
_~ZS_ZG~X_m_G_SO~I_~A~OR ZASE OF__.ZXTZWSXO.
A~D CONIRACTION

David L. Parnas

Department of Computer Science
University of Ncrth Carolina at Chapel Hill

ABSTRAC~

Designing software to be extensinle and
easily contracted is discussed a s a
special came of design for change. A
number of ways that extension and
contraction proble m~ manifest t heasel yes
in current software are explained. Four
steps in the design of software that is
more flexible are t~hen discussed. The
most critical step is the desigu of a
soft wa re structure calle d the " useS"
relation. Some criteria for design
decisions are given and iliustrated using
a small example. It is shown that the
identification of min_imai subsets and
minimal extensions can lean to software
that can be tailored to the needs of a
broad variety of users.

I. ' IN TRODUCTION.

This paper is being written because the
following complaints aUout ~ftware
systems are so commpn:

(A) "We were behind schedule and wanted
to deliver an early release with only
<proper subset of intended capabilities>,
but found that that subset would not work
until everything worked."

{B) "We wanted to add <simple
capability>, but to do so would have meant
rewriting all or most of the current
c ode. "

(C) "We wanted to simplify and s~eed up
the system by re moving the <unneeded
capability>, but to take advantage of this
simplification w~ would have had to
rewrite major sections of the code."

(D) "Our SYSG£N was intendea to allow us
to tailor a system to our customers' needs
but it was not flexible enough to suit
US. "

After studying a number of such systems, I
have identified some simple concepts that

can help programmers to deign software so
that sub~ts and extens~ion are mo~e easily
obtained. The~ concepts are simple if
you think about software in the way
suggested by t.his limper. Programmers do
not commonly do so.

XI. SOFTWARE AS A FAMILY OF PROGRA85.

When we were first taught how to program,
we were given a specific problem and told
to write one program to do that job.
Later we compared our program to others,
considering suc~ issues as space ann time
utilization, but still assuming that we
were producing a single product. Even the
most recent literature on programming
methodology is written on that basis.
Dijkstra's "Discipline of Programming" [I]
uses p~edicate transformers to specAfy the
task to be performed by the ~rogram to be
written. The use of the definite article
implies that there is a unique prohle.m to
be solved and but one program to write.

Today, the software designea should be
aware that he is not designing a single
program but a family of programs. As
discussed in an earlier paper ~2], we
consider a set of ~rograms to he a p~oNr~
family i£ they have so much in common that
it pays to study their common aspects
before looking at the aspects that
differentiate them. This rather pragmatic
definition d~s not tell us what pays, but
it d~s explain the motivation for
designing program families. We want to
exploit the commonalities, share code, and
reduce maintenance costs.

Some of the ways that the members of a
program fami ly may differ are listed
below:

(I} They may run on different haraware
config ura tions.

(2) They may perform the same functAons
but differ in the format o~ the input and
output data .

264

(3) They may differ in certain data
structures or algorithms because of
differences in the available resources.

(q) The y may differ ~ some data
structures or algorithms because of
differences in the size of the input data
sets or the relative frequency of certain
events.

(5) Some users may require only a subset
of the servic~es or features that other
users need. These "less demanding" users
may demand that they not be forced to pay
for the resourc~s consumed b~ the unneeded
features.

Engineers are taught that they must try to
anticipate the changes that may be made,
and are shown how to achieve aesigns that
ca n ea si ly be a Ite re d when t hese
anticipated changes occur. For example,
an electrical engineer wall be adv~ed
that the whole world has not standardized
oD 60-cycle, 1|O-volt current. Television
designers are fully aware oi the differing
transmission conventions that exist in the
world. It is standard pra~ice to design
products that are easily c~anged in those
aspects. Unfortunately, there is no magic
techni ~ue for handling unan t~cipat ed
changes. The makers of con ve~tion al
watches have no difficult X altering a
watch that shows the day so that it
displays "NEE" instead of "W~D," but
would expect a long delay for redesign
were the world to swit~ to a ten day
week.

Softwa~ engineers have not ~en tra~ed
ix, this way. The usual programming
courses neither mention ~ae need to
anticipate changes nor do the X offer
technigues for designing programs in which
changes are easy. Because programs are
abstract mathematical objects, the
software engineers' tecnni~ues for
responding to anticipated c~anges are more
subtle and more difficult to grasp than
the technigues used by designers of
physical objects. Furthe=, we have beem
led astray by the other designers of
abstract objects- mathematicians who
state and prove theorems. When a
mathematician becomes aware of the need
for a set of closely related theore~s, he
responds by ~r oving a more general
theorem. For mathematicians, a more
general result is always superior to a
more specialized product. The eng~eering
a halo9 y to the mathematician's approach
would be to desd gn television sets
containing variable transformers and
tusers that are capable of detecting
several types of signals. Except for U.S.
armed forces stationed overseas, t~ere is
little market for such a product. Few of
us consider relocations sO likely that we
are willing to pay to have ~he generality

present in the product. My 9uess ~.~ that
t he market for calendar watches for a
variable length week is even smaller than
the market for the televis/on sets]ust
de~ribed.

In [2] I have treated the subject of the
design of program f~ilies rathe/
generally and in terms ot text in a
prog ra mining language. In this paper I
f~us on the fifth situation described
above; families of programs in which some
members are subsets of other family
members or several family m~bers share a
common subset° I discuss an earlier stage
of design, the stage when one identifi~
the major components of the system and
defines relations between those
components. We focus on this early stage
because the ~roblems de~ri1~ d in the
intzod uc ti on re sult f tom fail u~e to
carefully consider early design decisions.

