Maintaining Consistency Among Observers. An Alloy Model of the
Observer Design Pattern

Roshan Gupta

Abstract

The goal of this project isto explore how to ensure that two or more observers viewing the same object always reflect a
synchronized view of that object’s state. Three variants of the Observer design pattern were modeled using Alloy, each
placing different degrees of restriction on the mapping between subjects and observers. In addition, two notions of
consistency were also modeled. Partial Consistency implies that two observers are updated in the same order, and
Complete Consistency adds to this the fact that two observers are updated the same number of times. The results
indicate that the most restrictive variant is always partially consistent by definition, and that all three variants can be
made both partially and completely consistent with the introduction of either local or global lock tables.

1. Introduction

The goal of this research project is to explore how to maintain data consistency between
multiple observersin a system based on the Observer design pattern. | seek to enumerate the
minimum constraints that must be imposed on such a system to ensure that two or more observers
viewing the same subject always reflect a synchronized view of that subject’s state.

1.1 Motivation

My Master’ s thesis is to design atool that records, manipulates, and plays back ETMS data
feeds to be used astest feeds to air traffic control applications. It makes sense that users of the tool
should be able to view the information in a feed in multiple ways. For example, a user might wish
to simultaneously view the current locations of al planes both visually (on atwo-dimensiona map)
and in table format. In addition, the user might make a modification in one of the views—say the
table format—and expect the change be automatically reflected in the other view. Hence, it is
important that both views always display a consistent and synchronized view of the data.

The Observer design pattern is a good model for this program. It allows you to define
different display modules that are decoupled from each other yet act asif they are synchronized
when they view the same object. It also gives you the flexibility of dynamically adding and
removing views of the data without the need to modify and recompile your code. The challenge
however isto maintain synchronization between observers as the mapping between subjects and
observers becomes more complex. There may be instances where it is desirable to have observers
view multiple subjects—but not necessarily the same set of subjects between observers. For
example, the table view in the ETM S Feed Parser (EFP) might need to observe and integrate
multiple feeds of data—say, input from two different radar sources. The visua view might also
observe these two input streams, but in addition observe a weather feed to allow it to predict the
trajectories of each plane and display both the actual and predicted trgjectories on amap. If both
these views happen to be active, it is important that changes in the two radar feeds get immediately
propagated to both views to prevent the visual view from predicting trajectories based on stale data

2. Definitions
2.1 Observer Pattern Topologies
There are three different variants of the Observer pattern that are of interest; they differ with
respect to the allowable subject-observer mappings (topologies).
Most-Restrictive Topology
In this variant of the Observer design pattern, observers are constrained to view at most one

subject. Multiple observers are alowed to view the same subject. Figure 1 is an example of an
acceptabl e topology.

Subject_1 Subject_2

i observer i observer obseErEr

Figure 1. An example of the M ost-Restrictive topology.

Semi-Restrictive Topology

In this variant of the Observer design pattern, observers are alowed to view a set of
subjects. That is, the subjects in the system are partitioned into one or more distinct sets, and each
observer can view the subjects in a most one of these sets. Multiple observers are allowed to view
the same set of subjects. Figure 2 is an example of an acceptable topology.

Subject O Subject 1 Subject 2

ohserver

ohserver

Figure 2: An example of the Semi-Restrictive topology.

Least-Restrictive Topology

In this variant of the Observer design pattern, observers are allowed to view an arbitrary
number of subjects, independent of other observers. There are essentially no restrictions on the
subject-observer mapping. Figure 3 is an example of an acceptable topology.

Subject 1 Subject 0 Subject_2

ohserver ohserver ohserver observer ohserver observer

Figure 3: An example of the Least-Restrictive topology.

2.2 Consistency

| use two different notions of consistency in this experiment—complete consistency and
partial consistency. For the following two subsections, assume that there exist two observers, Oand
P. Each observer has a set of subjectsit is monitoring, and each observer maintains a history of the
notifications it has received. For example, observer O might look like this:

O s subjects = {S1, S2, S3}
O s notification history = {S1, S3, S2, S1}

In this example, S1, S2, and S3 represent three distinct subjects. Observer O’ s notification history
indicates that O was first notified of a change in subject S1, then S3, then S2, and most recently S1

again.

Complete Consistency

Complete consistency implies that two observers are perfectly synchronized with respect to
the state information they maintain about the subjects they are jointly viewing. Two observers are
completely consistent if they have both been notified of changes the same number of timesand in
the same order by their common subjects. See the text box below for an example. Ideally, we
would like to achieve a system in which every pair of observersis guaranteed to be completely
consistent at any point in time.

