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Abstract - I implement a signal processing toolkit in Ocaml to take advantage of type 
checking.  Processors implement a mapping between input and output.  Signals store 
values between processors, and at inputs and outputs to the system.  A system graph is 
built via the interconnection of processor nodes and signal edges.  Causal assumptions, 
plus an ordered production of output points from processors allow us to insure that the 
system will operate properly.  The system is tested in an IIR recursive filter definition. 

Background and Motivation 
Digital Signal Processing uses a mathematical entity called a signal, which is a 

function that maps the integers to an abstract data type, and operations  on signals, such as 
convolve, add, delay, and fast- fourier transform.  A system is a directed graph of 
operation nodes and signal edges, with one node as the input and another node as the 
output.  The main book of influence for such a system is [1]. 

In a real-time application, we want to stream data through a sequence of 
processors.  Some processors have different signal input vs. output rates, which indicates 
that some signals will require greater storage than others.   

There are two possibile design choices for building systems.  The first is to take 
advantage of currying the processor functions, which would allow signal edges between 
processor nodes to disappear.  The second is to define an output signal for each processor 
node, so that all processors are connected by signals.  The latter may be more inefficient, 
but it is closer to the model of a signal flow graph used in DSP courses, thus I chose it. 

To be efficient, we would rather have a push model instead of a pull model.  If we 
use a pull model, then the processor would waste cycles polling the signal to see if its 
value has been defined.  For the push model, we shall consider the observer design 
pattern.  Then, the signal is a subject to be observed by processors.  When the signal’s 
state changes, it notifies its processor observers so that they may attempt to generate their 
next output values.   

Since real- time data is causal, we impose three conditions.  First, that any signal 
point for n<0 equals 0.  We note one exception to this rule, and that will be when we are 
generating a mathematical signal, such as exp(jx).  Secondly, that all processors will 
produce outputs successively, i.e. the first output point we produce will be at n=0, and 
given that we just produced an output at point n=N, then the next point we must produce 
is n=N+1.  Third, that all processors must operate causally, i.e. when a processor 
produces an output point at time n=N, then it must only rely on input values for times 
n≤N.  Using this policy, signals generated as outputs of processors will not accidentally 
skip generating a value and leave the system stuck.  Also, the total delay to the system 
will be the minimum sum delay through each non-feedback paths from input to output. 
As a practical matter, processors input points must have a finite delay from the output 
point, so infinite values cannot be used, which may otherwise cause the processor to wait 
forever. 



We want to assure correct operation of the system.  Given the above properties, if 
all inputs are defined starting at n=0 and successively, then all output points will be 
eventually defined.  We want to check that this will ensure proper operation in all cases, 
including those with feedback loops.  I will simply assert that this is the case for our 
purposes in this paper.    

As a practical matter, signals have finite memory capacity, even if they have 
infinite domain.  It is necessary to purge the signal’s memory of values that are no longer 
needed.  We can determine these values a priori because processors have finite delays.  
The memory requirement of a signal is proportional to the memory requirement the 
processor.  For instance,  y1[n] = x[n], where y is the output and x is the input, requires 
one point of memory, while y2[n] = x[n-1] + x[n-2] requires two memory points.  
Because we are generating point successively, y3[n] = x[n] + x[n-M] requires M memory 
points.   

The locking function is therefore a function that maps n to an interval of the 
domain.  For the three cases above, the locking function is l1(m) = {m | m ≥ n}, l2(m) = 
{m| m ≥ n-2}, and l3(m) = {m| m ≥ n-M}.  Since signals are causal, all normal locking 
functions will take the form of l3(m), where M is dependent on the processor.  There may 
be unforeseen cases where the locking function will not take this form.  One such 
example is, if we want to debug a system, we can set the locking function to All so that 
no points will be thrown away. 

A signal can have several observers.  The locking mechanism must account for 
several locking functions on a signal.  Since the observers will change their locking 
function independently of each other, we must store each observer’s function separately 
and take the union of them to determine the total locked region. 

Purging the signal is necessary for memory management.  A purge operation 
simply compares defined points in the signal with the locking function and deletes the 
points that are not locked.   

There are two possible techniques for purging the signal.  One is to purge a 
particular signal each time the locking function is updated.  The purge operation could be 
expensive, so a second improved technique is to purge all signals when memory usage 
reaches a certain size.  Despite expense, I chose the first technique. 