IIX. HOW DOES THE LACK OF SUBSETS AND
EXTENSIONS MINIFEST ITSELF?

Although we often speak of programs that
are "not subsetable" or "not extensible,"
we must recognize that phrase as
inaccurate. It is always possible to
remove code from a program and have a
tunable result. Any software system can
be extended (TSO proves that) . The
pr~lem is that these subsets and
extensions are not the ~r~rams that we
would have designed if we had set out to
design just that product. Further, the
a mount of work needed t o o brain t he
product seems all out of proportion to the
nature of the change. The problems
e~ounter~d in trying to extend or shrink
systems fall into four cla~es.

A. Excessive information distribution.

A system may be hard to extend or contract
if too many programs were written assuming
that a given feature is present or not
present. This can be illustrated by an
old, rating system in which am earl i design
decision was that %Ae system would support
thDee conversational languages. There
were many ~ctions of the s~stem where
knowledge of this decision was used. For
example, error message tables had room for
three entries. An extensi(~ to allow four
languages would have re,u/red that a great
deal of code be rewritten. More
surprisingly, i% would have been difficult
to reduce the system t o one that
efficiently supported only two of the
language s. One could remove the third
language, but to regain the table space,
one would have had to rewrite the same
sections of code that would ~ rewritt~
to add a language.

265

B. A chain of data trans~ormin g
components.

Many programs are structured as a chain of
components, each receiving data from the
previous component, processing At (and
changing the format) , before sending the
data to the next program in the chain. If
one component in this chain is not needed,
that code is often hard to remove because
the output of its predecessor is not
compatible with the input re~luirements of
its successor. A program ~hat does
nothing but change the format must be
substituted. One illustra~ion wou~d be a
payroll program that assumeu unsorted
input. One of the components of the
system accepts the unsorted input and
produces output that is sorted by some
key. If the firm adopts an office
pr~edure that results in sorted input,
this phase of the processing is
unnecessary. To eliminate taat program,
one may ha ve to add a program that
transfers data from a file in the input
format to a file in the format appropriate
for the mext phase. It may be almost as
efficient to allow the original SORT
component to sort the sorted in~ut.

C. Components that perform more than one
function.

Another common error is to combine two
simple f unctions into one corn pon ent
because the functions seem ~oo simple to
separate. For example, one might be
tempted to combine synchronization with
message sending and acknowledgment in
building an o~e ra ti mg sxstem. The two
fu~tions seem closely related; one might
exact that for the sake of reliability
one should insist on a "handshake" with
each exchange of sychronization signals.
If one later encounters an application .in
which synchronization is needed very
frequently, one may find that there is no
simple way to strip the message sending
out of the synchronization routines.
Another example is the inclusi~ of run-
time type-checlting in the basic subroutine
call mechanism. In a ~plication s where
compile-time checking or verification
eliminates the need for the ~un-time type-
check, another subroutine call mech~ism
will ~ ~eeded. The irony of these
situations is that the "more powerful"
mechanism could have ~en built senarately
from, but usin£, s/mpler mechanisms.
se~ration would result in a s~stem in
which the subset function was ava/~able
for use where it suffic~nd.

D. L o o p s in the "uses" relation.

In many software design projects, the
decisions about what other component
pr~rams to use are left to individual

systems ~rog rammers. If a p~og~amm er
knows of a program in another module, a/Id
feels that it would be useful in his
prog ra m, he includes a call on that
program in his text. Programmers are
encouraged to use the work of other
programmers as much as possible because,
whe n each pr~ Ea miner writes his own
routines to ~e~form common functions, we
end u~ with a system that is much larger
than it need be.

Unfortunately, there are two sides to the
question of Fro9 ram usage. Unless some
restraint is exercised, one say end up
with a system in which nothin 9 works until
everything works. For example, while it
may seem wise to have an operating system
schedule[use the file system to store its
data { rather than use its own disk
routines) , the result will be that the
file system must be pre~nt and working
before any task scheduling is possible.
There are users for whom an operating
system subset without a file s~stem would
be useful. Even if one has no such users,
the subset would be useful dur/a g
development and testing.

IV. STEPS TORAHDS A BETTER 52ROCT~RE.

This section discusses fou~ parts of a
methodology that I ~lieve will help the
softwa~ engineer to build systems that do
not evidence the problems discussed above.

A. Requirements definition: 1denti£)in g
the subsets first.

One of the clearest morals in the earlier
discus~on about "design for change" as it
is taught in other areas of engineering ks
that one must anticipate changes before
one begins the design. At a recent
conference [3], many of the papers
exhorted the audience to spend more time
identifying the actual requirements before
starting on a desi9n. I dunmt want to
repeat such exhortations, but I do want to
point out that the identification of the
possible subsets is ~art of identifying
the requirements. Treating the easy
availability of oe rtaui n subsets as an
operational requirement is especially
important to government officials who
purchase software. Many officials de~spair
of placing strict controls on the
pr~ uction methods used by their
contractors because they are forbidden by
law to tell the contractor now to ~erform
his job. They may tell him what they
require, but not how to build it.
Fortunatel~, the availabilit X of subsets
may be const rued as an operation al
property of the software.

On the other hand, the identification of
the required subsets ks not a simple

266

matter of asking potential users what they
could 4o without. First, users tend to
overstate their reguirements. Second, the
answer will not characterize the set of
subsets that might be wanted in the
future. In my experience, identification
of the potentially desirable subset.s is a
demanding intellectual exercise in which
one first searches for the m_in~m__al - subset
that migh t conceivably perform a useful
service and then searches for a set of
minimal inc re sents to the system. Each
increment is small - sometimes so small
that it seems trivial. The emphasis on
mini~lity stems from our desire to avoid
components that perform more than one
function as discussed in section III. C.
identifying the minimal subset is
difficult because the minimal system is
not usually a program one that an ~one
would ask for. If we are going to build
the software family, the minimal subset is
useful, but it is not usually worth
building by itself. Similarly, the
maximum flexibility is obtained by looking
for the smallest possible increments in
capability; often these are small e/
increments than a user would think of.
Whether or not he would think of them
before system development, he ks like.ly to
want that flexibility later.