Examples Of Complete
Consistency

Partial Consistency
Here is an example where

SuPiETs P Ae Partial consistency makes a weaker statement compared to
completely consistent (note

LML A e oA complete consistency—it only implies that two observers have

notified by S1 and S2 in the received change notifications from their common subjects in the

sameorder { S1, S2, S1}):
O s subjects =

~ ~n ~Aa

same order. This guarantees that two observers will always show a mutually consistent view of the
data, though one observer’ s data might reflect an earlier state of the system. This notion of
consistency might be acceptable to an application that emphasizes state coherence over the
timeliness of data (for instance, an air traffic control application is often more interested in
providing a valid snapshot in time of an airgpace region than in providing an inconsistent view of
the current air traffic).

Two observers are partially consistent if they have both been notified of changesin the same
order (but not necessarily the same number of times) by the set of subjects being monitored by both.
See the text box below for an example.

3. Methods

I modeled a system based on the observer design pattern using the Alloy modeling language.
| was then able to use Alloy’ s automatic analyzer to explore what kinds of constraints are necessary
to achieve various levels of consistency among the observers in the system.

It is not straightforward that Alloy is the best choice to model this problem. The idea of
maintaining consistency amidst change requires one to take time into account, and Alloy isideal for
modeling structural complexity rather than temporal complexity. However, Alloy has the
advantage in that | can say aslittle as | want to about the system and incrementally add constraints,
whereas in a prototype based on a programming language | would have to build a larger
infrastructure to alow for more possibilities. In the end, | decided it was worth the extra effort to
model the temporal aspectsin Alloy in order to gain the benefits of Alloy’s compact representation.

3.1 Alloy Model Summary

The actua Alloy model can be found in the Appendix. The model is well-organized and
thoroughly documented.

The approach | took was to initially model the Least-Restrictive variant of the Observer

Examples Of Partial Consistency

Here is an example where observers O and P are partially consistent (note that thisis the same example asthe
example above where O and P were not compl etely consistent):

O s subjects = {S1, S2, S3}

P's subjects {'S1,1 S22 41,56}

O s notification history A1 SR S204 K SItEHS3]
P's notification history £34, 310 --S2, | FSE}

Here is an example where observers O and P are not partially consistent (note that the only difference between this
example and the previous one isthat S2 notified P before S1 was able to):

O s subjects = {S1, S2, S3}

P's subjects TS E25 =S4 5 4, S

O's notification history = {S1, S3, S2, Sl1, S3}
P's notification history = {S4, S2, S1, S5}

design pattern. The remaining two variants could then be easily modeled by adding afew
constraints on the system topology (refer to the section TOPOLOGY FUNCTIONS in the Alloy
model). | focused my efforts on modeling the transmission of notification messages from subjects
to observers. | defined two basic signatures, Subject and Observer. Each Observer maintains a
history of the notifications it has received from the subjects it is viewing. This history takes the
form of a sequence (I utilized the seq.als model provided with Alloy), where notifications by
subjects are proxied by the subject atoms themselves. See Figure 4 for an example snapshot of a
system.

Subject 2 Subject 1 Subject 0

observer ORSENRVER obRsSErvEr ohserver wobserver

notifTrace notifTrace notifTrace

Figure 4: Snapshot of a Least-Restrictive topology system.

In addition to the basic Subject and Observer signatures, the model maintains a mapping
between atoms of these types. The subjects, observers, and topology together make up a snapshot
of the system’s state. | then modeled the basic rules governing valid state transitions (refer to the
STATE TRANSITION RULES section in the model). The two major rules are
NoTopol ogyChange, which prevents the topology from changing, and
At Most OneNewNot i f Per Gbser ver , which handles the fact that an Observer can handle at
most one notification at atime.

Finally, | created two functions Conpl et el yConsi st ent and
Parti al | yConsi st ent that determined whether two observers were completely or partialy
consistent, respectively. These two functions became the basis of the assertions | later made about
the system. Refer to the section CONSISTENCY DEFINITIONS in the model for more
information.

3.2 Assumptions

| smplified the design of the model by making two main assumptions. | first assumed that
if an Observer is notified of a change in one of its subjects, it immediately calls update on the
subject to retrieve its latest state. This alowed me to consolidate the notification and update
operations into a single notification operation, and as aresult my model only needed to maintain the
notification history for a given Observer. This assumption isvalid since it is too difficult to
maintain consistency among observers if one cannot guarantee that an Observer will react to a
change in state.

| secondly assumed that the system topology does not change between state transitions. At
first this may seem to rule out the ability of my system to support the dynamic adding and deletion
of views. Instead, it makes it smpler to reason about the correctness of the model, and this
reasoning can be easily extended to a model that allows for topology changes. In particular, if the
static-topology model demonstrates that a system starting in a completely or partially consistent
state will always remain consistent, then the dynamic-topology model would simply need to
guarantee that a valid topology change maintains this same level of consistency.

3.3 Questions Asked of M odel
There were two questions | was interested in answering with my model:

1) What constraints on the system are necessary to guarantee that for all possible sequences of
states, every pair of Observersis always partialy consistent?

2) What constraints on the system are necessary to guarantee that for all possible sequences of
states, every pair of Observersis aways completely consistent?