A simple mechanism will simply recheck all points against the lock, while a more 
complicated mechanism could identify the points that were just unlocked, and only 
compare those.  If points in the signal data structure are stored successively, and all 
locking functions are GreaterThanEqual, then the points can be checked and purged in 
order from the beginning of the storage until the first locked point.   In a real system, if 
the purge command checks all points in the data structure, it could have an overhead as 
high as the number of memory points, which is M from y3 above.  This may not be 
deterministic if the processor relies on a stream with random delays. 

 Care must be taken during initialization because multiple observers can be added 
to the signal.  Initialization must set the lock, but no t cause a purge command.  If it were 
to purge the signal, then one processor may start observing a signal and erase it before a 
second processor is attached to observe the same data that was just erased.   

After initialization of the system, it may be run by defining data on the input 
stream(s) of the system.  Once the system is run, there are no guarantees about unlocked 
data.  Thus, if input data is stopped and another processor is attached as an observer to 



any stream in the system, this processor can only rely on locked values.  In the system 
where updating the lock causes a purge operation, the output with no observers will never 
be purged.  However, if the system has a global purge based on memory filling up, then 
the output would be purged unless it has an output observer that simply sets the lock to 
All and does nothing when notified.  I chose to purge all input signals whenever a 
processor generates an output and updates the lock. 

 The definition of a locking mechanism can make use of Ocaml’s pattern 
matching.  The type <interval> has constructors called GreaterThan of ‘a, Between of 
‘a*’a, All, None, Or of ‘a*’a, etc.  Intervals can be converted into functions that test 
whether an element ‘a lies within the interval, and whether or not two intervals overlap. 
 
Processors kernels that are useful include:  

Scale (y[n] = a * x[n]) 
Delay (y[n] = x[n-M]) 
Add (y[n] = Σxi[n]) 
Impulse (y[n] = 1 for n=0, 0 otherwise) 
Convolve (y[n] = ΣN

m=0 x[n-m]h[m]) 
 
 

Summary and Evaluation 
 The code utilizes the objective part of Ocaml’s language, including multiple-
inheritance and parameterized classes.  The Observer pattern is very easy to implement 
and use in Ocaml.  I implemented the observer pattern as a module by modifying code 
from the Ocaml O’Reilly book.  Of coarse, there are many possible variants of the 
observer pattern, such as those whose subjects pass events to their observers.  One 
possible improvement to the Observer module is to make it into a functor that produces 
these variants. 
 The intervals module describes the interval type along with a function that checks 
if an element is a member of an interval.  I attempted to define a more complicated 
function to determine if two intervals shared any members, but decided the effort 
required was far greater than time available.   
 The lock module made use of intervals.  The multi- lock class, parameterized over 
the type of lock ID and the type of domain points (used in interval), contains a map from 
ID to Array index, and an Array data structure that stores the intervals.  A method 
create_locker, which requires an ID, creates a locker if no locker already exists for the 
ID.  The method set_lock replaces the interval in Array for the ID provided with a new 
interval.  The method get_lock tests whether a value of the domain is locked. 
 The signal module includes two classes.  The parent class, signal_basic, inherits 
the subject class, and provides methods for defining values of the signal and getting those 
values.  The child class, signal, inherits from both lock and signal_basic, and overrides 
the subject class’s add_observer method by adding a lock in addition to registering the 
observer with the subject.  The lock ID is the observer object ID.  The purge method is 
included in signal, and removes values from signal’s data that are not locked. 
 The processor module includes two virtual classes, generator and processor.  The 
generator class defines output points based on files or mathematical functions, and in the 



processor derived class, based on input signals.  Classes derived from generator can 
describe how to produce outputs, but for the additional functionality of observing input 
signals and for locking them, classes must be derived from the processor class.  