The search for a minimal subset and
minimal extensions can best be shown by an

example. One example of a minimal subset
is given in [4]. Another example will be
given later in this paper.

B. Information hiding: ~nterface and
sod ule definition.

In an earlier section we touchea upon the
difference between the mathematician's
concept of generality and an engineer's
apprc~ch to design flexibility. Where the
mathematician wants his product, a t h e o r e m
o r m e t h o d o f p r o o f , t o be a s g e n e r a l a s
possible, i.e applicable, without change,
in as many situations as possible,
engineer often must tailor aim product to
the situation actuall~ at aand. Lack of
generality is necessary to make the
~ro~ ram as efficient or inexpensive as
possible, if he must develop a family of
prod uc ts, he tries to isol ate t he
changeable parts in modules and to develop
an interface between the module and the
rest of the product that remains wa]id for
all versions. The crucial steps are:

a. Identification of the items that
are likely to change. These items
are termed "secrets."

b. Location of the specialized
components in separate modules.

c. Designing intermodule interfaces
that are insensitive to t h e

anticipated the changes. The
changeable aspects are termed the
"secrets" of the modules.

It is exactly this that the concept of
information hiding [5], encapsulation, or
a~straction [6] is intended to do fOE
software° Because software is an abstract
or mathematical product, the modules max
not have any easily recognized phxsical
identity. ~hey are not necessarily
separately compilable or coincident with
memory overlay units. The interface must
be general but the contents should not be.
Specialization is necessary for economy
and efficiency.

The concept of information hiding is very
general and is applicable in many of
software change situations- not just the
issue of subsets and extensions that we
address in this paper. The ideas have
also been extensively discussed in the
literature [5,6,7,8,9]. The special
implications for our problem are simply
that, as far as possible, even the
presence or absence of a component should
be hidden from other components. If one
pE W ram uses another directl y, the
presence of the second program cannot be
fully hidden from its user. ~owever,
there is ~ver any reason for a compon~t
to "know" how many other programs use it.
All data structures that reveal the
presence or number of cert4uin compon~ts
should be included in separate ~formation
hiding modules with abstract interfaces
[10]. Space and other considerations make
it impossible to discuss this concept
£urther in this paper; it will be
illustrated in the example. Readers for
whom this concept is new are aavised to
read some of the articles mentioned a~ve.

C. The virtual machine concept.

To avoid the ~r oblems t~at we have
described as "a chain of data transforming
components," it is necessary to stop
thinking of systems in terms o£ components
that correspond to steps in the
pr~e ssing. This wax of thin kin g dies
hard. It is almost certain that your
first introduction to programming was in
terms of a series d statements intended
to be executed in the order that they were
explained to you. We are goal oriented;
we know what we start with and what we
want to produce. It is natural to think
in terms of steps progressing towards that
g~l. ~t is the fact that we are
designing a family of systems that makes
this "natural" approach the wrong one.

The viewpoint that seems most appropriate
to designing software families is often
termed the virtual machine approach.
Rather than write programs that perform

267

the transformation from input data to
output data, we design software machine
exten~ons that mill be useful in writing
many such programs. Where our hardware
machine ~rovide s us with a set of
instructions that operate on a small set
of data types, the extended or virtual
machine will have additional data types as
well as "software instructions" that
operate on those data types. These added
features will be tailored to the class of
programs that we are building. While the
VM instructions are designed to be
generally useful, they can be left out of
a final product if the user's programs
don't use them° The programmer writing
programs Zor the virtual machine should
not need to distinguish between
i nstructi ons th at are im~lemen ted in
software and those that are hardware
implemented. To achieve a true virtual
machine, the hardware resources that are
used in implementing the extended
instruction set must be unavailable to the
user of the virtual machine. ~e has
traded these resources fo~ the new data
elements and instructions. An~ attempt to
use those resources again will invalidate
the concept of virtual machine and lead to
complications. Failure to provide for
isolation of resources is one o~ the
reasons for the failure or some attempts
to use macros to provide a virtual
machine. The macro user must De careful
not to use the resources used in the
macros.

There is no reason to accomplish the
transformation from the hardware machine
to a virtual machine with all of the
desired features in a single leap.
Instead we will use the machine at hand to
implement a few new instructions. At each
step ue take advantage o f the newly
introduced features. Such a step-by-step
approach turns a large problem into a set
of small ones and, as we will see later,
eases the problem of finding the
appropriate subsets. Each element in this
series of virtual machines is a useful
subset of the system.

D. Designing the "uses" st;ucture.

The concept of anabstract machine is an
intuitive way of thinking about design. A
precise description of the concept comes
through a discussion of the ~elation
"uses" [1 1 , 1 2] .

1. The relation "uses."

We consider a system to be divided into a
set of ~ograms t3at can be invoked either
by the normal flow of control mechanisms,
by an interrupt, or by an exception
handling mechanism. Each of these
prog rams is assumed to have a

specification that defines exactly the
effect that an invocation o f the program
should have.

We say of two programs A a n d B that A use__s
B if correct execution of B ma~ be
necessary for A to complete the task
described in its specification. That is,
A uses B if there exist situations in
which the correct functioning oz A depends
upon the a vai lability of a correct
implementation of B. Note that to decide
whether A _uses B or not, one must examine
b_ot_hh the i aple ment ation an_~d t he
specification of A.

The "u_~_s" relation and "invokes" very
of re n coincide, but _uses differs from
invokes in two ways:

(I) Certain invocations may not be
instances of "u_~_~s." If A0s
specification requires only that A
invoke B ~hen certain conditions
occur, then A has fulfilled its
specification when it has generated
a correct call to B. A is correct
even if B is incor~.ect or absent.
& proof o£ correctness of A need
only make assumptions about the way
to invoke B.