Since | actually modeled three variants of the observer design pattern, | ultimately created a
total of six assertions (one per each pair of question and variant). These assertions can be found in
section CONSISTENCY INVARIANTS & ASSERTIONS of the modd.

4. Evaluation
4.1 Results

This project turned into more of a modeling effort of the observer design pattern and notions
of consistency rather than an exploration of system constraints. This was because amost all my
effort went into creating a viable model of the system. This task was complicated by my lack of
experience with Alloy, subtle bugs in my logic, and issues with the analyzer itself. However, | did
find some useful information regarding my original questions. In addition, | now have a solid
framework from which to launch queries regarding the observer design pattern.

One of the first results of my experiment was that Alloy asserted that the Most-Restrictive
topology was by definition always partially consistent. Indeed, since observers are allowed to view
at most one subject at atime, two observers viewing the same subject will always be notified in the
same order. Note that two observers who are not viewing any common subjects are by definition
always partially (and completely) consistent. Of course, the Most-Restrictive topology does not
guarantee complete consistency—to achieve this level of consistency for this model, | smply had to
add atransition rule that forced a subject who notified one of its observers to notify al of its
observers. With thistransitionrule in place, Alloy asserted that the Most- Restrictive topology
would always be completely consistent.

According to the Alloy analyzer, the Semi- Restrictive topology by definition did not
guarantee partial consistency. If | have two observers viewing the same two subjects, and both
subjects send out a notification, the notifications might reach each observer in different orders. |
was able to achieve partial consistency when | again added the rule that a subject must notify either
none of its observers or al of its observers. Since the model does not alow Observers to process
more than one notification at atime, one subject essentially “muscled out” the others and
transmitted its notifications to al Observers (in retrospect, it would have been nice to rework the
model to prevent one subject from implicitly dominating the other subjects during a particular state
transition). This rule roughly corresponds to the presence of alock table, in which only one
subject wins the right to talk to the observers within a given period of time. With such alock
structure in place, we can now guarantee that all observers viewing the same set of subjects will
receive notifications from those subjects in the same order. In fact, we can aso extrapolate that this
rule would make the Semi- Restrictive topology completely consistent as well. Unfortunately, the
analyzer kept crashing before returning with the final answer to this question.

Finally, the Alloy analyzer stated that the same rule used in the Semi- Restrictive system
would achieve partial consistency in a Least-Restrictive system. Again, the rule is analogous to a
global lock table, where a subject must lock all of its observers before sending out notifications.
Even if there are complicated dependency rel ationships between subjects and observers (asin
Figure 3), the locking mechanism would guarantee that notifications arrive in the proper order. This
analysis also probably extends to the complete consistency case, but again the analyzer could not
finish checking this assertion.

One interesting note is that the Least-Restrictive system seems to require a global lock table,
whereas the Semi- Restrictive system would require only local lock tables (because the subjects and
observers in the Semi-Restrictive system form partitions). Thisis an important distinction when
performance is of concern, and hence is an example of a useful result that came from directly
modeling these various types of systems.

4.2 Retrospection

| had encountered some intractability issues early on in my first version of the model. One
reason isthat | had originally attempted to model a history of notifications as a List, complete with
functions such as list comparisons and filtering operations. However, my functions were defined
using recursion, which is not supported by the current version of Alloy. Due to my inexperience
with Alloy, | aso made the mistake of modeling the topology of the system by storing a subject’s
observers directly in the Subject signature, and similarly for the Observer signature. Since a given
Subject atom points to a fixed Observer atom, and because each Observer atom also pointsto a
fixed sequence of notifications, a simple state transition in which an Observer received a new
notification would require a new Subject, Observer, and Sequence atom. In other words, the first
version of the model required a large scope for simple transitions. My second model solved this
issue by storing the mapping between subjects and observers, and between observers and traces, in a
separate signature. Finally, | had problems checking some of my assertions because Alloy would
consistently crash before returning an answer.

Overdl, | fed that this project gave me invaluable experience in designing large modelsin
Alloy. | fet that it made up for my mistakes on the Elevator problem, where | did not fully

understand the power of Alloy and attempted to model my elevator system procedurally rather than
declaratively. My impression of Alloy isthat it has a place in the design of large software systems.
In particular, | felt the ability to incrementally build your model and receive immediate feedback via
the analyzer were its key selling points. The version of Alloy | was using was alittle unstable, but
that is to be expected from a beta release. One feature in particular | would find useful isif the
Alloy analyzer provided feedback regarding why a solution cannot be found. The right feedback
can differentiate between a simple logic mistake and a generaly flawed approach. My hope is that
future improvements will allow me to make much more complex models and queries than what is
possible right now. In any case, | hope to revisit this problem again and to continue using this tool
while conducting research for my Master’s thesis.

/**

Roshan Gupta, 5/13/02

Thi s nodel explores notions of consistency within
the Observer design pattern

ASSUMPTI ONS

- If an CObserver is notified of a change in one of
its subjects, it imediately calls "Subject. Update"
to retrieve the |atest state. Hence, we can
consolidate the notification and update operations
into a single notification operation

- The systemtopology is fixed, i.e the nunber of and
meppi ngs between subjects and observers in a given
system cannot change. This shouldn't affect the
correctness of this nodel with respect to the goals
we are trying to achieve.

