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Abstract 
 
The goal of this project is to explore how to ensure that two or more observers viewing the same object always reflect a 
synchronized view of that object’s state.  Three variants of the Observer design pattern were modeled using Alloy, each 
placing different degrees of restriction on the mapping between subjects and observers.  In addition, two notions of 
consistency were also modeled.  Partial Consistency implies that two observers are updated in the same order, and 
Complete Consistency adds to this the fact that two observers are updated the same number of times.  The results 
indicate that the most restrictive variant is always partially consistent by definition, and that all three variants can be 
made both partially and completely consistent with the introduction of either local or global lock tables. 
 
 
1.  Introduction 
 

The goal of this research project is to explore how to maintain data consistency between 
multiple observers in a system based on the Observer design pattern.  I seek to enumerate the 
minimum constraints that must be imposed on such a system to ensure that two or more observers 
viewing the same subject always reflect a synchronized view of that subject’s state. 
 
 
1.1 Motivation 
 

My Master’s thesis is to design a tool that records, manipulates, and plays back ETMS data 
feeds to be used as test feeds to air traffic control applications.  It makes sense that users of the tool 
should be able to view the information in a feed in multiple ways.  For example, a user might wish 
to simultaneously view the current locations of all planes both visually (on a two-dimensional map) 
and in table format.  In addition, the user might make a modification in one of the views—say the 
table format—and expect the change be automatically reflected in the other view.  Hence, it is 
important that both views always display a consistent and synchronized view of the data. 

 
The Observer design pattern is a good model for this program.  It allows you to define 

different display modules that are decoupled from each other yet act as if they are synchronized 
when they view the same object.  It also gives you the flexibility of dynamically adding and 
removing views of the data without the need to modify and recompile your code.  The challenge 
however is to maintain synchronization between observers as the mapping between subjects and 
observers becomes more complex.  There may be instances where it is desirable to have observers 
view multiple subjects—but not necessarily the same set of subjects between observers.  For 
example, the table view in the ETMS Feed Parser (EFP) might need to observe and integrate 
multiple feeds of data—say, input from two different radar sources.  The visual view might also 
observe these two input streams, but in addition observe a weather feed to allow it to predict the 
trajectories of each plane and display both the actual and predicted trajectories on a map.  If both 
these views happen to be active, it is important that changes in the two radar feeds get immediately 
propagated to both views to prevent the visual view from predicting trajectories based on stale data. 
 



2.  Definitions 
 

2.1  Observer Pattern Topologies 
 
 There are three different variants of the Observer pattern that are of interest; they differ with 
respect to the allowable subject-observer mappings (topologies). 
 
 
Most-Restrictive Topology 
 
 In this variant of the Observer design pattern, observers are constrained to view at most one 
subject.  Multiple observers are allowed to view the same subject.  Figure 1 is an example of an 
acceptable topology. 
 
 

 
Figure 1:  An example of the Most-Restrictive topology. 

 
 
Semi-Restrictive Topology 
 
 In this variant of the Observer design pattern, observers are allowed to view a set of 
subjects.  That is, the subjects in the system are partitioned into one or more distinct sets, and each 
observer can view the subjects in at most one of these sets.  Multiple observers are allowed to view 
the same set of subjects.  Figure 2 is an example of an acceptable topology. 
 
 

 
Figure 2:  An example of the Semi-Restrictive topology. 

 
 
 
 
 
 
 



Least-Restrictive Topology 
 
 In this variant of the Observer design pattern, observers are allowed to view an arbitrary 
number of subjects, independent of other observers.  There are essentially no restrictions on the 
subject-observer mapping.  Figure 3 is an example of an acceptable topology. 
 
 

 
Figure 3:  An example of the Least-Restrictive topology. 

 
 
2.2  Consistency 
 
 I use two different notions of consistency in this experiment—complete consistency and 
partial consistency.  For the following two subsections, assume that there exist two observers, O and 
P.  Each observer has a set of subjects it is monitoring, and each observer maintains a history of the 
notifications it has received.  For example, observer O might look like this: 
 
 O’s subjects = {S1, S2, S3} 
 O’s notification history = {S1, S3, S2, S1} 
 
In this example, S1, S2, and S3 represent three distinct subjects.  Observer O’s notification history 
indicates that O was first notified of a change in subject S1, then S3, then S2, and most recently S1 
again. 
 
 
Complete Consistency 
 
 Complete consistency implies that two observers are perfectly synchronized with respect to 
the state information they maintain about the subjects they are jointly viewing.  Two observers are 
completely consistent if they have both been notified of changes the same number of times and in 
the same order by their common subjects.  See the text box below for an example.  Ideally, we 
would like to achieve a system in which every pair of observers is guaranteed to be completely 
consistent at any point in time. 
 

 
 
 
Partial Consistency 
 
 Partial consistency makes a weaker statement compared to 
complete consistency—it only implies that two observers have 
received change notifications from their common subjects in the 

Examples Of Complete 
Consistency 

 
Here is an example where 
observers O and P are 
completely consistent (note 
that both O and P have been 
notified by S1 and S2 in the 
same order {S1,S2,S1}): 
 

O’s subjects = 
{S1, S2, S3} 



same order.  This guarantees that two observers will always show a mutually consistent view of the 
data, though one observer’s data might reflect an earlier state of the system.  This notion of 
consistency might be acceptable to an application that emphasizes state coherence over the 
timeliness of data (for instance, an air traffic control application is often more interested in 
providing a valid snapshot in time of an airspace region than in providing an inconsistent view of 
the current air traffic). 
 