(2) A program A may use B even though
it ne ver in yoke s i t. The best
illustration of this is interrupt
handling. Most programs in a
computer system are onl 2 correct on
the assumption that the interrupt
handling routine will correctly
handle the interrupts (leave the
processor in an acceptable state).
Such programs use the interrupt
handling routines even though they
never call them. "~ses" can be
more precisely formulated as
"requires the ~resence o£ a correct
version of. "

systems that have achieve~ a certain
" e l e g a n c e " (e . g . , T . t t .E . i S] , Venus [6])
have done so by having parts of the system
"-u_.se, other I~arts in such a way that the
"user" prc~ rams were simplified. For
example, the transput stream mechanism in
To ~. E° uses the segmenting mechanism to
great advantage. In contrast, many large
and complex operating systems achieve
their size and comple~i ty by hav~g
"inde l~nde nt" parts. For example, there
are many systems in which "spooling,"
virtual memory management, and the file
system all perform their own backup store
operations. Code to perform these
functions is present in each of the
components. Whenever such components must
share a single device, complex interfaces
exist.

268

The disadvantage of unrestrained "usage"
o£ each others facilities is that the
system parts become highly interdependent.
Often there are no subsets of the system
that can be used before the whole system
is comple re. In practice, some
duplication of effort seems preferable to
a system in which nothing runs unless
everything run~

2. The uses hierarchy.

By restricting the relation "uses" so that
its graph is loop free we can retain the
primary advantages of having system parts
"~se" each other while eliminating the
problems. In that case it is possible to
assign the programs to the levels of a
hierarchy b~ the following rules-

2.

Level 0 is the set of all programs
that u_se_ no other program.
Level i is the set of all pEog£ams
that u~ at least one program on
level i-I and no ~rog~am at a level
higher than i-l.

If such a hierarchical ordering exists,
then each level offers a testable and
usable subset of the system. In fact, one
can get additional subsets by including
only parts of a level. This propert 2 is
very valuable for the construction of any
software system and is vital for
developing a broad family oI systems.

The design of the "uses" hierarchy should
be one of the major milestones in a design
effort. The division of the s~stem into
independently callable subprograms has to
go on in parallel with the decisions about
uses, because they influence each otaero

3 . The criteria to be used in allowing
one program to use another.

We propose to allow A "use_~' B when all of
the followin 9 conditions hold:

(a) A is essentially simplez because
it uses B.

(b) S is not substantially more
complex because it is not allowed
to use A.

(c) There is a useful subset
containing E and not needing A.

(d) There is no conceivably useful
subset contalsing A but not ~.

During the process of designing the "Uses"
relation, we often find ourselves in a
situation where two programs could
obviously benefit from using each other
and the conditions above cannot be
satisfied. In such situations, we resolve

the apparent con£1icts by a technique that
we call "sandwiching." One o£ the
programs is "sliced" into two parts in a
way that allows the programs to "use" each
other and still satisfy the above
conditions. If we find ourselYes in a
position where A would benefit ~rom using
B, but B can also benefit from using A, we
may split s into two programs: B| and B2.
We then allow A to use B2 and BI to use A.
The result would appear to be a sandwich
with B as the bread and A as the filling.
Often, we then go on to split A. Me start
with a few levels and end up with many.

The most frequent instances of splitting
and sandwiching case because initially we
weD~ assuming that a "level" would be a
"module" in the sense of IV. B. We will
discuss this in the final part of this
paper.

4. Use of the word "convenience."

It will trouble some readers that it is
usual to use the word "convenience" to
describe a reason for introducing a
certain facility at a given level of the
hierarchy. A more substantial basis would
seem mode scientific.

As discussed in [11] and [13], we must
assume that the hardware itself is capable
of performing all necessary functions. As
one goes higher in the levels, one can
lose capabilities (as resouces are
consumed) - not gain them. On the other
hand, at the higher levels the new
functions can be implemented with simpler
programs because of the additional
programs that can be used. We speak of
"convenience" to make it clear that one
could implement any functions on a lower
level, b u t the availability oZ the
additional programs at the higher level is
useful. For each function we give the
lowest level at which the features that
are useful for implementing that function
(with the stated restrictions) , are
available. In each case, we see no
functions available at the next higher
level that would be use£ul for
implementing the functions as described.
Lf we implemented the program one level
lower we would have to duplicate programs
that become available at that level.

V. EXAMPLE: AN ADDRESS PROCESSING
SOBSXSTEM

As an example of designing for
extensibility and subsets, we consider a
set of programs to read in, store, and
w rite out lists of addresses. This
example has also been used, to illustrate
a different point, in [10] and has been
used in several classroom experiments to
demonstrate module interchangeability.

260

A. _o._~_~asi_c_!s~s.mations_..__~_e-

I. The information items discussed in
F_~ure 1 will be the items to be
proc~ ssed blf all application
programs.

2. The input formats of the addresses
are subject to change.

3. The output £ormats oz ~e addresses
are subject to change.

4. Some systems will use a sinsle
fixed format for input and output.
Other systems will need the ability
to choose from several of mtput or
output formats at run-time. Some
systems will ~ required Jm which
the user can specify the format
using an address format definltion
language.

5. The representation o~ addresses in
main storage will vary ~om system
to system.

6. In most systems, only a subset of
the total set o~ addresses stored
in the system need be in ma/n
storage at any one time. The
number of addresses needed may vary
from system to system ann, in some
systems the num~r o~ addresses to
be kept in main memory may vary at
run-time.

The following items of information will
be found in the addresses to be processed
and constitute the only items of relevance
to the application programs:

• Last name
• Given names (first name and possible

middle names)
• Organization (Connnand or Activity)
• Internal identifier (Branch or Code)
• Street address or P.O. box
• City or nmil unit identifier
-State
• Zip code
-Title
• Branch of se~-~ice if military
• GS grade if civil se~ice

Each of the above will be strings of
characters in the standard ~uNSI alphabet,
and each of the above nmy be empty or blank.