***/
nmodul e Observer Desi gnPattern

open std/seq
open std/ord

11
/'] SI GNATURES
11

/1 A subject or publisher object in the design pattern

sig Subject {}

/1 An observer or subscriber object in the design pattern

sig Cbserver {}

/'l A snapshot of the state of the observer-pattern systemwe are nodeling.

sig State {
-- The observers in the system
observers: set Observer,

-- The subjects in the system
subj ects: set Subject,

-- List of observers viewi ng a given Subject.
subToObsMap: subjects -> observers

-- List of subjects being viewed by a given Observer.
obsToSubMap: observers -> subjects,

-- The order in which a given Cbserver has been notified by its

-- Subjects (a notification is proxied by the actal Subject atom.
-- Note that the last elenment in the sequence represents the npst
-- recent notification.

-- For exanple, notifTrace = {S1, S3, S2, Sl1} neans that the Observer
-- first received a notification fromsubject S1, then S3, then S2, and
-- nost recently S1 again.

notifTrace: observers ->! Seq[Subject]

}

{
-- The mappi ng of observers to subjects is the transpose of the napping
-- of subjects to observers.
obsToSubMap = ~subToGCbsMap
-- An Cbserver can only receive notifications fromthe subjects it
-- is monitoring. This is based on the assunption that the
-- topology is fixed (i.e. any notification froma particul ar subject
-- inits trace inplies it has and will always nonitor that subject).
all o: observers | SeqEl ens(o.notifTrace) in o.obsToSubMap

}

/1

/1 STATE | NI TI ALI ZATI ON FUNCTI ONS

/1

/1l Initializes the State's observers' notification traces to enpty.

fun InitTracesToEnpty (s: State) {
all o: s.observers | SeqlsEnpty(s.notifTrace[o0])
}

11
/| STATE TRANSI TI ON RULES & FUNCTI ONS
11

/'l Ensures Subject-Cbserver mappi ngs do not change between
/] state transitions.
fun Rul e_NoTopol ogyChange (s, s': State) {

s'.subjects = s.subjects

s' . observers = s.observers

s'.subToObsMap = s.subToGCbsMap

/'l Ensures that each Observer receives at nbst one new notification
/1 during a state transition. Also, ensures that each Cbserver's
/1l notification history remani ns the sane.

fun Rul e_At Most OneNewNot i f Per Observer (s, s': State) {
all o: s'.observers | {

SeqStartsWth(s'.notifTrace[o], s.notifTrace[o])
#Seql nds(s' . notifTrace[o0]) < #Seql nds(s.notifTrace[o]) + 2

/'l Ensures that if a Subject notified one of its observers during a state
/1 transition, it nmust have notified all of its observers during that
/] same transition.

fun Rule_NotifyOneNotifyAlllnSaneTransition (s, s': State) {
all j: s'.subjects | {
all o: s'.subToObsMap[j] | {
recei vedNoti f FronBSubj ect(s, s', o, j) inmplies {
all p: s'.subToOQbsMap[j] - o | {
recei vedNoti f FronSubj ect(s, s', p, j)
}

/'l Force at |east one new notification to occur during a state transition.

fun Rul e_ForceAt Least OneNewNotification (s, s': State) {
some o0: s'.observers | {
#Seql nds(s' . notifTrace[o]) = #Seqlnds(s.notifTrace[o]) + 1
}

/'l Generate a sequence of ordered states using valid state transitions.

fun generateTransitions () {
InitTracesToEmpty(Ord[State].first)
all disj s, s': State | {
(s' = OrdNext(s)) inplies {
Rul e_NoTopol ogyChange(s, s')
Rul e_At Mbst OneNewNot i f Per Observer (s, s')

/'l Generate a sequence of ordered states using valid state transitions.
/'l Ensure that at |east one new notification occurs between states.

fun generateForcedTransitions () {
InitTracesToEmpty(Ord[State].first)
all disj s, s': State | {
(s' = OrdNext(s)) inmplies {
Rul e_NoTopol ogyChange(s, s')
Rul e_At Mbst OneNewNot i f Per Observer (s, s')
Rul e_For ceAt Least OneNewNot i fi cation(s, s')

/1l Hel per function that checks whether Observer "o0" has received a new
/1l notification from Subject "j" during the state transition

fun receivedNotifFronSubject (s, s': State, o: Observer, j: Subject) {
s'.notifTrace[o] = SegAdd(s.notifTrace[o], j)

}

I

/| CONSI STENCY DEFI NI TI ONS

I

/'l Ensures that two Observers are conpletely consistent, i.e. have been

/1 notified the same nunber of tines and in the sane relative order by
/'l the set of subjects being nonitored by both.