Two observers are partially consistent if they have both been notified of changes in the same 
order (but not necessarily the same number of times) by the set of subjects being monitored by both.  
See the text box below for an example. 
 
3.  Methods 
 
 I modeled a system based on the observer design pattern using the Alloy modeling language.  
I was then able to use Alloy’s automatic analyzer to explore what kinds of constraints are necessary 
to achieve various levels of consistency among the observers in the system. 
  
 It is not straightforward that Alloy is the best choice to model this problem.  The idea of 
maintaining consistency amidst change requires one to take time into account, and Alloy is ideal for 
modeling structural complexity rather than temporal complexity.  However, Alloy has the 
advantage in that I can say as little as I want to about the system and incrementally add constraints, 
whereas in a prototype based on a programming language I would have to build a larger 
infrastructure to allow for more possibilities.  In the end, I decided it was worth the extra effort to 
model the temporal aspects in Alloy in order to gain the benefits of Alloy’s compact representation. 
 
 
3.1  Alloy Model Summary 
 

The actual Alloy model can be found in the Appendix.  The model is well-organized and 
thoroughly documented. 
 

The approach I took was to initially model the Least-Restrictive variant of the Observer 

Examples Of Partial Consistency 
 

Here is an example where observers O and P are partially consistent (note that this is the same example as the 
example above where O and P were not completely consistent): 
 

O’s subjects = {S1, S2, S3} 
P’s subjects = {S1, S2, S4, S5} 
O’s notification history = {S1, S3, S2, S1, S3} 
P’s notification history = {S4, S1, S2, S5} 

 
Here is an example where observers O and P are not partially consistent (note that the only difference between this 
example and the previous one is that S2 notified P before S1 was able to): 
 

O’s subjects = {S1, S2, S3} 
P’s subjects = {S1, S2, S4, S5} 
O’s notification history = {S1, S3, S2, S1, S3} 
P’s notification history = {S4, S2, S1, S5} 



design pattern.  The remaining two variants could then be easily modeled by adding a few 
constraints on the system topology (refer to the section TOPOLOGY FUNCTIONS in the Alloy 
model).  I focused my efforts on modeling the transmission of notification messages from subjects 
to observers.  I defined two basic signatures, Subject and Observer.  Each Observer maintains a 
history of the notifications it has received from the subjects it is viewing.  This history takes the 
form of a sequence (I utilized the seq.als model provided with Alloy), where notifications by 
subjects are proxied by the subject atoms themselves.  See Figure 4 for an example snapshot of a 
system. 
 
 

 
Figure 4:  Snapshot of a Least-Restrictive topology system. 

 
 

In addition to the basic Subject and Observer signatures, the model maintains a mapping 
between atoms of these types.  The subjects, observers, and topology together make up a snapshot 
of the system’s state.  I then modeled the basic rules governing valid state transitions (refer to the 
STATE TRANSITION RULES section in the model).  The two major rules are 
NoTopologyChange, which prevents the topology from changing, and 
AtMostOneNewNotifPerObserver, which handles the fact that an Observer can handle at 
most one notification at a time. 
 

Finally, I created two functions CompletelyConsistent and 
PartiallyConsistent that determined whether two observers were completely or partially 
consistent, respectively.  These two functions became the basis of the assertions I later made about 
the system.  Refer to the section CONSISTENCY DEFINITIONS in the model for more 
information. 
 
 
3.2  Assumptions  
 
 I simplified the design of the model by making two main assumptions.  I first assumed that 
if an Observer is notified of a change in one of its subjects, it immediately calls update on the 
subject to retrieve its latest state.  This allowed me to consolidate the notification and update 
operations into a single notification operation, and as a result my model only needed to maintain the 
notification history for a given Observer.  This assumption is valid since it is too difficult to 
maintain consistency among observers if one cannot guarantee that an Observer will react to a 
change in state. 
 



 I secondly assumed that the system topology does not change between state transitions.  At 
first this may seem to rule out the ability of my system to support the dynamic adding and deletion 
of views.  Instead, it makes it simpler to reason about the correctness of the model, and this 
reasoning can be easily extended to a model that allows for topology changes.  In particular, if the 
static-topology model demonstrates that a system starting in a completely or partially consistent 
state will always remain consistent, then the dynamic-topology model would simply need to 
guarantee that a valid topology change maintains this same level of consistency. 
 
3.3  Questions Asked of Model 
 

There were two questions I was interested in answering with my model: 
 

1) What constraints on the system are necessary to guarantee that for all possible sequences of 
states, every pair of Observers is always partially consistent? 

 
2) What constraints on the system are necessary to guarantee that for all possible sequences of 

states, every pair of Observers is always completely consistent? 
 

Since I actually modeled three variants of the observer design pattern, I ultimately created a 
total of six assertions (one per each pair of question and variant).  These assertions can be found in 
section CONSISTENCY INVARIANTS & ASSERTIONS of the model. 
 