FIGURE l

B. Ee___P z oo~o_se___!th_s___Le~_ o wi___an H___D_D Ss i_sn
Decis~_s:

I . The input and output programs w i l l
be tab le driven; the table w i l l
spec i f y the fo rmat to be used fo r

2.

4.

input and output. Tae contents and
organization of these format tables
will be the 'secrets' oZ the i~put
and output modules.

The representation of aadresses in
core will be the 'secret' of an
Address Storage Nodule ~ASM). The
implementation ch~en for this
module will M such that the
operations ~ changin s a portion of
an address will be relatively
inexpen~ve, compares to maKin 9 the
address table larger or smaller.

When the number of a~resses to be
stored exceeds the capacity of an
ASM, prc~rams will use an Address
File Module (AFM). An AFM ca~ be
made upward compati~e w~th an ASM;
programs that were written to use
ASA's could operate using an AFM in
the sa~ way. The AFa provides
additional commands to allow more
efficient usage by p~ogr~s that do
not assume the random access
prope rties of an AS~. These
programs new descri~ ~low.

Our implementaton of an AFM would
u~ an ASM as a submodule as ~ell
as another submodule that we will
call Block File Module &BFM). The
BFM stores blocks of data that are
sufficiently large to represent a/l
address, but the BFM is not
s~cializ~d to the handling of
addres~s. An ASa that is used
within an AFM may be said to have
two interfaces. In the "normal
interface" that an AS~ presents to
an outside user, an address is a
~t of fields and ~he access
functions hide or abstL'act from the
repre~ntation. Figure 2 is a list
of the access programs that
comprise this interface. In the
second interface, the ASM deals
with blocks of contiguous storage
and abstracts from the contents.
There are commands for the AS~ to
input and output 'addresses' but
the o~rands are storage blocks
who~ inter ~retation as addresses
is known only within the ASa. The
AFM makes assumptions about the
a ss~ia ti on ~t ween bl oc~ks an d
add~ sses but not about the way
that an address' s components are
repre~nted as blocks. ~'he BFM /s
completely independent of ~he fact
that the blocks contain address
information. The BFM might, in
fact, be a manufacturer supplied
access method.

270

ACCESS FITNCTIONS WOR "NORMAL INTEI~FACE"

MODULE: ASM

NAMF OF

ACCESS PI~O~P#M* I~mUT PAR#"ETE~S

*ADOTIT: asm X integer X

ADDGN: asm X integer X

AOD L N: asm X integer X

ADDSERV: asm X integer X

ADDBORC: a=m X integer X

ADDCORA: asm X integer X

ADDSORP: aim X integer X

ADDCITY: asm X integer X

ADDSTATE: asm X integer X

ADDZIP: asm X integer X

ADDGSL: asm X integer X

$ETN UM: asm X integer

FETTIT: asm X integer --

FETGN: esm X integer

FETGN: asrn X integer

FETLN: asm X integer

F E TSE R V: asm X integer

F ETBO R C: asm X intege r

FETCORA: asm X integer - -

FETSORP: asm X integer

FETCITY: asm X integer - -

F ETSTAT E: asm X integer

FETZIP: asm X integer

FETGSL: asm X integer

FETNUM: esm ~ integer

string

Itrlng

string

string

string

string

string

string

string

string

string

lsm

string

string

string

string

string

string

string

str~ng

strlr~J

string

string

string

OUTPUT

~' 15111 •

"~ Bm •

"~ l | m "

-~ ISm

-4 85m

- ~ a s m *

"+ asm •

~IGURE 2 - SYNTAX OF ASM FUNCTIONS

*These are abreviatio~s: ADDTIT = ADD TITI,F; ADDGN = ADD ~IVEN N~HE, etc.

271

C.

I. nodule:

INAD:

C~o m~one___~n t_E~&~/rams.

Address Input

Reads in an address that is
assumed to be in a format
specified by a format table
and calls AS~ or AYM
functions to store it.

INFSL : Selects a format from an
existing set of format
tables. The selected
format is the one that will
be used by INAD° There is
a lways a fo~aat selected.

INFCR: Adds a new format to the
tables used Oy INFSL. The
for mat is specified in a
' format i anguage. '
Selection is not changed
(i.e., TNAD still uses the
same format table) .

INTASEXT: Adds a blank table to the
set of input format tables.

INTASCHG: Rewrites a table in the
input format tables using a
descri pti on in a form at
language. Selection is not
changed.

IN FDEL : Deletes a table from the
set of format tables. The
selected format cannot be
de feted.

INADSEL: R~ads in an address using
one of a set of formats.
Choice is specified by an
integer parameter.

INADFO: Reads in an address in a
format specified as one of
its parameters (a string in
the format definition
language} . The ~ormat is
selected and added to the
tables and subseluent
addresses could be read in
using INAD.

Address Output

Prints an address in a
format specified by a
f o r mat table. The
information to be printed
is assumed to be in an ASM
and identified by its
position in an ASM.

OUTFSL: Selects a format table from
an eKisting set o£ output
f ormat ta~les. The
selected FGaMAT is the one
that will be used by OUTAD.

2. Module:

OUTAD:

OUTTABEXT:

OUTTABCHG:

Adds a "blank" table to the
set of output format
tables.

Rewrites the contents of a
f or mat table using
information in a format
language.

OUTFCR: Adds a new format to the
set of formats that can be
selected by OUTFSL in a
f or mat description
language.

OUT ~D EL : Deletes a table from the
set of FORMAT tables that
can be selectea by OUTFSL.

OUTADSEL: Prints out an address using
one of a set of formats.

OUTADFO: Prints out an address in a
format specified in a
format definition language
string, which is one oZ the
actual parameters. The
format is added to the
tables and selected.

3 . Module: Address StoraNe tASa)

FET (Component Name} :
This is a set oZ functions
used to read inform ation
from an address store.
Returns a string as a
value. See F~gu~e 2.

ADD (Component Name):
This is a set of functions
used to write information
in an address store. Each
takes a string and an
integer as parameters. The
integer specifies an
address within zae ASM.
See Figure 2.