/1

/1 Exanpl e:

/1

/1 0.subjects = {S1, S2, S3}

/1 p.subjects = {S1, S2, S4, S5}

/1 o.notifTrace = {S1, S3, S2, S1, S3}

/1 p.notifTrace = {S4, S1, S2, S5, Sl1}

/1

/'l Here are two exanples that are not conpletely consistent:
/1

/1 0.subjects = {S1, S2, S3}

/1 p. subjects = {S1, S2, S4, S5}

/1 o.notifTrace = {S1, S3, S2, S1, S3}

/1 p.notifTrace = {S4, Sl1, S2, S5} -- missing final Sl
/1

/1 0.subjects = {S1, S2, S3, S5}

/1 p. subjects = {S1, S2, S4, S5}

/1 o.notifTrace = {S1, S3, S2, Sl1, S3} -- missing final S5
/1 p.notifTrace = {S4, S1, S2, S1, Sb}

fun Conpl etel yConsistent (s: State, o, p: Observer) {
| et commopnSubj ects = s.obsToSubMap[o] & s.obsToSubMap[p] | {
sameRel ati veSeqOrder(s.notifTrace[o], s.notifTrace[p], commpnSubjects)
&&
sanmeRel ati veSeqOrder(s.notifTrace[p], s.notifTrace[o], compnSubjects)

/1l Ensures that two Observers are partially consistent, i.e. have been
/1l notified in the sane relative order (but not necessarily the sane
/1 nunmber of times) by the set of subjects being nonitored by both.

/1

/'l Exanpl es:

I

/1 0.subjects = {S1, S2, S3}

/1 p.subjects = {S1, S2, S4, S5}

/1 o.notifTrace = {S1, S3, S2, S1, S3}
/1 p.notifTrace = {S4, S1, S2, Sb}

11

/1 0.subjects = {S1, S2, S3, S5}

/1 p.subjects = {S1, S2, S4, S5}

/1 o.notifTrace = {S1, S3, S2, S1, S3}

/1 p.notifTrace = {S4, Sl1, S2, S1, S5}

/1

/1l Here is an exanple that is not partially consistent:
/1

/1 0.subjects = {S1, S2, S3}

/1 p.subjects = {S1, S2, S4, S5}

/1 o.notifTrace = {S1, S3, S2, Sl1, S3}

/1 p.notifTrace = {S4, S2, S1, S1} -- S2 and S1 out of order

fun PartiallyConsistent (s: State, o, p: Observer) {
| et commopnSubj ects = s.obsToSubMap[o] & s.obsToSubMap[p] | {
sameRel ati veSeqOrder(s.notifTrace[o], s.notifTrace[p], commpnSubjects)

sanmeRel ati veSeqOrder(s.notifTrace[p], s.notifTrace[o], compnSubjects)

/'l Ensures that sequence A has the sane relative ordering and at nost the sane

/'l nunmber of elenments as sequence B with respect to the elenments in "elenmentList".
/1l Note that this function does NOT guarantee that the same holds true for

/'l sequence B with respect to sequence A

11

/'l Exanpl e:

I

/1 el ement List = {S1, S2}

/1 segA = {S4, S1, S2, Sb}

11 seqB = {S1, S3, S2, S1, S3}

/1

/1l Here are 2 exanples that do not satisfy this function
/1

/1 el ementList = {S1, S2}

/1 seqA = {S1, S3, S2, S1, S3} -- has extra Sl
/1 seqB = {S4, S1, S2, S5}

/1

/1 el ement List = {S1, S2}

/1 segA = {S1, S2, S1} -- mssing an S2
/1 segB = {S1, S2, S2, S1}

fun saneRel ativeSeqOrder[t] (seqA, seqgB: Seq[t], elenentList: set t) {

-- If seqA has the sane relative ordering and at nost the sane
-- nunber of elenents as sequence B (with respect to those

-- elements in "elenentList"), then the foll ow ng

-- invariant holds:

-- For all indicies i in segA,

- - There is sonme index j in seqB, such that

-- The nunber of each elenment in "elenentList” up to index

- - in segA equal s the nunmber of the same elenment up to index

- - in seqB.

-- W sinply translate the above invariant into Alloy and assune it hol ds

-- for the input sequences.

/1 1f elementList is enpty, then the invariant is vacuously true.
no el ementList ||

/1 1f seqA doesn't contain any elenents in "elenmentList”, then the
/1 invariant is vacuously true (handles enpty seqA case).
no (SeqgEl ens(seqA) & el enentList) ||

/1 Otherwi se, seqB can't be enpty, and it nmust contain at |east one
/1 element in "elenmentList"” for the invariant to possibly hold.
(not Seql senpty(seqB) &&
some (SeqEl ens(segB) & el enentlist) &&
all i: Seqlnds(seqAh) | {
sonme j: Seqlnds(seqgB) | {
all elem elenmentList | {
#(elem ~(((OrdPrevs(i) + i) ->t) & seqgA. seqElens)) =
#(elem ~(((OrdPrevs(j) +j) ->1t) & seqB. seqEl ens))

}
}
H)
}
/1
/1 TOPOLOGY FUNCTI ONS
11

/'l Creates a topology that only allows observers to view

/'l a single subject.

