J(i)azzing up Java Collections

Josh Baratz

May 22, 2002

1 Abstract

This paper explores the effects of Units and Mixins when applied to core
Java utilities. It gives an analysis of the changes necessary, and benefits
from implementing the collections api using a framework of Jiazzi. Attention
is paid to the affects of Units on subclass based polymorphism, static type
checking, and module interface and name dependency.

2 Background

While looking around for a good problem with which to play around with
Jiazzi, it was suggested that I look at Java’s collection API. In the tradition
of research everywhere, I blindly dove in, hoping to find something interesting
which I could explore further.

The normal candidates for program revision weren’t available - Bloch
clearly put a lot of thought into his design of the API. The normal tricks
of reducing dependency through the use of interfaces was already applied.
There were a few areas however, where Jiazzi is able to bring about im-
provements over the Java implementation. I focused on bringing name de-
pendencies from the java source file to the unit file, a standard Jiazzi trick.
In addition, I looked at possible improvements that could be made on the
collections polymorphism. Java implements subtype polymorphism, and in
theory, Jiazzi allows parametric polymorphism.

3 Summary and Evaluation

To see what was possible with Jiazzi, I took a subset of the collections api
and pared it down to a size that readily allowed proof of concept program-
ming, yet wasn’t so trivial as to make it completely different from a real
implementation. I then put together a test framework that allowed me to
see what effect Jiazzi has on actually code.

As per my previous experience, the java source code swapped name de-
pendencies for interface dependencies, and the name dependence moved to
the linking compound. More interesting was the effect on polymorphism. By
using the Jiazzi constructs of lexemes and generics, I was able to implement
a type of parametric polymorphism. The endless type casts when using the
collections api was always a source of frustration, and replacing that by in-
troducing one small module is well worth it for me. There are times when
subtype polymorphism may be useful (mostly for supporting legacy code
IMHO), and the way Jiazzi introduces parameters makes it possible to bind
Object as the parameter - turning the class back to subtype polymorphic.

4 Lessons Learned

I was pleasantly surprised by this experience - I thought I was going to learn
about modules and dependencies, but instead gained a better insight into
methods of polymorphism. The complicated nature of the work gave me a
better appreciation for what Jiazzi is capable of, and a better understanding
of separate compilation and linking. It also reminded me just how painful
working with a research programming tool can be.

5 Appendix A: MDD
6 Appendix B: Code

jwb.finalprog.unit

compound jwb.finalprog {
export main: program;

Ao

local

© 00 N O ;A W N -

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

objects: obj.impl ,
1main : main,
lobjc: objc,
lobj2c: obj2c;

link package

objects@basicimpl to *Qtestobjs,
objects@basicimpl to objects@testobjects,
lobjc@outc to lobjc@container,
lobjc@outc to lmain@containeri,
lobj2c@outc to lobj2c@container,
lobj2c@outc to lmain@container?2,
lmain@out to *@main;

}
Main.java
package out;

import java.io.*;
public class Main extends java.lang.Object {

public static void main(java.lang.String[] args) {

containerl.UnarySet obj_1_set = new containerl.UnarySet();
testobjs.0bjectl objl = new testobjs.0bject1();
container2.UnarySet obj_2_set = new container2.UnarySet();
testobjs.0bject2 obj2 = new testobjs.0Object2();

obj_1_set.add(obj1);
obj_2_set.add(obj2);

testobjs.0bjectl retobjl = obj_1_set.get();
testobjs.0bject2 retobj2 = obj_2_set.get();

System.out.println("call returned something with value:, " + retobjl.getName());
System.out.println("call returned something with value: " + retobj2.getString());

27

© 0 N O oA W N -

e i = =
=W N = O

-
© © 0 N O oA W N e Dt A W N

=
N

main.unit

atom main {

import containerl: objcontainer;

import container2: obj2container;

import testobjs: testobjs;

export out: program;

bind package
containerl to containerl@container,
container2 to container2@container,
testobjs to *Qtestobjs;

program.sig
signature program = {

class Main extends Object {
public static void main(String args []1);
X
}

objc.unit
compound objc {

export outc: objcontainer;

import container extends outc;

import testobjs : testobjs;

bind package container to *Qcontainer, testobjs to *Qtestobjs;

A

local cont : set.impl;

link package cont@basicimpl to *@container, cont@basicimpl to outc;
link generic testobjs$0bjectl to cont@TARGET;

}

objcontainer.sig

© 0 N O oA W N -

-
=]

© 00 N O U W N e

=
N o= O

© 00 N O s W N -

=
=]

signature objcontainer = a: container + {
package container, testobjs;
bind generic testobjs.0Objectl to a@TARGET;
bind package
container to *Qcontainer;
}
obj2c.unit
compound obj2c {
export outc: obj2container;
import container extends outc;

import testobjs : testobjs;
bind package container to *Qcontainer, testobjs to *Qtestobjs;

IRt

local cont : set.impl;

link package cont@basicimpl to *@container, cont@basicimpl to outc;
link generic testobjs$0bject2 to cont@TARGET;

}

obj2container.sig

signature obj2container = a: container + {
package container, testobjs;
bind generic testobjs.0Object2 to aQ@TARGET;
bind package

container to *Q@container;
}

set.impl.unit

atom set.impl {

generic TARGET;

© 0 N O oA

© 0 N O oA W

11
12
13
14
15
16
17

© 00 N O ;oA W N -

e e = =
s W N = O

export basicimpl: container;
import container extends basicimpl;

bind package container to *Qcontainer;
bind generic TARGET to *Q@TARGET;

}

UnarySet.java

package basicimpl;

public class UnarySet extends java.lang.Object {

protected var.TARGET state;

public UnarySet() {};

public void add(var.TARGET t) {

}

state = t;

public var.TARGET get(){

}

return(state) ;
/* Danger - Rep Exposure. it’s okay for proof of concept though */

container.sig

signature container = g:generic + {

package container;
generic TARGET;

bind package container to g@generic;
bind lexeme UnarySet to gQGeneric;

class UnarySet extends Object {

}
}

generic.sig

UnarySet() ;
void add(TARGET t);
TARGET get();

-

[- I

® N O ot W N

© 0 N O UoA W N

=
=]

© 00 N O oos W

11

signature generic = {
lexeme Generic;
package generic;
class [Generic] extends Object { (); }
}
obj.impl.unit
atom obj.impl {

export basicimpl: testobjs;
import testobjects extends basicimpl;

bind package testobjects to *Qtestobjs;
}
Object1.java
package basicimpl;
public class Objectl extends java.lang.Object {
public Object1() {};
public String getName() {

return("this isya type,lyobject");

}

Object2.java
package basicimpl;
public class Object2 extends java.lang.Object {
public Object2() {};
public String getString() {

return("this isya_ type 2 0bject");

}

testobjs.sig

© 0 N O oA W N -

-
=]

12
13
14
15

signature testobjs = {
package testobjs;

class Objectl extends Object {
Object1();
String getName();

}

class Object2 extends Object {
Object2();
String getString();

jwb.finalprog

main

objc

program

—

obj2c
objcontainer L—— obj2container
container set.impl Testobjs obj.impl
generic