OBLOCK: Takes an integer parameter,
returns a s~oraNe block as
a value.

ISLOCK: Accepts a storage block and
integer as ~arameters. Its
effect is to change the
contents o~ an address
store- whica is reflected
by a change in the values
of the FET l~ogramso

AS MEXT : Extends an a~dress store by
a p p e n d i n g a n e w a d d r e s s
with empty components at
the end oz the address
store.

272

AS MS,R: "Shrinks" the address
s tore.

AS MCR: Creates a new address
store. Tae parameter
s~ecifies the number of
components. All components
are initiall£ empty.

AS~DEL: Deletes an exAstin 9 address
store.

~. Module: Block File Module

t~L~' ~T : Accepts an integer as a
parameter and returns a
"block."

BLSTO: Accepts a Olock and an
integer ann stores the
b lock.

B F~T : Extends BfM by adding
additional olocks to its
capacity.

8FSHR: Reduces the size o~ the BYM
b~ removing some blocks.

BFMCR: Creates a f~les of blocks.

BF~DEL: Deletes an existing file of
b lock s.

5. Module: Address File Module

This modules includes implementations of
all of the AS~ functions except OBLOCK and
£BLOCK. To avoid confusion in the diagram
showing the uses hierarchy we have changed
the names to:

AFMADD(Component Name} defined as in
Fig ure 2

AFZFET(Com~onent Marne) defined as in
Fig ure I

AFMEXT defined as in BF~ above
AMFSBB defined as in BF~ above
AFMCR defined as in BFM aooYe
AFMDEL defined as in B~i~ above

D. Uses Relation

Figure 3 shows the us_~e_s r e l a t i o n between
the component programs. It is important
to note that we are now ~iscuss~ 9 the
implementation of those programs, not just
their specification. The u~e.~s relation is
characterized by the fact that there are a
large number of relatively sim~le, sin~l_e
~u~p~q_se_ frograms on the lowest level. The
upper level ~rograms are implemented by
means of these lower level programs so
that they too are quite simple. This uses
~e/ation diagram characterizes the set of
possible sub se ks.

!

I
i

I

H

r ~

u J

L;_

273

E. Disc ussi on

To pick a subset, one iden~fies the set
of up~r level ~r ograms that the user
needs and includes only those programs
that thos~ programs use (directly or
indirectly). For example, a user who uses
addresses in a single format does not need
the component frograms that interpret
ormat description languages. Systems

that work with a small set of addresses
can be built without any BFM components.
A program that works as a ~aery system and
never prints out a complete addi'ess would
not seed any Address Output com~onemts.

The syst£m is also easily extended, f'or
example, one could add a capability to
read in addresses with sel z- defining
files. If the first recor~ on a file was
a descril~-tion of the format ill something
eiuiva~nt to the format description
language, one could write a progr~ that
would be able to read in that record, use
INTABCHG to build a new format taOle, and
then read in t/~e addresses. PLograms that
do things with addresses {such as print
out "~rsonalized" form letters) cam also
be added using these programs and
selecting only those ca~abilit ies that
they actually need.

One other observation that can be made is
that the upper level programs can be used
to "generate,' lower level vers/ons. For
example, the format descri£tion i~guages
can. be used to generate the tables used
for the fixed format versions. The~e is
no need tot a separate SYSGEN program.

We will elaborate on this observation in
the conclusion.

X. SOME REMARKS ON OPhRATING
SYSTEMS: WHY GENERALS ARE SUP BRIOR TO
CO LO ~ E LS

An earlier report [ll] discusses the
design of a "uses,' aierarch X for operating
systems. Although there have been some
refinements to the proposals of that
report, its ba~c contents are consistent
with the present proposals. This section
com~res the ap~r bach ouzlined J~ this
pa~er and the "kernel" approach or
"nuc le us" ap~r bach to OS design
[|8,19,20]. It is temp~ng to say that
the suggestions in this paper do not
conflict with the "kernel" approach.
These proposals can be viewed as a
refinement of the nucleus approach. The
first few levels of our system could be
labeled "kernel," and one could conclude
that we are j us, discussing a ~in e
structure within the kernel.

To yie/~ to ~at temptation would be to
ignore an es~ntial difference between the

approaches suggested in this paper and the
kernel approach. The system keLneis kl, own
to me ar£ such that scme desirable subsets
cannot h~ obtai~d without ma]oL" surgery.
It was assumed that the nucleus must De in
every system family member. In the ~C4000
system the inability ~o separate
sy~hronization from message passang has
led some u~rs to bypass the Kernel to
perform teletype handling ~unctions. la
Hydra as originally ~roposed [19], "type
checking" was so intrinsic to the call
mechanism that it appeared impossible to
disable it when it was not needed or
aff bramble.*

Drawing a line between "kernel" an~ the
rest of the system, and p uttin g
"es~ ntial" services of "critical
~rograms" in the nucleus yields a system
in which kernel features cannot be removed
and certain extensions a~e impractical.
Looking for a n/nima ! subset and a set of
minimal independent incremental function
leads to a system in which one can trim
away unneeded features, i know of n o
£eature that is always needed. When we
say that two functions are ~most ~iways
used t~e the r, we should remember that
"almost" is a euphemism for "not."

XT. SUMMATION

This ~afer describes an approach to
software intended to result in systems
that can be tailored to fit the needs of a
br~d variety of users. ~he points most
worthy of emphasis are:

I . Th_e_Re.~uirements includ~ Subsets an d
Extensions.

It is essential to recognize the
identification of useable subsets as part
of the pre~minaries to soztware design.
Flexibility cannot ~ an drier,hough,.
Subsetability is needed, not just to meet
a variety of customers' needs, but to
provide a fail-soft way of handling
sched u/~ slippage.