 
 
 
 
4.  Evaluation 
 
4.1  Results 
 

This project turned into more of a modeling effort of the observer design pattern and notions 
of consistency rather than an exploration of system constraints.  This was because almost all my 
effort went into creating a viable model of the system.  This task was complicated by my lack of 
experience with Alloy, subtle bugs in my logic, and issues with the analyzer itself.  However, I did 
find some useful information regarding my original questions.  In addition, I now have a solid 
framework from which to launch queries regarding the observer design pattern. 
 
 One of the first results of my experiment was that Alloy asserted that the Most-Restrictive 
topology was by definition always partially consistent.  Indeed, since observers are allowed to view 
at most one subject at a time, two observers viewing the same subject will always be notified in the 
same order.  Note that two observers who are not viewing any common subjects are by definition 
always partially (and completely) consistent.  Of course, the Most-Restrictive topology does not 
guarantee complete consistency—to achieve this level of consistency for this model, I simply had to 
add a transition rule that forced a subject who notified one of its observers to notify all of its 
observers.  With this transition rule in place, Alloy asserted that the Most-Restrictive topology 
would always be completely consistent. 
 



 According to the Alloy analyzer, the Semi-Restrictive topology by definition did not 
guarantee partial consistency.  If I have two observers viewing the same two subjects, and both 
subjects send out a notification, the notifications might reach each observer in different orders.  I 
was able to achieve partial consistency when I again added the rule that a subject must notify either 
none of its observers or all of its observers.  Since the model does not allow Observers to process 
more than one notification at a time, one subject essentially “muscled out” the others and 
transmitted its notifications to all Observers (in retrospect, it would have been nice to rework the 
model to prevent one subject from implicitly dominating the other subjects during a particular state 
transition).    This rule roughly corresponds to the presence of a lock table, in which only one 
subject wins the right to talk to the observers within a given period of time.  With such a lock 
structure in place, we can now guarantee that all observers viewing the same set of subjects will 
receive notifications from those subjects in the same order.  In fact, we can also extrapolate that this 
rule would make the Semi-Restrictive topology completely consistent as well.  Unfortunately, the 
analyzer kept crashing before returning with the final answer to this question. 
 
 Finally, the Alloy analyzer stated that the same rule used in the Semi-Restrictive system 
would achieve partial consistency in a Least-Restrictive system.  Again, the rule is analogous to a 
global lock table, where a subject must lock all of its observers before sending out notifications.  
Even if there are complicated dependency relationships between subjects and observers (as in 
Figure 3), the locking mechanism would guarantee that notifications arrive in the proper order.  This 
analysis also probably extends to the complete consistency case, but again the analyzer could not 
finish checking this assertion. 
 

One interesting note is that the Least-Restrictive system seems to require a global lock table, 
whereas the Semi-Restrictive system would require only local lock tables (because the subjects and 
observers in the Semi-Restrictive system form partitions).  This is an important distinction when 
performance is of concern, and hence is an example of a useful result that came from directly 
modeling these various types of systems. 

 
 

4.2  Retrospection 
 

I had encountered some intractability issues early on in my first version of the model.  One 
reason is that I had originally attempted to model a history of notifications as a List, complete with 
functions such as list comparisons and filtering operations.  However, my functions were defined 
using recursion, which is not supported by the current version of Alloy.  Due to my inexperience 
with Alloy, I also made the mistake of modeling the topology of the system by storing a subject’s 
observers directly in the Subject signature, and similarly for the Observer signature.  Since a given 
Subject atom points to a fixed Observer atom, and because each Observer atom also points to a 
fixed sequence of notifications, a simple state transition in which an Observer received a new 
notification would require a new Subject, Observer, and Sequence atom.  In other words, the first 
version of the model required a large scope for simple transitions.  My second model solved this 
issue by storing the mapping between subjects and observers, and between observers and traces, in a 
separate signature.  Finally, I had problems checking some of my assertions because Alloy would 
consistently crash before returning an answer. 

 
Overall, I feel that this project gave me invaluable experience in designing large models in 

Alloy.  I felt that it made up for my mistakes on the Elevator problem, where I did not fully 



understand the power of Alloy and attempted to model my elevator system procedurally rather than 
declaratively.  My impression of Alloy is that it has a place in the design of large software systems.  
In particular, I felt the ability to incrementally build your model and receive immediate feedback via 
the analyzer were its key selling points.  The version of Alloy I was using was a little unstable, but 
that is to be expected from a beta release.  One feature in particular I would find useful is if the 
Alloy analyzer provided feedback regarding why a solution cannot be found.  The right feedback 
can differentiate between a simple logic mistake and a generally flawed approach.  My hope is that 
future improvements will allow me to make much more complex models and queries than what is 
possible right now.  In any case, I hope to revisit this problem again and to continue using this tool 
while conducting research for my Master’s thesis. 
 



/****************************************************** 
Roshan Gupta, 5/13/02 
 
This model explores notions of consistency within 
the Observer design pattern. 
 
