceptional_behavior clause for when exceptions are
thrown. The semantics is that a correct implementation must satisfy both of these be-
haviors [Leavens-Baker99] [Wills94] [Wing83]. In the specification of next, the public
exceptional_behavior clause states that an instance of the PQException class (not shown
here) must be thrown when entries is empty. The requires clause gives a precondition
for that case, and when it is true, the method must terminate (in this case by throwing an
exception), as that case’s postcondition must be satisfied.

Chapter 1: Behavioral Interface Specification 5

The public normal behavior of next must be obeyed when its precondition is true; that
is, when entries is not empty. The normal behavior’s postcondition says that next returns
an object with the lowest timestamp in the highest priority level.

It would, of course, be possible to only specify the public normal behavior for next.
If this were done, then implementations could just assume the precondition of the normal
behavior—that entries is not empty. That would be an appropriate design for clients that
can be trusted, and might permit more efficient implementation. The given specification is
appropriate for untrusted clients [Meyer92a] [Meyer97].

The specification remove uses case analysis [Leavens-Baker99] [Wills94] [Wing83] in the
specification of normal behavior. The two cases are separated by the keyword also, and
each must be obeyed when its precondition is true. The first case contains a assignable
clause.1 This is a frame condition [Borgida-Mylopoulos-Reiter95]; it states that only the
fields mentioned (and any on which they depend [Leino95] [Leino95a]) can be assigned to;
no other fields, including fields in other objects, can be assigned. Omitting the assignable
clause means that no fields can be assigned. (Technically, the assignable clause is also con-
cerned with array elements. Local variables, including the formal parameters of a method,
and also fields of newly-created objects may also be freely assigned by a method [Leavens-
Baker-Ruby01].) Note that the precondition of remove uses the method contains, which
is permitted because it is pure.

The most interesting thing about the specification of remove is that it uses the JML
reserved word \old. As in Eiffel, the meaning of \old(E) is as if E were evaluated in the
pre-state and that value is used in place of \old(E) in the assertion.

While we have broken up the specification of PriorityQueueUser into three pieces, that
was done partly to demonstrate refinement and partly so that each piece would fit on a
page. In common use, this specification would be written in one file.

1 For historical reasons, JML also allows one to use modifiable and modifies as synonyms for assignable.

Chapter 2: Specifying New Pure Model Types 6

2 Specifying New Pure Model Types

JML comes with a suite of pure types, implemented as Java classes, that can be used as
conceptual models in detailed design. As mentioned above, these are found in the package
edu.iastate.cs.jml.models.

Users can also create their own pure types, by giving a class or interface the pure mod-
ifier. Since these types are to be treated as purely immutable values in specifications, they
must pass certain conservative checks that make sure there is no possibility of observable
side-effects from using such objects.

Model classes should also be pure, since, in JML, the use of non-pure methods in an
assertion is a type error. However, the modifiers model and pure are orthogonal, and thus
one must list both of them when declaring a pure model class.

An example of a pure model class is the class QueueEntry, specified in the file
‘QueueEntry.jml’ below. Since it is a model class, it need not be implemented, but is
used only for specification purposes. Since it is pure, none of its methods can permit
side-effects. It is written in a ‘.jml’ file, and that filename suffix tells JML that it consists
solely of annotations; in effect, the entire file is ignored by Java but is significant to JML.
The class QueueEntry has three public fields iD, priorityLevel, and timeStamp. The
invariant clause states that the iD field cannot be null in a client-visible state.

package edu.iastate.cs.jml.docs.kluwer;
//@ model import edu.iastate.cs.jml.models.JMLType;

/*@ public pure model class QueueEntry implements JMLType {
@ public Object iD;
@ public int priorityLevel;
@ public int timeStamp;

@ public invariant iD != null && timeStamp >= 0;

@ public normal_behavior
@ requires argID != null && timeStamp >= 0;
@ assignable iD, priorityLevel, timeStamp;
@ ensures iD == argID && priorityLevel == argLevel
@ && timeStamp == argTimeStamp;
@
@ public QueueEntry(Object argID, int argLevel,
@ int argTimeStamp);

@ public normal_behavior
@ ensures \result instanceof QueueEntry;
@ ensures_redundantly
@ ((QueueEntry)\result).equals(this);
@
@ public Object clone();