2. Advan taqe s of the. Vi_rtua!_ Mac~ne
_A~a_c~.

Designing software as a set of virtual
machines has deflate advantages over the
conventional (flow chart) approach to
system design. The virtual machine
"instr,,ions" provide facilities that are
useful Zor purposes beyond those
brig iaally conceived. These instructions
can easily be omitted from a system if

*Accurate reports on the current status
and ~erformance of that s?stem are not
available to me.

274

they are not needed. Remove a major box
from a flow chart and there is often a
need to "fill the hole" with conversion
pr og ra ms.

3 . _on____th_e___ Di_~f ~_ere~ce__ s e~_~een__ s_~_~ ~a_~_Se
~_.e_ ra ti t_x_an~ s__o~_ ~__~are_S_ ~_!e__xA ~il i_~_X.

Software can be considered "general" if it
can be used, without change, in a variety
of situations. Software can be considered
flexible, if it is easiIy_g_hhan~e_~ to be
used in a variety of situations. It
appears unavoidable that there is a run-
time cost to be paid fo~ general it y.
Clever designers can achieve flexibility
without significant run-tAme cost, but
there is a design-time cost. One should
incur the design-time cost only i£ one
expects to recover it when changes are
made.

Some organizations may choose to pay the
run-time cost for generality. They build
ge~ral software rather than flexible
software because of the mainten~ ce
problems associated with maintaining
several different versions. Factors
influencing this decision include {a} the
availability of extra ccmputer resources,
(b) the facilities for program change and
~inte na ace a vai lable at each
installation, and (c) the extent to which
design tech ni~ues ease the task of
applying the same change to many versions
of a program.

No one can tell a designer how much
flexibility and generality should be built
into a product, but the decis~ion should be
a conseious one. Often, it just happens.

4. On the.di s tinctiRn b_etet w_e_ee_e.~nen__mo d ul_es,
s,b~_oS_za_ms_L_a_ n_~d__leJ~e!_s.

Several systems and a~ least one
dissertation [lq,15,16, 17] have, i.l my
o~inion, blurred the distinction between
modules, subprograms and levels.
Conventional programming techniques
consider a subroutine or other callable
program to be a module. If one wants the
modules to include all prcgr~s that must
be designed togei/ler and changed together,
then, as ou~ example illustrates, one will
usually include many small subprograms in
a single module. It doe~'t matter what
word we use; the point is that the unit of
change is not a single call able
subprogram.

in several systems, modules and levels
have coincided [Iq,15]. This had led to
the phrase "level of abstraction." ~ach
of the modules in the example abstract
from some detail that is assumed likely to
change. However, there is no
correspondence between modules and levels.
Further, I have not £oun~ a relation,

"more abstract than," that would allow me
to define an abstraction hierarchy [12]o
Although I am myself guilty Of using it,
in most cases the phrase "levels of
abstraction" is an abuse of language.

Janson has suggested that a design such as
this one (or the one discussed in [11])
contain "s~t modules" that can represent
a b r e a c h of secu rit~ principles.
Obviously an error in any program in one
of our modules can violate the integrity
of that module. All module programs that
will be included in a given subset must be
considered in proving the correctness of
that module. However, I see no way that
allowing the component programs to be on
different levels of a "use~' hierarchy
makes this process more difficult or makes
the system less secure. The boundaries of
our modules are ~uite firm ~d clearly
identified.

The essential difference between this
paper and other discussions of
hierarchically structured designs is the
emphasis on subsets and extensions. My
search for a criterium to be used in
designing the uses hierarchy has convinced
me that if one d~s not c~ire about the
existence of sub~ts, it doesn't really
matter what hierarch X one uses. Any
design can ~ bent until it works, it is
only in the ease of decomposition that
they di/fe r.

5. On A v__oidi nS_) u)l_icat io__n.

some earlier work [21] has suggested that
one need s to h ave d upli care or n ear
duplicate mo~ ules i n a bier ar chicall y
structured syste m- For example, they
suggest t~at ode n~ds one iaplemeutation
of priests to give a fixed number of
processes at a low level mud another to
~rovide for a varying num~r of processes
at a user's level. Similar ideas have
appeared elsewhere. Mere suc~h duplication
to be necessary, it would be a sound
argument against the use o£ "structured"
approaches. One can avoid such
duplication if o~ allows the programs
that vary the size of a data structure to
be on a higher level than the other
pro9 ra ms that operate on that data
structure. For example, in a~ operating
system, the programs to create and delete
pr~esses need not be on the same level as
the more frequently used scheduling
o~e rations. In designing software, I
rega rd the need to per £orm sire il ar
functions in two programs as ~ indication
of a fundamental error in my thinking.

6. _De_s_ii~_ni_n~_f_~r Subsets_.~and _~_~tensions
can ~educe the Need for Support Software.

we have already mentioned that t~is design
approach can eliminate the need for

275

sepa rate SXSGE N programs, We can also
eliminate the need for s_.~_c_ia ! purpose
compilers. The price of the convenience
features offered by such languages is
often a compiler and run-time package
distinctly larger than the systeJa being
built. In our approach, each level
provides a language extention available to
the prGgrammers of the next level. We
never build a compiler; we just build our
system, but we get convenleno~ features
anyway.

7. EKte nsion at R_un-~ime Vs. Extension
D u~_~_S_,__S ~_E~ ~.

At a later stage in the design we will
have to choose data structures and take
the difference between run-time extension
and S~SGEN extension into consideration.
Certain data structures are more easily
accessed but harder to e~ztena wh/le the
program is running: others are easily
extended but at the expense of a higher
access cost. These differences do not
affect our early design decisions because
they are hidden in modules.

8. On the ~alne of a model.

My work on this example and simila~ ones
ha S gone much faster l~cause ~ have
learned to exploit a pattern that Z first
noticed in the design diz~:ussed in [11].
Low level o~erations assume the existence
of a fixed data structure of some type.
The operations on the next level allow the
swapping of a data element with others
from a fixed set of similar elements. The
high level programs allow the creation ~und
deletion of such data elements. This
pattern appears several times ~n Mth
designs. Although I have not designed
your system for you, i believe that yo~
can take advantage of a similar pattern.
If so, this pai~r has served its purpose.