 
ASSUMPTIONS: 
- If an Observer is notified of a change in one of 
  its subjects, it immediately calls "Subject.Update" 
  to retrieve the latest state.  Hence, we can  
  consolidate the notification and update operations 
  into a single notification operation. 
- The system topology is fixed, i.e the number of and 
  mappings between subjects and observers in a given 
  system cannot change.  This shouldn't affect the 
  correctness of this model with respect to the goals 
  we are trying to achieve. 
 
*******************************************************/ 
 
module ObserverDesignPattern 
 
open std/seq 
open std/ord 
 
 
 
// 
// SIGNATURES 
// 
 
 
// A subject or publisher object in the design pattern. 
 
sig Subject {} 
 
 
// An observer or subscriber object in the design pattern. 
 
sig Observer {} 
 
 
// A snapshot of the state of the observer-pattern system we are modeling. 
 
sig State { 
 -- The observers in the system. 
 observers: set Observer, 
 
 -- The subjects in the system. 
 subjects: set Subject, 
 
 -- List of observers viewing a given Subject. 
 subToObsMap: subjects -> observers, 
 
 -- List of subjects being viewed by a given Observer. 
 obsToSubMap: observers -> subjects, 
 
 



 -- The order in which a given Observer has been notified by its 
 -- Subjects (a notification is proxied by the actal Subject atom). 
 -- Note that the last element in the sequence represents the most 
 -- recent notification. 
 -- 
 -- For example, notifTrace = {S1, S3, S2, S1} means that the Observer 
 -- first received a notification from subject S1, then S3, then S2, and  
 -- most recently S1 again. 
 notifTrace: observers ->! Seq[Subject] 
} 
{ 
 -- The mapping of observers to subjects is the transpose of the mapping 
 -- of subjects to observers. 
 obsToSubMap = ~subToObsMap 
 
 -- An Observer can only receive notifications from the subjects it 
 -- is monitoring.  This is based on the assumption that the 
 -- topology is fixed (i.e. any notification from a particular subject  
 -- in its trace implies it has and will always monitor that subject). 
 all o: observers | SeqElems(o.notifTrace) in o.obsToSubMap 
} 
 
 
 
 
// 
// STATE INITIALIZATION FUNCTIONS 
// 
 
 
// Initializes the State's observers' notification traces to empty. 
 
fun InitTracesToEmpty (s: State) { 
 all o: s.observers | SeqIsEmpty(s.notifTrace[o]) 
} 
 
 
 
 
// 
// STATE TRANSITION RULES & FUNCTIONS 
// 
 
 
// Ensures Subject-Observer mappings do not change between 
// state transitions. 
fun Rule_NoTopologyChange (s, s': State) { 
 s'.subjects = s.subjects 
 s'.observers = s.observers 
 s'.subToObsMap = s.subToObsMap 
} 
 
 
// Ensures that each Observer receives at most one new notification 
// during a state transition.  Also, ensures that each Observer's 
// notification history remains the same. 
 
fun Rule_AtMostOneNewNotifPerObserver (s, s': State) { 
 all o: s'.observers | { 



  SeqStartsWith(s'.notifTrace[o], s.notifTrace[o]) 
  #SeqInds(s'.notifTrace[o]) < #SeqInds(s.notifTrace[o]) + 2 
 } 
} 
 
 
// Ensures that if a Subject notified one of its observers during a state 
// transition, it must have notified all of its observers during that 
// same transition. 
 
fun Rule_NotifyOneNotifyAllInSameTransition (s, s': State) { 
 all j: s'.subjects | { 
  all o: s'.subToObsMap[j] | { 
   receivedNotifFromSubject(s, s', o, j) implies { 
    all p: s'.subToObsMap[j] - o | { 
     receivedNotifFromSubject(s, s', p, j) 
    } 
   } 
  } 
 } 
} 
 
 
// Force at least one new notification to occur during a state transition. 
 
fun Rule_ForceAtLeastOneNewNotification (s, s': State) { 
 some o: s'.observers | { 
  #SeqInds(s'.notifTrace[o]) = #SeqInds(s.notifTrace[o]) + 1 
 } 
} 
 
 
// Generate a sequence of ordered states using valid state transitions. 
 
fun generateTransitions () { 
 InitTracesToEmpty(Ord[State].first) 
 all disj s, s': State | { 
  (s' = OrdNext(s)) implies { 
   Rule_NoTopologyChange(s, s') 
   Rule_AtMostOneNewNotifPerObserver(s, s') 
  } 
 }  
} 
 
 
// Generate a sequence of ordered states using valid state transitions. 
// Ensure that at least one new notification occurs between states. 
 
fun generateForcedTransitions () { 
 InitTracesToEmpty(Ord[State].first) 
 all disj s, s': State | { 
  (s' = OrdNext(s)) implies { 
   Rule_NoTopologyChange(s, s') 
   Rule_AtMostOneNewNotifPerObserver(s, s') 
   Rule_ForceAtLeastOneNewNotification(s, s') 
  } 
 }  
} 
 



 
// Helper function that checks whether Observer "o" has received a new 
// notification from Subject "j" during the state transition. 
 
fun receivedNotifFromSubject (s, s': State, o: Observer, j: Subject) { 
 s'.notifTrace[o] = SeqAdd(s.notifTrace[o], j) 
} 
 