@ also
@ public normal_behavior

Chapter 2: Specifying New Pure Model Types 7

@ requires o instanceof QueueEntry;
@ ensures \result <==>
@ ((QueueEntry)o).iD == iD
@ && ((QueueEntry)o).priorityLevel == priorityLevel
@ && ((QueueEntry)o).timeStamp == timeStamp;
@ also
@ public normal_behavior
@ requires !(o instanceof QueueEntry);
@ ensures \result == false;
@
@ public boolean equals(Object o);
@ }
@*/

In the above specification, the constructor’s specification follows the invariant. The
constructor takes three arguments and initializes the fields from them. The precondition of
this constructor states that it can only be called if the argID argument is not null; if this
were not true, then the invariant would be violated.

The clone and equals methods in QueueEntry are related to the interface JMLType,
which QueueEntry extends. In JML when a class implements an interface, it inherits the
specifications of that interface. The interface JMLType specifies just these two methods. The
specifications of these methods are thus inherited by QueueEntry, and thus the specifications
given here add to the given specifications. The specification of the method clone in JMLType
(quoted from [Leavens-Baker-Ruby01]) is as follows.

/*@ also
@ public normal_behavior
@ ensures \result instanceof JMLType
@ && ((JMLType)\result).equals(this);
@*/

public /*@ pure @*/ Object clone();

The above specification says that, for JMLType objects, clone cannot throw exceptions, and
its result must be a JMLType object, with the same value as this. (In Java, this names
the receiver of a method call).

Inheritance of method specifications means that an implementation of clone must
satisfy both the inherited specification from JMLType and the given specification in
QueueEntry. The meaning of the method inheritance in this example is shown in below
[Dhara-Leavens96]. (The modifier pure from the superclass can be added in here, although
it is redundant for a method of a pure class.)

Chapter 2: Specifying New Pure Model Types 8

/*@ also
@ public normal_behavior
@ ensures \result instanceof JMLType
@ && ((JMLType)result).equals(this);
@ also
@ public normal_behavior
@ ensures \result instanceof QueueEntry;
@ ensures_redundantly
@ ((QueueEntry)\result).equals(this);
@*/

public /*@ pure @*/ Object clone();

Satisfying both of the cases is possible because QueueEntry is a subtype of JMLType, and
because JML interprets the meaning of E1.equals(E2) using the run-time class of E1.

The ensures_redundantly clause allows the specifier to state consequences of the spec-
ification that follow from its meaning [Leavens-Baker99] [Tan94] [Tan95]. In this case the
predicate given follows from the inherited specification and the one given. This example
shows a good use of such redundancy: to highlight important inherited properties for the
reader of the (original, unexpanded) specification.

Case analysis is used again in the specification of QueueEntry’s equals method. As
before, the behavior must satisfy each case of the specification. That is, when the argument o
is an instance of type QueueEntry, the first case’s postcondition must be satisfied, otherwise
the result must be false.

Chapter 3: Class Specifications 9

3 Class Specifications

The file ‘PriorityQueue.java-refined’ shown below specifies PriorityQueue, a class
that implements the interface PriorityQueueUser. Because this class implements an inter-
face, it inherits specifications, and hence implementation obligations, from that interface.
The specification given thus adds more obligations to those given in previous specifications.

package edu.iastate.cs.jml.docs.kluwer;
//@ model import edu.iastate.cs.jml.models.*;

public class PriorityQueue implements PriorityQueueUser {

/*@ public normal_behavior
@ assignable entries;
@ ensures entries != null && entries.isEmpty();
@ ensures_redundantly
@ entries.equals(new JMLValueSet());
@*/

public PriorityQueue();

/*@ public normal_behavior
@ requires entries.isEmpty();
@ ensures \result == 0;
@ also
@ public normal_behavior
@ requires !(entries.isEmpty());
@ ensures (\forall QueueEntry e; entries.has(e);

\result >= e.timeStamp);
@ public pure model int largestTimeStamp();
@*/

/*@ public normal_behavior
@ requires argID != null && !contains(argID);
@ assignable entries;
@ ensures entries != null
@ && entries.equals(\old(entries.insert(
@ new QueueEntry(argID, argPriorityLevel,
@ largestTimeStamp()+1))));
@ also
@ public exceptional_behavior
@ requires argID == null || contains(argID);
@ signals (PQException);
@*/
public void addEntry(Object argID, int argPriorityLevel)

throws PQException;

public /*@ pure @*/ boolean contains(Object argID);
public /*@ pure @*/ Object next() throws PQException;
public void remove(Object argID);

}

Chapter 3: Class Specifications 10

The pure model method largestTimeStamp is specified purely to help make the state-
ment of addEntry more comprehensible. Since it is a model method, it does not need to be
implemented. Without this specification, one would need to use the quantifier found in the
second case of largestTimeStamp within the specification of addEntry.