AC KNOW IEDG ME NTS

The ideas presented in this paper have
been develofed over a lengthy period and
with the cooperation and help of many
collaborators. ~he earliest work was
supported by N¥ Phili ~s Computer
industrie, A~eldoorn, The Netherlands, amd
£ am grateful to numerous Philips
employees for thGught provoking comments
and questions. William Price's
collaboration and NSf support were
invaluable at Carnegie-Mellow University.
The support of the German Federal Ministry
for Research and ~echnology (BMFT} and the
help of ~. 8artussek, G. Haundzel, and
H. Wuerges at the Technische ~ochschule
Darmstadt led to substantial imrrovements°
Kathryn Heninger, David Weiss, and John
Shore at the Naval Research La~JEator y
helped me to understand the application of

the concepts in areas other than operating
systems. Barbara Trombka and John Guttag
both helped in the design of pilots of the
address process system. Discussions with
P. J. Courtois have helped me to better
understand the relation between software
structure and run-time characteristics of
computer systems. Dr. Edward Britton,
~r. H. Rettenmaier, Br. Laslo Be.lady,
Dr. Donald Stanat, G. Frank, and
Dr. William Wright made many helpful
suggestions about an earlier draft of this
paper. If you find portions of this paper
helpful, these people deserve your thanks.

RE ~ER ENC ES

[]] Dijkstra, E.W. * Dis_cia!ine____of
Proi~amain ~. Prentioe-Hall, 1976.

[2] Paruas,D.L. "On the Design and
Development of Program Families." I E~E
Transactions on Software En qineer/a g,
March 1976.

[3] 2nd International Conference on
Software Engineering, 13-15 Octobe~r 1976;
S pecia I issue of IEEE Transactions on
Softwa~.Knqineerin~, ~cember t 9 7 b .

[~] Parnas, D.L., Handzel, G., and
H. Wuerges. "Design and Specification of
the Minimal Subset of an Operating System
Family." Presented at 2nd International
Conference on Software Engineering, |3-15
October 1976; published in special issue
of ZEEE Transactions on Software
E_nqineerin~, December 1 9 7 6 .

[5] Pumas, D.L. "On the Criteria to be
Used in Decomposing Systems into Modules."
C__omm._ AC._.~M, Decem~r 1972.

[6] Linden, T.A. "The Us~ of Abstract
Data Ty[es to Simplify Program
Modifications." Proceedings o£ Conference
on Data: Abstraction, Definition and
Structure, March 22-2~, 1976; published in
ACM S_IGP_LAN N_o_tice_s, Vol. Ii, 1976 Special
Issue.

[7] Parnas,D.L. "A Tec~nilue for
Software Module Specification with
Examples." Comm. ACM, May 1972.

8] Pumas,
Distribution
Methodology."

D.L. "I n formation
Aspects of Des ign

[9] Pumas, D.L. "The Use of Precise
Specifications in the Development of
s of t wa re. " P_~oc_L__~!_1 p__ c on~ces_sL__j_gl2,
North Holland Publishing Company.

276

[10] Parnas, D.L. "Use o f Abstract
Interfaces in the Development o~ Software
for Embedded Computer Systems." I~RL
~ e p o r t 8 0 4 7 , ~ a v a l R e s e a r c h n a b o z a t o r y ,
W a s h i n g t o n , B . C . , J u n e 1 9 7 7 .

[|I] Parnas, D.L. "Some Hypotheses About
the 'Uses' Hierarchy for Operating
Systems. " Technical Report, ~echnische
H ochschule Darmstadt, Darmstadt, ~est
Germany, March 1976.

[12] Pa rnas, D.L. "On a
' Buzzword' : Hierarchical Structure."
P r oc. _/Fl_P__qo_n~r_es s~_ 197_4, ~ ortn aol I an d
Publishing Company, 1974.

[I_]] Parnas, D.L. and D.L. Siewlore~.
',Use of the Concept of Transparency in the
Design of Hierarchicall~ Structur ed
Systems." CO@_m.__AC~_,.__]8 I_7), July 1975.

[1~,] Dijkstra, E.W. "The Structure of
the "THE"-Moltiprogramming System." CA CMM,
|1, 5 {~ay 1968), ~p. 341-340.

[15] iiskov, E. "The Design of the V e n u s
O~erating System. CACM, 15,, 3 (March
1972), pp. 144-149°

[16] Janson, P.A. "Using Type Extension
to Organize Virtual Memo=y zechanisms°"
M[T-LCS-TR-167, Lab. for Comptr. Sci.,
M.I.T., Cambridge, Mass., September 1976.

[17] Janson, P.A. "Using Type-Extension
to Organize Virtual ~'1 emote y Mechanisms."
Research Report BZ 858 {#2~909) 8/31/77,
IBM Zurich Research Laboratory,
Switzerland.

[18] Brinch-Hansen, P. "The nucleus o f
the Multiprogramming System.,, _CA CM_, 13, 4
(April 1970), pp. 238-2~I, 250.

[19] Wulf, W., Cohen, E., Jones, A.,
Lewin, R., Pierson, C., and ¥ . Pollack.
"HYDRA: The KeL nel of a M ultipro cessor
O~era ting System. " CA C@, 17, 6 (June
1974), p~. 337-345.

[20] Po~ek, G.J. and C.S. Kline. "The
Design o£ a Verified Protection System."
P~oc. Intl. WorksJ~op on Prot. in
O~er. Syst., I~IA, pp. 1 18~-196.

[21] Saxena, A.H. and T.~. bredt. "A
Structured Specification of a Hierarchical
Operating System. " P r ocee~s__~o f the
1975 International Conference on Reliab~
Software.

277