 
 
 
// 
// CONSISTENCY DEFINITIONS 
// 
 
 
// Ensures that two Observers are completely consistent, i.e. have been  
// notified the same number of times and in the same relative order by  
// the set of subjects being monitored by both. 
// 
// Example: 
// 
// o.subjects = {S1, S2, S3} 
// p.subjects = {S1, S2, S4, S5} 
// o.notifTrace = {S1, S3, S2, S1, S3} 
// p.notifTrace = {S4, S1, S2, S5, S1} 
// 
// Here are two examples that are not completely consistent: 
// 
// o.subjects = {S1, S2, S3} 
// p.subjects = {S1, S2, S4, S5} 
// o.notifTrace = {S1, S3, S2, S1, S3} 
// p.notifTrace = {S4, S1, S2, S5}  -- missing final S1 
// 
// o.subjects = {S1, S2, S3, S5} 
// p.subjects = {S1, S2, S4, S5} 
// o.notifTrace = {S1, S3, S2, S1, S3} -- missing final S5 
// p.notifTrace = {S4, S1, S2, S1, S5} 
 
fun CompletelyConsistent (s: State, o, p: Observer) { 
 let commonSubjects = s.obsToSubMap[o] & s.obsToSubMap[p] | { 
  sameRelativeSeqOrder(s.notifTrace[o], s.notifTrace[p], commonSubjects)  

&&  
  sameRelativeSeqOrder(s.notifTrace[p], s.notifTrace[o], commonSubjects) 
 } 
} 
 
 
// Ensures that two Observers are partially consistent, i.e. have been  
// notified in the same relative order (but not necessarily the same  
// number of times) by the set of subjects being monitored by both. 
// 
// Examples: 
// 
// o.subjects = {S1, S2, S3} 
// p.subjects = {S1, S2, S4, S5} 
// o.notifTrace = {S1, S3, S2, S1, S3} 
// p.notifTrace = {S4, S1, S2, S5} 
// 



// o.subjects = {S1, S2, S3, S5} 
// p.subjects = {S1, S2, S4, S5} 
// o.notifTrace = {S1, S3, S2, S1, S3} 
// p.notifTrace = {S4, S1, S2, S1, S5} 
//  
// Here is an example that is not partially consistent: 
// 
// o.subjects = {S1, S2, S3} 
// p.subjects = {S1, S2, S4, S5} 
// o.notifTrace = {S1, S3, S2, S1, S3} 
// p.notifTrace = {S4, S2, S1, S1}  -- S2 and S1 out of order 
 
fun PartiallyConsistent (s: State, o, p: Observer) { 
 let commonSubjects = s.obsToSubMap[o] & s.obsToSubMap[p] | { 
  sameRelativeSeqOrder(s.notifTrace[o], s.notifTrace[p], commonSubjects)  

||  
  sameRelativeSeqOrder(s.notifTrace[p], s.notifTrace[o], commonSubjects) 
 } 
} 
 
 
// Ensures that sequence A has the same relative ordering and at most the same 
// number of elements as sequence B with respect to the elements in "elementList". 
// Note that this function does NOT guarantee that the same holds true for  
// sequence B with respect to sequence A. 
// 
// Example: 
// 
// elementList = {S1, S2} 
// seqA = {S4, S1, S2, S5} 
// seqB = {S1, S3, S2, S1, S3} 
// 
// Here are 2 examples that do not satisfy this function: 
// 
// elementList = {S1, S2} 
// seqA = {S1, S3, S2, S1, S3}  -- has extra S1 
// seqB = {S4, S1, S2, S5} 
// 
// elementList = {S1, S2} 
// seqA = {S1, S2, S1}   -- missing an S2 
// seqB = {S1, S2, S2, S1} 
 
fun sameRelativeSeqOrder[t] (seqA, seqB: Seq[t], elementList: set t) { 
 
 -- 
 -- If seqA has the same relative ordering and at most the same 
 -- number of elements as sequence B (with respect to those  
 -- elements in "elementList"), then the following  
 -- invariant holds: 
 -- 
 --  For all indicies i in seqA, 
 --  There is some index j in seqB, such that 
 --    The number of each element in "elementList" up to index i 
 --   in seqA equals the number of the same element up to index 
j 
 --   in seqB. 
 -- 
 -- 
 -- We simply translate the above invariant into Alloy and assume it holds 



 -- for the input sequences. 
 -- 
 
 // If elementList is empty, then the invariant is vacuously true. 
 no elementList || 
 
 // If seqA doesn't contain any elements in "elementList", then the  
 // invariant is vacuously true (handles empty seqA case). 
 no (SeqElems(seqA) & elementList) || 
 
 // Otherwise, seqB can't be empty, and it must contain at least one 
 // element in "elementList" for the invariant to possibly hold. 
 (not SeqIsEmpty(seqB) &&  
 some (SeqElems(seqB) & elementList) && 
 all i: SeqInds(seqA) | { 
  some j: SeqInds(seqB) | { 
   all elem: elementList | { 
    #(elem.~(((OrdPrevs(i) + i) -> t) & seqA.seqElems)) =  

  #(elem.~(((OrdPrevs(j) + j) -> t) & seqB.seqElems)) 
   } 
  } 
 }) 
} 
 
 
 