The interesting method in PriorityQueue is addEntry. One important issue is how the
timestamps are handled; this is hopefully clarified by the use of largestTimeStamp() in
the postcondition of the first specification case.

A more subtle issue concerns finiteness. Since the precondition of addEntry’s first case
does not limit the number of entries that can be added, the specification seems to imply
that the implementation must provide a literally unbounded priority queue, which is surely
impossible. We avoid this problem, by following Poetzsch-Heffter [Poetzsch-Heffter97] in
releasing implementations from their obligations to fulfill the postcondition when Java runs
out of storage. That is, a method implementation correctly implements a specification case
if, whenever it is called in a state that satisfies its precondition, either
• the method terminates in a state that satisfies its postcondition, having assigned only

the locations permitted by its assignable clause, or
• Java signals an error, by throwing an exception that inherits from java.lang.Error.

Chapter 4: Other Features of JML 11

4 Other Features of JML

Following Leino [Leino95] [Leino95a], JML uses depends and represents clauses to
relate model fields to the concrete fields of objects. For example, in the following

depends size <- theElems;
represents size <- size == theElems.length();

the depends clause says that the model field size may change its value when theElems
changes. The represents clause says how they are related, giving additional facts that
can be used in reasoning about the specification. This serves the same purpose as an
abstraction function in various proof methods for abstract data types (such as [Hoare72a]).
The represents clause above tells how to extract the value of size from the value of
theElems.

JML also has history constraints [Liskov-Wing94]. A history constraint is used to say
how values can change between earlier and later states, such as a method’s pre-state and
its post-state. This prohibits subtypes from making certain state changes, even if they
implement more methods than are specified in a given class. For example, the following
history constraint

constraint MAX_SIZE == \old(MAX_SIZE);

says that the value of MAX_SIZE cannot change.
JML has the ability to specify what methods a method may call, using a callable

clause. This allows one to know which methods need to be looked at when overriding a
method [Kiczales-Lamping92], and to apply the ideas of “reuse contracts” [Steyaert-etal96].

Chapter 5: Related Work 12

5 Related Work

Our general design strategy for making JML practical and effective has been to blend the
Eiffel [Meyer92a] [Meyer92b] [Meyer97] and Larch [Guttag-Horning93] [LeavensLarchFAQ]
[Wing87] [Wing90a] approaches to specification. From Eiffel we have used the idea that
assertions are written using Java’s expression syntax as much as possible, thereby avoiding
large amounts of special-purpose logical notations. JML also adapts the \old notation from
Eiffel, instead of the Larch style annotation of names with state functions. Currently JML
does not come with tools to execute preconditions to help debug programs, as in Eiffel. We
plan to eventually extend JML’s tools to support the testing of postconditions at run-time
as well.

However, Eiffel specifications, as written by Meyer, are typically not as complete as
model-based specifications written, for example, in Larch BISLs or VDM [Jones90]. For
example, Meyer partially specifies a remove (i.e., pop) method for stacks as requiring that
the stack not be empty, and ensuring that the stack value in the post-state has one fewer
items than in the pre-state (see p. 339 of [Meyer97]). However, the only characterization
of which item is removed is given informally as a comment. Nothing is said formally
that ensures that the other elements of the stack are unchanged. To allow more complete
specifications, we need ideas from model-based specification languages.

JML’s semantic differences from Eiffel (and its cousins Sather and Sather-K) allow one to
more easily write more complete specifications, following the ideas of model-based specifica-
tion languages. The most important of these is JML’s use of specification-only declarations.
These model declarations allow more abstract and exact specifications of behavior than is
typically done in Eiffel. For example, because one has a model of the abstract values of
stack objects, one can precisely state both which element is removed by pop and that the
other elements on the stack are unchanged. The use of model fields in JML thus allows one
to write specifications that are similar to the spirit of VDM or Larch BISLs.

