
Alloy Model of Gnutella Ping/Pong Scheme

David Euresti, Stefanie Tellex

May 14, 2002

Abstract

Up to 50% of the traffic in the Gnutella network consists of Ping and Pong messages. In an
effort to better understand this protocol and gain insight into possible optimizations, we created
an Alloy model of the Gnutella Ping/Pong protocol. Our model demonstrates the protocol for
small networks and can be used to check simple properties of the Gnutella network.

1 Background and Motivation

The Gnutella protocol allows decentralized peer to peer file sharing1. The Ping/Pong section of the
protocol allows servants to increase the number of connections they have to other servants. (Each
computer in the Gnutella network is called a servant, because it is both a client and a server.) A
servant wants to increase the number of its connections to avoid being cut off from the network.
When a servant initially connects to the network, it is connected to only one other servant; if that
servant dies, the new servant is completely cut off from the network. In addition, over time, the
connections a servant has may become stale as servants leave the network, and new servants enter.

We hoped to create a model that would give us insight into the Ping/Pong protocol, and allow
us to check interesting properties of the protocol. Although limitations in Alloy prevented us from
reaching this goal, we were able to check some assertions for small networks.

2 Summary

Our model looks at the protocol at the end to end layer rather than the transport layer; we do
not deal with TCP packets or messages sent between servants, but rather with Gnutella messages
that could be sent to more than one servant. Each servant in the model is connected to one or
more other servants. Servants send and receive Messages in order to transfer information about
other servants in the network. A Message is either a Ping or a Pong. Every message has a Globally
Unique ID (GUID) to identify the request it is participating in on the network. In addition, each
Message has a time to live (TTL) field signifying how many hops the Message has until it will
be dropped. In the Gnutella protocol, a GUID is a 32 bit integer tagging the Ping message that
originated all other Ping/Pong messages in the network. In our model, a GUID is simply a pointer
to the Ping message that originated the request. We do not use the information in the GUID in
any way; it was simply convienent to use this as the GUID rather than creating an additionaly
type.

When a servant receives a Ping, it creates a new Ping with the same GUID and a TTL of one
less than the original Ping. It forwards this Ping to all of its connections. It also adds an entry to

1All information about the Gnutella protocol is taken from the documents at http://rfc-gnutella.sourceforge.net/

1



Node_1

Msg_2
(Pong)

servant: Node_1
GUID: Msg_0
TTL: Number_0
from: Node_1
to: Node_0

sent

Msg_6
(Ping)

servant: Node_2
GUID: Msg_0
TTL: Number_0
from: Node_0

to: Node_2, Node_1

read

Node_2

Msg_1
(Pong)

servant: Node_2
GUID: Msg_0
TTL: Number_0
from: Node_2
to: Node_0

sentread

Node_3

Msg_4
(Pong)

servant: Node_0
GUID: Msg_0
TTL: Number_1
from: Node_0
to: Node_3

read

Node_0
routingTable: Msg_0->Node_3

connection connection connection

Msg_0
(Ping)

servant: Node_1
GUID: Msg_0
TTL: Number_1
from: Node_3
to: Node_0

Msg_3
(Pong)

servant: Node_2
GUID: Msg_0
TTL: Number_0
from: Node_0
to: Node_3

Msg_5
(Pong)

servant: Node_1
GUID: Msg_0
TTL: Number_0
from: Node_0
to: Node_3

Figure 1: An sample visualization from our model.

its routing table mapping the GUID of that Ping to the servant from which it received the Ping.
This entry enables it to route future Pongs down the correct path to the servant that sent the
original Ping. In addition, it sends a Pong message containing its connection information to the
servant that originally sent the Ping. (In Gnutella, it would send a Pong containing its IP and
port; in Alloy, it sends a pointer to itself.)

When a servant receives a Pong, it looks in its routing table for an entry mapping the GUID of
that Pong to another servant. It forwards the Pong to that servant. If it is not already connected
to the servant that originally sent the Pong, it adds a connection to that servant.

Figure 2 shows a sample visulization from our model. It shows a four servant network in “Y”
configuration at a state midway through the Ping/Pong protocol. Node 3 originally sent a Ping
(Msg 0) to Node 0. At this state, Node 1 and Node 2 received a Ping (Msg 6) forwarded from
Node 3 for Node 0 and have just replied with a Pong (Msg 1 and Msg 2). In addition, Node 3 just
received a Pong (Msg 4) from Node 0 in response to its Ping. Node 0 has added an entry mapping
Msg 0-¿Node 3 to its routing table, so that if it receives a Pong with a GUID of Msg 0, it knows
to send it to Node 3, rather than to another one of its connections.

3 Evaluation

In order to test the properties of our model, we checked the connectedness properties of a servant
after it sent an initial Ping. We tried asserting that the servant would be fully connected after the

2



protocol finished in a network of three servants. However, this assertion had a counter-example;
if the path between one servant and another is longer than a message’s time to live, the message
will not reach all servants. Thus, if the network was configured in a line, and the time to live was
1, the Ping message never reached the last servant in the network, and a corresponding Pong was
never sent. However, if we modified our assertion to state that a servant should be connected to
all servants that are within the TTL horizon, the assertion finds no counterexamples.

When we tried the same set of conditions in a network of four servants, it found a number of
counter examples. The problem is that in networks with four servants, it can find configurations
where two messages are sent at once. Although we serialized message receiving, we could not prevent
the messaging module from deciding not to send messages for a state. When this happened, the
protocol could not complete in the number of states available to it.

4 Lessons

This system was probably not a good choice for a final project because the Gnutella protocol
contains few interesting assertions that can be checked in reasonable time for a reasonable number
of servants. Although we were able to create a model that sent the right messages at the right
times for small networks, it took a prohibitively long time to run on networks of only four nodes.

We had to make many optimizations in order to make our assertions run in reasonable time.
For example, we altered the messaging module in order to eliminate the parts we were not using
to reduce the number of atoms in the model. In addition, we eliminated many of the fields in our
visualization, and used functions to compute the properties instead. For example, we originally
had a relation representing new connections added as the result of a Pong message. We added a
few simple rules to populate this relation and it worked well for networks of three servants. This
relation was used in order to see if a servant was fully connected after the Ping/Pong protocol
completed. However, in order to make four servant networks run in reasonable time, we had to
eliminate this relation, and write a function to compute it instead. Although it was much faster,
we could no longer see new connections in our visualization.

We had to create a plethora of facts to prevent Alloy from sending spurious messages and
inserting spurious entries in the routing table. For example, after telling Alloy to add the correct
rows to the routing table of a node after forwarding a Ping, it added the correct row, but also filled
the routing table with spurious rows. We had the same problem when telling nodes what messages
to send.

5 Conclusion

We created an Alloy model of the Gnutella Ping/Pong scheme. Our model allowed us to visualize
the protocol for small networks and explore simple assertions, but we were unable to scale Alloy to
explore interesting assertions in larger networks.

3