11

/1 This topology will be known as the "MdstRestrictiveTopol ogy".

fun Init_MstRestrictiveTopology (s: State) {
all o: s.observers | {
#(s. obsToSubMap[o0]) < 2
}

/'l Creates a topology that allows nultiple observers to view

/1l the sane set of subjects--that is, the subjects in a State
/1 are partitioned into one or nore distinct sets, and each

/1l Observer views subjects in at nbst one of these sets.

/1

/1 This topology will be known as the "Seni RestrictiveTopol ogy".

fun Init_Sem RestrictiveTopol ogy (s: State) {
-- For any two Observers in the State, the sets of subjects being
-- viewed by each either do not overlap or conpletely overlap
all o, p: s.observers | {
no (s.obsToSubMap[o] & s.obsToSubMap[p]) ||
s. obsToSubMap[o] = s. obsToSubMap[p]

/1l Creates a topology that allows observers to view arbitrary

/'l sets of subjects, independent of other observers.

11

/1 This topology will be known as the "LeastRestrictiveTopol ogy".

fun Init_LeastRestrictiveTopology (s: State) {
-- Nothing to do! This is the default behavior of the npdel.
}

/'l Force sonme kind of mapping (topol ogy) between Subjects and Observers.

fun ForceSoneTopol ogy (s: State) {
sonme s. observers
sonme s.subjects
sonme s.subToGbsMap

/'l Force the existence of multiple subjects and observers in the state.

fun ForceMil tipl eSubj ect sAndObservers (s: State) {
#s. observers > 1
#s.subjects > 1

/!l Force at |least two subjects to be viewed.

fun ForceAt Least TwoSubj ect sToBeVi ewed (s: State) {
#s. obsToSubMap[Cbserver] > 1
}

/'l Force at |east one Subject to have at | east two observers.

fun ForceAt Least OneSubj ect ToHaveAt Least TwoCbservers (s: State) {
some j: Subject | #s.subToGbsMap[j] > 1
}

/1l Force at |east one Observer to view at |east two subjects (note:
/1 this cannot be used with the MostRestrictiveTopol ogy).

fun ForceAt Least OneCbserver ToVi ewAt Least TwoSubj ects (s: State) {
some o: Observer | #s.obsToSubMap[o] > 1
}

/'l Force at least two Observers to view at |east two subjects (note:
/1 this cannot be used with the MostRestrictiveTopol ogy).

fun ForceAt Least TwoCbserver sToVi ewAt Least TwoSubj ects (s: State) {
some disj o, p: Observer | {
#s. obsToSubMap[o] > 1
#s. obsToSubMap[p] > 1

/!l Force at |east two observers to not view all the sane subjects.

fun ForceAt Least TwoObserversToHaveDi f f er ent Subj ect Sets (s: State) {
some disj o, p: s.observers | {
s. obsToSubMap[o] != s.obsToSubMap[p]
}

/!l Force at |east two observers to have partially (but not conpletely)
/1l overlapping sets of subjects (note: this only works for the
/'l LeastRestrictiveTopol ogy).

fun ForceAt Least TwoParti al |l yOverl appi ngSubj ect Sets (s: State) {
sonme disj o, p: s.observers | {
sonme (s.obsToSubMap[o] & s.obsToSubMapl[p])

s. obsToSubMap[o] != s.obsToSubMap][p]
}
}
/1
/1 CONSI STENCY | NVARI ANTS & ASSERTI ONS
/1

/1 I NVARI ANT: for all possible sequences of states, every
[l pair of Cbservers is always partially consistent.

fun AlwaysPartiall yConsistentlnvariant () {
all s: State | {
all o, p: s.observers | {
Partiall yConsistent(s, o, p)
}

/1l Assert the AlwaysPartiallyConsistentlnvariant holds for the MdstRestrictive
/'l topol ogy.

I

/1l Note: this assertion holds.

assert AlwaysPartiallyConsistent MstRestrictiveTopol ogy {
{Init_MstRestrictiveTopology(Ord[State].first) && generateTransitions()}

i mplies

Al waysPartial | yConsi stentl nvariant ()

/'l Assert the AlwaysPartiallyConsistentlnvariant holds for the Sem Restrictive
/'l topol ogy.
I

/] Note: this assertion holds.

assert AlwaysPartiallyConsistent _Sem RestrictiveTopol ogy {

{
Init_Sem RestrictiveTopol ogy(Ord[State].first)
generateTransi tions()
-- Additional transition rules required for assertion to hold.
all disj s, s': State | {
(s' = OrdNext(s)) inplies {
Rul e_Noti fyOneNotifyAlll nSaneTransition(s, s')
}
}
}
i mplies
Al waysPartial | yConsi stentlnvariant ()
}
/1l Assert the AlwaysPartiallyConsistentlnvariant holds for the LeastRestrictive
/'l topol ogy.
/1