A more minor difference from Eiffel is that in JML one can specify frame conditions,
using the assignable clause. Our interpretation of the assignable clause is very strict,
as even benevolent side effects are disallowed if the assignable clause is omitted [Leino95]
[Leino95a].

Another difference from Eiffel is that we have extended the syntax of Java expressions
with quantifiers and other constructs that are needed for logical expressiveness, but which
are not always executable. Finally, we ban side-effects and other problematic features of
code in assertions.

On the other hand, our experience with Larch/C++ [Leavens96b] [Leavens99] has taught
us to adapt the model-based approach in two ways, with the aim of making it more practical
and easy to learn. The first adaptation is again the use of specification-only model (or ghost)
variables. An object will thus have (in general) several such model fields, which are used
only for the purpose of describing, abstractly, the values of objects. This simplifies the use
of JML, as compared with most Larch BISLs, since specifiers (and their readers) hardly
ever need to know about algebraic style specification. It also makes designing a model for
a Java class or interface similar, in some respects, to designing an implementation data
structure in Java. We hope that this similarity will make the specification language easier
to understand.

Chapter 5: Related Work 13

The second adaptation is hiding of the details of mathematical modeling behind a facade
of Java classes. In the Larch approach to behavioral interface specification [Wing87], the
mathematical notation used in assertions is presented directly to the specifier. This allows
the same mathematical notation to be used in many different specification languages. How-
ever, it also means that the user of such a specification language has to learn a notation for
assertions that is different than their programming language’s notation for expressions. (A
preliminary study by Finney [Finney96] indicates that a large number of special-purpose,
graphic mathematical notations, such as those found in Z [Hayes93] [Spivey92] may make
such specifications hard to read, even for programmers trained in the notation.) In JML
we use a compromise approach, hiding these details behind Java classes. These classes
are pure, in the sense that they reflect the underlying mathematics, and hence do not use
side-effects (at least not in any observable way). Besides insulating the user of JML from
the details of the mathematical notation, this compromise approach also insulates the de-
sign of JML from the details of the mathematical logic used for JML’s semantics and for
theorem proving. We believe that the use of slightly extended Java notation for assertions
is appropriate, given that JML is used in detailed design, and thus will mostly be read and
written by persons familiar with Java.

Chapter 6: Future Work and Conclusions 14

6 Future Work and Conclusions

One area of future work for JML is concurrency. Our current plan is to use when clauses
that say when a method may proceed to execute, after it is called [Lerner91] [Sivaprasad95].
This permits the specification of when the caller is delayed to obtain a lock, for example.
While syntax for this exists in the JML parser, our exploration of this topic is still in an
early stage. We may also be able to expand history constraints to use temporal logic.

Another area for future work on JML is to synthesize the previous work of Wahls, Leav-
ens and Baker on the use of constraint logic programming to directly execute a significant
and practical subset of JML’s assertions [Wahls-Leavens-Baker98]. This prior work supports
the “construction” of post-state values to satisfy ensures clauses, including such clauses con-
taining quantified assertions. Successful integration of these assertion execution techniques
with JML would support automatic generation of Java class prototypes directly from their
JML specifications.

In conclusion, JML combines the best features of Eiffel and the Larch approaches to
specification. This combination, we believe, makes it more expressive than Eiffel, and more
practical than Larch style BISLs as a tool for recording detailed designs.

More information about JML can be found on the web at the following URL.
‘http://www.cs.iastate.edu/~leavens/JML.html’

Acknowledgments

Thanks to Rustan Leino and Peter Müller for many discussions about the semantics of
such specifications and verification issues relating to Java. For comments on JML we thank
Peter, Jianbing Chen, Anand Ganapathy, Sevtap Oltes, Gary Daugherty, Karl Hoech, Jim
Potts, and Tammy Scherbring. Thanks to Anand Ganapathy for his work on the type
checker used to check our specifications.

The work of Leavens and Ruby was supported in part by a grant from Rockwell Inter-
national Corporation and by the US NSF under grant CCR-9503168. The work of Leavens,
Baker, and Ruby is supported in part by the NSF grant CCR 9803843.

This paper is adapted from Haim Kilov, Bernhard Rumpe, and William Harvey (editors),
Behavioral Specifications for Businesses and Systems, chapter 12, pages 175-188. Copyright
c© Kluwer Academic Publishers, 1999. Used by permission.