 
// 
// TOPOLOGY FUNCTIONS 
// 
 
// Creates a topology that only allows observers to view  
// a single subject. 
// 
// This topology will be known as the "MostRestrictiveTopology". 
 
fun Init_MostRestrictiveTopology (s: State) { 
 all o: s.observers | { 
  #(s.obsToSubMap[o]) < 2 
 } 
} 
 
 
// Creates a topology that allows multiple observers to view  
// the same set of subjects--that is, the subjects in a State 
// are partitioned into one or more distinct sets, and each 
// Observer views subjects in at most one of these sets. 
// 
// This topology will be known as the "SemiRestrictiveTopology". 
 
fun Init_SemiRestrictiveTopology (s: State) { 
 -- For any two Observers in the State, the sets of subjects being 
 -- viewed by each either do not overlap or completely overlap. 
 all o, p: s.observers | { 
  no (s.obsToSubMap[o] & s.obsToSubMap[p]) || 
  s.obsToSubMap[o] = s.obsToSubMap[p]   
 } 
} 
 



 
// Creates a topology that allows observers to view arbitrary 
// sets of subjects, independent of other observers. 
// 
// This topology will be known as the "LeastRestrictiveTopology". 
 
fun Init_LeastRestrictiveTopology (s: State) { 
 -- Nothing to do!  This is the default behavior of the model. 
} 
 
 
// Force some kind of mapping (topology) between Subjects and Observers. 
 
fun ForceSomeTopology (s: State) { 
 some s.observers 
 some s.subjects 
 some s.subToObsMap 
} 
 
 
// Force the existence of multiple subjects and observers in the state. 
 
fun ForceMultipleSubjectsAndObservers (s: State) { 
 #s.observers > 1 
 #s.subjects > 1 
} 
 
 
// Force at least two subjects to be viewed. 
 
fun ForceAtLeastTwoSubjectsToBeViewed (s: State) { 
 #s.obsToSubMap[Observer] > 1 
} 
 
 
// Force at least one Subject to have at least two observers. 
 
fun ForceAtLeastOneSubjectToHaveAtLeastTwoObservers (s: State) { 
 some j: Subject | #s.subToObsMap[j] > 1 
} 
 
 
// Force at least one Observer to view at least two subjects (note: 
// this cannot be used with the MostRestrictiveTopology). 
 
fun ForceAtLeastOneObserverToViewAtLeastTwoSubjects (s: State) { 
 some o: Observer | #s.obsToSubMap[o] > 1 
} 
 
 
// Force at least two Observers to view at least two subjects (note: 
// this cannot be used with the MostRestrictiveTopology). 
 
fun ForceAtLeastTwoObserversToViewAtLeastTwoSubjects (s: State) { 
 some disj o, p: Observer | { 
  #s.obsToSubMap[o] > 1 
  #s.obsToSubMap[p] > 1 
 } 
} 



 
 
// Force at least two observers to not view all the same subjects. 
 
fun ForceAtLeastTwoObserversToHaveDifferentSubjectSets (s: State) { 
 some disj o, p: s.observers | { 
  s.obsToSubMap[o] != s.obsToSubMap[p] 
 } 
} 
 
 
// Force at least two observers to have partially (but not completely) 
// overlapping sets of subjects (note:  this only works for the  
// LeastRestrictiveTopology). 
 
fun ForceAtLeastTwoPartiallyOverlappingSubjectSets (s: State) { 
 some disj o, p: s.observers | { 
  some (s.obsToSubMap[o] & s.obsToSubMap[p]) 
  s.obsToSubMap[o] != s.obsToSubMap[p] 
 } 
} 
 
 
 
 
// 
// CONSISTENCY INVARIANTS & ASSERTIONS 
// 
 
 
// INVARIANT:  for all possible sequences of states, every  
// pair of Observers is always partially consistent. 
 
fun AlwaysPartiallyConsistentInvariant () { 
 all s: State | { 
  all o, p: s.observers | { 
   PartiallyConsistent(s, o, p) 
  } 
 } 
} 
 
 
// Assert the AlwaysPartiallyConsistentInvariant holds for the MostRestrictive  
// topology. 
// 
// Note:  this assertion holds. 
 
assert AlwaysPartiallyConsistent_MostRestrictiveTopology { 
 {Init_MostRestrictiveTopology(Ord[State].first) && generateTransitions()}  
 
 implies  
 
 AlwaysPartiallyConsistentInvariant() 
} 
 
 
// Assert the AlwaysPartiallyConsistentInvariant holds for the SemiRestrictive  
// topology. 
// 



// Note:  this assertion holds. 
 
assert AlwaysPartiallyConsistent_SemiRestrictiveTopology { 
 { 
  Init_SemiRestrictiveTopology(Ord[State].first) 
  generateTransitions() 
 
  -- Additional transition rules required for assertion to hold. 
  all disj s, s': State | { 
   (s' = OrdNext(s)) implies { 
    Rule_NotifyOneNotifyAllInSameTransition(s, s') 
   } 
  } 
 } 
 
 implies  
 
 AlwaysPartiallyConsistentInvariant() 
} 
 
 
// Assert the AlwaysPartiallyConsistentInvariant holds for the LeastRestrictive  
// topology. 
// 
// Note:  this assertion holds. 
 