/'l Note: this assertion holds.

assert Al waysPartiall yConsistent_LeastRestrictiveTopol ogy {

{
Init_LeastRestrictiveTopol ogy(Ord[State].first)
generateTransitions()
-- Additional transition rules required for assertion to hold.
all disj s, s': State | {
(s' = OrdNext(s)) inmplies {
Rul e_Noti fyOneNoti fyAl |l nSaneTransition(s, s')
}
}
}
inplies

Al waysPartial | yConsi stentl nvari ant ()

/1 I NVARI ANT: for all possible sequences of states, every
[/l pair of Cbservers is always conpletely consistent.

fun Al waysConpl et el yConsi stentlnvariant () {
all s: State | {
all o, p: s.observers | {
Compl et el yConsi stent (s, o, p)
}

/1l Assert the Al waysConpl etel yConsistentlnvariant holds for the MdstRestrictive

/'l topol ogy.
/1
// Note: this assertion holds.

assert Al waysConpl et el yConsi stent _Most RestrictiveTopol ogy {

{
Init_MstRestrictiveTopol ogy(Ord[State].first)
generateTransi tions()
-- Additional transition rules required for assertion to hol d.
all disj s, s': State | {
(s' = OrdNext(s)) inplies {
Rul e_Noti fyOneNoti fyAl |l nSaneTransition(s, s')
}
}
}
i mplies
Al waysConpl et el yConsi stent | nvari ant ()
}
/1 Assert the Al waysConpl etel yConsistentlnvariant holds for the Senmi Restrictive
/1 topol ogy.
/1

/1l Note: Alloy seenms to crash on this one.

assert Al waysConpl etel yConsi stent_Seni RestrictiveTopol ogy {

{
Init_Sem RestrictiveTopol ogy(Ord[State].first)
generateTransi tions()
-- Additional transition rules required for assertion to hold.
all disj s, s': State | {
(s' = OrdNext(s)) inplies {
Rul e_Noti fyOneNoti fyAll Il nSaneTransition(s, s')
}
}
}
i mplies

Al waysConpl et el yConsi stent | nvari ant ()

/'l Assert the Al waysConpl etel yConsistentlnvariant holds for the LeastRestrictive
/'l topol ogy.

I

/1l Note: Alloy seems to crash on this one.

assert Al waysConpl et el yConsi stent_LeastRestrictiveTopol ogy {
{Init_LeastRestrictiveTopol ogy(Ord[State].first) && generateTransitions()}

inplies

Al waysConpl et el yConsi stent | nvari ant ()

11
/1 MODEL DEBUGG NG ASSERTI ONS
11

/1 If two Cbservers are conpletely consistent, it should hold by definition that
/1l they are partially consistent as well.

assert Conpl etelnpliesPartial Consi stency {
all s: State | {
all o, p: s.observers | ConpletelyConsistent(s, o, p) inplies
Partiall yConsi stent(s, o, p)

/1l This assertion is FALSE. Partial consistency does not guarantee conplete
/'l consistency.

assert FALSE Partiall npliesConpl et eConsi stency {
all s: State | {
all o, p: s.observers | PartiallyConsistent(s, o, p) inplies
Compl et el yConsi stent (s, o, p)

/1 The order of arguments to Conpl etel yConsistent and Partiall yConsi stent does not
/1l matter.

assert Argument Order Not | nportant {
all s: State | {
all o, p: s.observers | {
Conpl etel yConsi stent(s, o, p) inplies
Conpl et el yConsi stent(s, p, 0)
Partial |l yConsistent(s, o, p) inplies
Partial |l yConsi stent(s, p, 0)

/1 Two Cbservers whose notifTraces are both enpty are al ways conpletely and
/1 partially consistent.

assert EnmptyTraceConsistency {
all s: State | {
all o, p: s.observers | {
((Seql sEnpty(s.notifTrace[o])) && (Seql sEmpty(s.notifTrace[p])))
inplies {
Conpl et el yConsi stent(s, o, p)
Partial |l yConsi stent(s, o, p)

/1 Two Cbservers where only one observer has an enpty notifTrace are al ways
/1 partially consistent.

assert OneEnptyTracel npliesPartial Consi stency {
all s: State | {
all o, p: s.observers | {
((Seql sEmpty(s.notifTrace[o])) &&
(not Seql senpty(s.notifTrace[p]))) inplies {
Partial |l yConsi stent(s, o, p)

/1l This assertion is FALSE. Two Observers where only one observer has an enpty
/1 notifTrace does not inply that the observers are always conpletely consistent.

assert FALSE OneEnptyTracel npli esConpl et eConsi st ency {
all s: State | {
all o, p: s.observers | {
((Seql sEnmpty(s.notifTrace[o0])) &&
(not Seql sEnpty(s.notifTrace[p]))) inplies {
Compl et el yConsi stent (s, o, p)