About the Authors

The authors are all at the Department of Computer Science, Iowa State University, in
Ames, Iowa, 50011-1040 USA.

Gary T. Leavens is a professor. He received a Ph.D. in Computer Science from MIT
in 1989. His research focuses on formal methods in OO programming, and includes the
theory of abstract data types, specification, verification, as well as topics in programming
languages such as type theory and semantics. He has been involved in the design of the
specification language Larch/Smalltalk, and is a principal designer of both Larch/C++ and
JML. He is the author of the Larch FAQ.

Chapter 6: Future Work and Conclusions 15

Albert L. Baker is an associate professor. He received a Ph.D. in Computer Science from
The Ohio State University in 1979. His research focuses on specification languages, software
testing, prototyping from formal specifications and CASE tools. He has been involved in
the design of the specification language SPECS/C++ and is a principal designer of JML.

Clyde Ruby is a Ph.D. student. He has more than 15 years experience as an analyst,
designer, and implementer of software systems. His current research focuses on formal
methods in object-oriented programming, specification, and verification. He is working
with Leavens on Larch/C++ and JML.

Bibliography 16

Bibliography

[Arnold-Gosling98]
Arnold, K. and Gosling, J. The Java Programming Language. The Java Series.
Addison-Wesley, Reading, MA, second edition, 1998.

[Borgida-Mylopoulos-Reiter95]
Borgida, A., Mylopoulos, J., and Reiter, R. On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering, 21(10):785–798,
October 1995.

[Dhara-Leavens96]
Dhara, K. K. and Leavens, G. T. Forcing behavioral subtyping through spec-
ification inheritance. In Proceedings of the 18th International Conference on
Software Engineering, Berlin, Germany, pages 258–267. IEEE Computer Soci-
ety Press, March 1996. A corrected version is Iowa State University, Dept. of
Computer Science TR #95-20c.

[Finney96] Finney, K. Mathematical notation in formal specification: Too difficult for the
masses? IEEE Transactions on Software Engineering, 22(2):158–159, February
1996.

[Guttag-Horning93]
Guttag, J. V., Horning, J. J., Garland, S., Jones, K., Modet, A., and Wing,
J. Larch: Languages and Tools for Formal Specification. Springer-Verlag, New
York, NY, 1993.

[Gosling-Joy-Steele96]
Gosling, J., Joy, B., and Steele, G. The Java Language Specification. The Java
Series. Addison-Wesley, Reading, MA, 1996.

[Hoare72a]
Hoare, C. A. R. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972.

[Hayes93] Hayes, I., editor. Specification Case Studies. International Series in Computer
Science. Prentice-Hall, Inc., second edition, 1993.

[Jones90] Jones, C. B. Systematic Software Development Using VDM. International Series
in Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition,
1990.

[Kiczales-Lamping92]
Kiczales, G. and Lamping, J. Issues in the design and documentation of class
libraries. ACM SIGPLAN Notices, 27(10):435–451, October 1992. OOPSLA
’92 Proceedings, Andreas Paepcke (editor).

[Lerner91] Lerner, R. A. Specifying objects of concurrent systems. Ph.D. Thesis CMU-CS-
91-131, School of Computer Science, Carnegie Mellon University, May 1991.

[Leino95a] Leino, K. R. M. A myth in the modular specification of programs. Technical
Report KRML 63, Digital Equipment Corporation, Systems Research Center,
130 Lytton Avenue Palo Alto, CA 94301, November 1995. Obtain from the
author, at rustan@pa.dec.com.

Bibliography 17

[Leino95] Leino, K. R. M. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-
95-03.

[Leavens96b]
Leavens, G. T. An overview of Larch/C++: Behavioral specifications for C++
modules. In Kilov, H. and Harvey, W., editors, Specification of Behavioral
Semantics in Object-Oriented Information Modeling, chapter 8, pages 121–142.
Kluwer Academic Publishers, Boston, 1996. An extended version is TR #96-
01d, Department of Computer Science, Iowa State University, Ames, Iowa,
50011.

[LeavensLarchFAQ]
Leavens, G. T. Larch frequently asked questions. Version 1.110. Available in
‘http://www.cs.iastate.edu/~leavens/larch-faq.html’, May 2000.