assert AlwaysPartiallyConsistent_LeastRestrictiveTopology { 
 { 
  Init_LeastRestrictiveTopology(Ord[State].first) 
  generateTransitions() 
 
  -- Additional transition rules required for assertion to hold. 
  all disj s, s': State | { 
   (s' = OrdNext(s)) implies { 
    Rule_NotifyOneNotifyAllInSameTransition(s, s') 
   } 
  } 
 } 
 
 implies  
 
 AlwaysPartiallyConsistentInvariant() 
} 
 
 
 
// INVARIANT:  for all possible sequences of states, every  
// pair of Observers is always completely consistent. 
 
fun AlwaysCompletelyConsistentInvariant () { 
 all s: State | { 
  all o, p: s.observers | { 
   CompletelyConsistent(s, o, p) 
  } 
 } 
} 
 
 
// Assert the AlwaysCompletelyConsistentInvariant holds for the MostRestrictive  



// topology. 
// 
// Note:  this assertion holds. 
 
assert AlwaysCompletelyConsistent_MostRestrictiveTopology { 
 { 
  Init_MostRestrictiveTopology(Ord[State].first) 
  generateTransitions() 
 
  -- Additional transition rules required for assertion to hold. 
  all disj s, s': State | { 
   (s' = OrdNext(s)) implies { 
    Rule_NotifyOneNotifyAllInSameTransition(s, s') 
   } 
  } 
 } 
 
 implies  
 
 AlwaysCompletelyConsistentInvariant() 
} 
 
 
// Assert the AlwaysCompletelyConsistentInvariant holds for the SemiRestrictive  
// topology. 
// 
// Note:  Alloy seems to crash on this one. 
 
assert AlwaysCompletelyConsistent_SemiRestrictiveTopology { 
 { 
  Init_SemiRestrictiveTopology(Ord[State].first) 
  generateTransitions() 
 
  -- Additional transition rules required for assertion to hold. 
  all disj s, s': State | { 
   (s' = OrdNext(s)) implies { 
    Rule_NotifyOneNotifyAllInSameTransition(s, s') 
   } 
  } 
 } 
 
 implies  
 
 AlwaysCompletelyConsistentInvariant() 
} 
 
 
// Assert the AlwaysCompletelyConsistentInvariant holds for the LeastRestrictive  
// topology. 
// 
// Note:  Alloy seems to crash on this one. 
 
assert AlwaysCompletelyConsistent_LeastRestrictiveTopology { 
 {Init_LeastRestrictiveTopology(Ord[State].first) && generateTransitions()}  
 
 implies  
 
 AlwaysCompletelyConsistentInvariant() 
} 



 
 
 
 
// 
// MODEL DEBUGGING ASSERTIONS 
// 
 
 
// If two Observers are completely consistent, it should hold by definition that 
// they are partially consistent as well. 
 
assert CompleteImpliesPartialConsistency { 
 all s: State | { 
  all o, p: s.observers | CompletelyConsistent(s, o, p) implies  

PartiallyConsistent(s, o, p) 
 } 
} 
 
 
// This assertion is FALSE.  Partial consistency does not guarantee complete  
// consistency. 
 
assert FALSE_PartialImpliesCompleteConsistency { 
 all s: State | { 
  all o, p: s.observers | PartiallyConsistent(s, o, p) implies  

CompletelyConsistent(s, o, p) 
 } 
} 
 
 
// The order of arguments to CompletelyConsistent and PartiallyConsistent does not  
// matter. 
 
assert ArgumentOrderNotImportant { 
 all s: State | { 
  all o, p: s.observers | { 
   CompletelyConsistent(s, o, p) implies  

CompletelyConsistent(s, p, o) 
   PartiallyConsistent(s, o, p) implies  

PartiallyConsistent(s, p, o) 
  } 
 } 
} 
 
 
// Two Observers whose notifTraces are both empty are always completely and  
// partially consistent. 
 
assert EmptyTraceConsistency { 
 all s: State | { 
  all o, p: s.observers | { 
   ((SeqIsEmpty(s.notifTrace[o])) && (SeqIsEmpty(s.notifTrace[p])))  

  implies { 
    CompletelyConsistent(s, o, p) 
    PartiallyConsistent(s, o, p)    
   } 
  } 
 } 



} 
 
 
// Two Observers where only one observer has an empty notifTrace are always 
// partially consistent. 
 
assert OneEmptyTraceImpliesPartialConsistency { 
 all s: State | { 
  all o, p: s.observers | { 
   ((SeqIsEmpty(s.notifTrace[o])) &&  

  (not SeqIsEmpty(s.notifTrace[p]))) implies { 
    PartiallyConsistent(s, o, p)    
   } 
  } 
 } 
} 
 
 
// This assertion is FALSE.  Two Observers where only one observer has an empty  
// notifTrace does not imply that the observers are always completely consistent. 
 
assert FALSE_OneEmptyTraceImpliesCompleteConsistency { 
 all s: State | { 
  all o, p: s.observers | { 
   ((SeqIsEmpty(s.notifTrace[o])) &&  