/1 Two Cbservers who are not nonitoring commn subjects are al ways both conpletely
/1 and partially consistent.

assert NoConmopnSubj ect sConsi st ency {
all s: State | {
all o, p: s.observers | {
| et commonSubj ects = s.obsToSubMap[o] & s.obsToSubMap[p] | {
no conmonSubjects inplies {
Conmpl et el yConsi stent (s, o, p)
Partial l yConsi stent(s, o, p)

/'l Asserts that, by definition, all observers in the system have a
/1 notification trace.

assert Al |l QbserversHaveTrace {
all s: State | {
some s.observers inplies {
all o: s.observers | sonme s.notifTrace[0]
}

11
/'l EXAVPLE TRACE GENERATI ON FUNCTI ONS
11

/'l Generate an interesting state trace of the MostRestrictive topol ogy.

fun generateMost RestrictiveTopol ogyTrace () {
Init_MstRestrictiveTopol ogy(Ord[State].first)

For ceSonmeTopol ogy(Ord[State] . first)

ForceMul ti pl eSubj ect sAndObservers(Ord[State] . first)

For ceAt Least TwoSubj ect sToBeVi ewed(Ord[State] . first)

For ceAt Least TwoObserver sToHaveDi f f erent Subj ect Sets(Ord[State].first)
For ceAt Least OneSubj ect ToHaveAt Least TwoObservers(Ord[State].first)

gener at eForcedTransitions()

/'l Cenerate an interesting state trace of the Semi Restrictive topol ogy.

fun generateSen RestrictiveTopol ogyTrace () {
Init_Sem RestrictiveTopol ogy(Ord[State].first)

For ceSonmeTopol ogy(Ord[State] . first)

ForceMil ti pl eSubj ect sAndCbservers(Ord[State] . first)

For ceAt Least TwoSubj ect sToBeVi ewed(Ord[State] . first)

For ceAt Least TwoObser ver sToHaveDi f f er ent Subj ect Set s(Ord[State] . first)
For ceAt Least OneSubj ect ToHaveAt Least TwoCbservers(Ord[State] . first)

For ceAt Least OneObserver ToVi ewAt Least TwoSubj ects(Ord[State].first)
For ceAt Least TwoObserver sToVi ewAt Least TwoSubj ects(Ord[State].first)

gener at eForcedTransitions()

-- Additional transition rules.
all disj s, s': State | {
(s' = OrdNext(s)) inmplies {
--Rul e_NotifyOneNotifyAlllnSaneTransition(s, s')
}

/]l Cenerate an interesting state trace of the LeastRestrictive topol ogy.

fun generatelLeastRestrictiveTopol ogyTrace () {
Init_LeastRestrictiveTopology(Ord[State].first)

For ceSonmeTopol ogy(Ord[State] . first)

ForceMil ti pl eSubj ect sAndCbservers(Ord[State].first)

For ceAt Least TwoSubj ect sToBeVi ewed(Ord[State] . first)

For ceAt Least TwoObser ver sToHaveDi f f er ent Subj ect Sets(Ord[State].first)

For ceAt Least OneSubj ect ToHaveAt Least TwoCbservers(Ord[State].first)

For ceAt Least OneObserver ToVi ewAt Least TwoSubj ects(Ord[State].first)
- - ForceAt Least TwoObserversToVi ewAt Least TwoSubj ects(Ord[State].first)
For ceAt Least TwoParti al | yOver| appi ngSubj ect Sets(Ord[State].first)

gener at eForcedTransi tions()

11
/1 COMVANDS
11

/'l Consistency Assertions:

check Al waysPartiall yConsi stent_ Most RestrictiveTopol ogy for 4
check Al waysPartial |l yConsi stent_Seni RestrictiveTopol ogy for 4
check AlwaysPartial |l yConsistent_LeastRestrictiveTopol ogy for 4

check Al waysConpl et el yConsi stent _Mst RestrictiveTopol ogy for 4
check Al waysConpl et el yConsi stent_Sem RestrictiveTopol ogy for 4
check Al waysConpl et el yConsi stent _Least RestrictiveTopol ogy for 4

/'l Generate Exanple Traces:

run generatelMstRestrictiveTopol ogyTrace for 3
run generateSem RestrictiveTopol ogyTrace for 3
run generateleastRestrictiveTopol ogyTrace for 3

/| Debuggi ng Assertions (sanity checks):

-- No count erexanpl es shoul d exi st.

--check Conpl etel npliesPartial Consi stency for 4
--check Argunent Order Notl nportant for 4

--check EnptyTraceConsistency for 4

--check OneEnptyTracel npliesParti al Consistency for 4
--check NoConmpbnSubj ect sConsi stency for 4

--check All CbserversHaveTrace for 4

-- A counterexanpl e should exist.

--check FALSE Partial | npliesConpl et eConsi stency for 4
--check FALSE OneEnptyTracel npli esConpl et eConsi stency for 4