[Leavens99]
Leavens, G. T. Larch/C++ Reference Manual. Version 5.41. Available in
‘ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz’ or on the World
Wide Web at the URL
‘http://www.cs.iastate.edu/~leavens/larchc++.html’, April 1999.

[Leavens-Baker99]
Leavens, G. T. and Baker, A. L. Enhancing the pre- and postcondition technique
for more expressive specifications. In Wing, J. M., Woodcock, J., and Davies,
J., editors, FM’99 — Formal Methods: World Congress on Formal Methods in
the Development of Computing Systems, Toulouse, France, September 1999,
Proceedings, volume 1709 of Lecture Notes in Computer Science, pages 1087–
1106. Springer-Verlag, 1999.

[Leavens-Baker-Ruby01]
Leavens, G. T., Baker, A. L., and Ruby, C. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06o,
Iowa State University, Department of Computer Science, May 2001.

[Lano-Haughton94]
Lano, K. and Haughton, H., editors. Object-Oriented Specification Case Stud-
ies. The Object-Oriented Series. Prentice Hall, New York, NY, 1994.

[Liskov-Wing94]
Liskov, B. and Wing, J. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

[Meyer92a]
Meyer, B. Applying “design by contract”. Computer, 25(10):40–51, October
1992.

[Meyer92b]
Meyer, B. Eiffel: The Language. Object-Oriented Series. Prentice Hall, New
York, NY, 1992.

Bibliography 18

[Morgan94]
Morgan, C. Programming from Specifications: Second Edition. Prentice Hall
International, Hempstead, UK, 1994.

[Meyer97] Meyer, B. Object-oriented Software Construction. Prentice Hall, New York,
NY, second edition, 1997.

[Ogden-etal94]
Ogden, W. F., Sitaraman, M., Weide, B. W., and Zweben, S. H. Part I: The
RESOLVE framework and discipline — a research synopsis. ACM SIGSOFT
Software Engineering Notes, 19(4):23–28, Oct 1994.

[Poetzsch-Heffter97]
Poetzsch-Heffter, A. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, January 1997.

[Spivey92] Spivey, J. M. The Z Notation: A Reference Manual. International Series in
Computer Science. Prentice-Hall, New York, NY, second edition, 1992.

[Sivaprasad95]
Sivaprasad, G. Larch/CORBA: Specifying the behavior of CORBA-IDL inter-
faces. Technical Report 95-27a, Department of Computer Science, Iowa State
University, Ames, Iowa, 50011, December 1995.

[Steyaert-etal96]
Steyaert, P., Lucas, C., Mens, K., and D’Hondt, T. Reuse contracts: Manag-
ing the evolution of reusable assets. In OOPSLA ’96 Conference on Object-
Oriented Programming Systems, Languages and Applications, pages 268–285.
ACM Press, October 1996. ACM SIGPLAN Notices, Volume 31, Number 10.

[Tan94] Tan, Y. M. Interface language for supporting programming styles. ACM SIG-
PLAN Notices, 29(8):74–83, August 1994. Proceedings of the Workshop on
Interface Definition Languages.

[Tan95] Tan, Y. M. Formal Specification Techniques for Engineering Modular C Pro-
grams, volume 1 of Kluwer International Series in Software Engineering. Kluwer
Academic Publishers, Boston, 1995.

[Wing83] Wing, J. M. A two-tiered approach to specifying programs. Technical Report
TR-299, Massachusetts Institute of Technology, Laboratory for Computer Sci-
ence, 1983.

[Wing87] Wing, J. M. Writing Larch interface language specifications. ACM Transactions
on Programming Languages and Systems, 9(1):1–24, January 1987.

[Wing90a] Wing, J. M. A specifier’s introduction to formal methods. Computer, 23(9):8–
24, September 1990.

[Wills94] Wills, A. Refinement in Fresco. In Lano and Houghton [Lano-Haughton94],
chapter 9, pages 184–201.

[Wahls-Leavens-Baker98]
Wahls, T., Leavens, G. T., and Baker, A. L. Executing formal specifications with
constraint programming. Technical Report 97-12a, Department of Computer

Bibliography 19

Science, Iowa State University, 226 Atanasoff Hall, Ames, Iowa 50011, August
1998. Available by anonymous ftp from ftp.cs.iastate.edu or by e-mail from
almanac@cs.iastate.edu.