  (not SeqIsEmpty(s.notifTrace[p]))) implies { 
    CompletelyConsistent(s, o, p)    
   } 
  } 
 } 
} 
 
 
// Two Observers who are not monitoring common subjects are always both completely  
// and partially consistent. 
 
assert NoCommonSubjectsConsistency { 
 all s: State | { 
  all o, p: s.observers | { 
   let commonSubjects = s.obsToSubMap[o] & s.obsToSubMap[p] | { 
    no commonSubjects implies { 
     CompletelyConsistent(s, o, p) 
     PartiallyConsistent(s, o, p) 
    } 
   } 
  } 
 } 
} 
 
 
// Asserts that, by definition, all observers in the system have a 
// notification trace. 
 
assert AllObserversHaveTrace { 
 all s: State | { 
  some s.observers implies { 
   all o: s.observers | some s.notifTrace[o] 
  } 
 } 



} 
 
 
 
 
// 
// EXAMPLE TRACE GENERATION FUNCTIONS 
// 
 
 
// Generate an interesting state trace of the MostRestrictive topology. 
 
fun generateMostRestrictiveTopologyTrace () { 
 Init_MostRestrictiveTopology(Ord[State].first) 
 
 ForceSomeTopology(Ord[State].first) 
 ForceMultipleSubjectsAndObservers(Ord[State].first) 
 ForceAtLeastTwoSubjectsToBeViewed(Ord[State].first) 
 ForceAtLeastTwoObserversToHaveDifferentSubjectSets(Ord[State].first) 
 ForceAtLeastOneSubjectToHaveAtLeastTwoObservers(Ord[State].first) 
 
 generateForcedTransitions() 
} 
 
 
// Generate an interesting state trace of the SemiRestrictive topology. 
 
fun generateSemiRestrictiveTopologyTrace () { 
 Init_SemiRestrictiveTopology(Ord[State].first) 
 
 ForceSomeTopology(Ord[State].first) 
 ForceMultipleSubjectsAndObservers(Ord[State].first) 
 ForceAtLeastTwoSubjectsToBeViewed(Ord[State].first) 
 ForceAtLeastTwoObserversToHaveDifferentSubjectSets(Ord[State].first) 
 ForceAtLeastOneSubjectToHaveAtLeastTwoObservers(Ord[State].first) 
 
 ForceAtLeastOneObserverToViewAtLeastTwoSubjects(Ord[State].first) 
 ForceAtLeastTwoObserversToViewAtLeastTwoSubjects(Ord[State].first) 
 
 generateForcedTransitions() 
 
 -- Additional transition rules. 
 all disj s, s': State | { 
  (s' = OrdNext(s)) implies { 
   --Rule_NotifyOneNotifyAllInSameTransition(s, s') 
  } 
 } 
} 
 
 
// Generate an interesting state trace of the LeastRestrictive topology. 
 
fun generateLeastRestrictiveTopologyTrace () { 
 Init_LeastRestrictiveTopology(Ord[State].first) 
 
 ForceSomeTopology(Ord[State].first) 
 ForceMultipleSubjectsAndObservers(Ord[State].first) 
 ForceAtLeastTwoSubjectsToBeViewed(Ord[State].first) 
 ForceAtLeastTwoObserversToHaveDifferentSubjectSets(Ord[State].first) 



 ForceAtLeastOneSubjectToHaveAtLeastTwoObservers(Ord[State].first) 
 
 ForceAtLeastOneObserverToViewAtLeastTwoSubjects(Ord[State].first) 
 --ForceAtLeastTwoObserversToViewAtLeastTwoSubjects(Ord[State].first) 
 ForceAtLeastTwoPartiallyOverlappingSubjectSets(Ord[State].first) 
 
 generateForcedTransitions() 
} 
 
 
 
 
 
// 
// COMMANDS 
// 
 
 
// Consistency Assertions: 
check AlwaysPartiallyConsistent_MostRestrictiveTopology for 4 
check AlwaysPartiallyConsistent_SemiRestrictiveTopology for 4 
check AlwaysPartiallyConsistent_LeastRestrictiveTopology for 4 
 
check AlwaysCompletelyConsistent_MostRestrictiveTopology for 4 
check AlwaysCompletelyConsistent_SemiRestrictiveTopology for 4 
check AlwaysCompletelyConsistent_LeastRestrictiveTopology for 4 
 
 
 
// Generate Example Traces: 
run generateMostRestrictiveTopologyTrace for 3 
run generateSemiRestrictiveTopologyTrace for 3 
run generateLeastRestrictiveTopologyTrace for 3 
 
 
 
// Debugging Assertions (sanity checks): 
-- No counterexamples should exist. 
--check CompleteImpliesPartialConsistency for 4 
--check ArgumentOrderNotImportant for 4 
--check EmptyTraceConsistency for 4 
--check OneEmptyTraceImpliesPartialConsistency for 4 
--check NoCommonSubjectsConsistency for 4 
--check AllObserversHaveTrace for 4 
-- A counterexample should exist. 
--check FALSE_PartialImpliesCompleteConsistency for 4 
--check FALSE_OneEmptyTraceImpliesCompleteConsistency for 4 
 
 
 
 