The generator contains an output signal and requires derived classes to implement 
the virtual function kernel, which describes how the generator will produce values.  The 
generator keeps a single state value, the index of the next output value it must produce, 
initialized to zero.  The output method advances the state by one, and tries to generate the 
previous state’s output value using the kernel function.  The kernel function will either 
return the value of the next output point, or raise the Undefined_value exception.  If a 
value is returned, then the output is defined and the output signal’s observers are called.  
If the Undefined_value exception is called, then a handler will reset the state to point to 
the index of the output value that just failed.  When an output point is defined and the 
output signal’s observers are called, a call tree is generated and may be circular if a 
processor’s output is fed back to one of its subjects.  Thus the state must be advanced 
before calling so that if the same processor is called via recursion its state will reflect the 
appropriate output index to be generated.  
 The processor is derived from generator to provide output and from observer to 
be notifies of input.  The processor has the responsibility for updating the lock of its 
inputs.  The derived classes must implement three virtual functions: kernel from the 
generator class, register inputs to add the processor as observers for either signals or lists 
of signals, and update_lock, which defines the lock interval based on the value of the 
state (output point to be generated).   
 The architecture is easy to extend.  The following generators and processors were 
written within a couple hours and used to help debug the architecture.  Adders, Delays 
and Scalers can be used to implement IIR Filters, but the causal_IIR_filter implements 
the above kernels efficiently.   
 The file <test3.ml> shows examples of the processors in use.  I would like to add 
a higher- level module called System.ml that uses a graph structure describe the 
interconnections between processors.  Then a nice graphical interface will allow visual 
programming of systems.  Maybe I can interface this with graphical models, HMMs, and 
FSTs to build an actual speech recognizer. 
 
Generators I implemented include:  

• Impulse y[n] = if n=0 then a else 0.0  
• Step y[n] = if n<0 then 0.0 else a 
• Ramp y[n] = a * n 

Processors I implemented include: 
• Identity y[n] = x[n] 
• Scale y[n] = a * x[n] 
• Delay y[n] = x[n-M] 
• Adder y[n] = Σxi[n] 
• Causal_FIR_filter y[n] = sum m=0..(len(x_coeffs)-1) {x_coeff.(m) *. x(n-m)}.  A 

special case of Convolve. 
• Causal_IIR_filter y[n] = x[n] + sum m=1..len(y_coeffs) a_m y[n-m] 

 



Lessons Learnt 
 I learned about the object system in Ocaml.  I find it more delightful to use than 
C++ objects, and very easy to understand exactly what is going on.  The relationships of 
derived classes and subclasses are distinct.  The object system can be combined with the 
module system to provide a very powerful organization of the software.   
 The debugger and interpreter provide enough complimentary tools that make 
Ocaml a favorite language of mine.  One fellow on the web said, and I agree with, that 
you feel as if you actually understand data structures clearly when using Ocaml, as 
opposed, say C++. 
 The observer pattern is powerful, and special considerations must be considered if 
the observer relationships become recursive, like state update and recursion escape.   
 

Bibliography. 
[1] Oppenheim, Schafer, and Buck.  Discrete Time Signal Processing.  Prentice Hall; 
ISBN: 0137549202; 2nd edition (February 15, 1999). 
 

Test3.ml 
open Signal 
open Processor 
open Intervals 
 
let main () = 
(* 
  let a = new ramp_generator 1.0 in 
  let e = new adder in 
  let out = new identity e#y in (* e#y is output of adder, provided as 
input*) 
  let c = new delay e#y 1 0.0 in 
  let d = new scale_float c#y 2.0 in 
*) 
 
  let a2 = new ramp_generator 1.0 in 
  let f = Array.of_list [2.0] in 
  let i = new causal_iir_filter a2#y f in 
 
(* 
  e#add_inputs [a#y; d#y]; 
  a#output; 
*) 
  a2#output;; 
 
 
(* problem: d doesn't know about the delay in c, therefore doesn't give 
zero 
value to e, instead always raising undef.  maybe chain delays together?   
system should be initialized to zero values, so that zeros propagate. 
*) 
 
main () ;; 



 
(* 
(* IIR system implemented with basic parts *) 
  let a = new ramp_generator 1.0 ;; 
  let e = new adder ;; 
  let out = new identity e#y;; 
  let c = new delay e#y 1 0.0 ;; 
  let d = new scale_float c#y 2.0 ;; 
  e#add_inputs [a#y;d#y];; 
 
  a#output;; 
 
(* same system with an IIR part *) 
  let a2 = new ramp_generator 1.0 ;; 
  let f = Array.of_list [2.0] ;; 
  let i = new causal_iir_filter a2#y f ;; 
  let out2 = new identity i#y;; 
 
  a2#output;; 
 
 
(* IIR and FIR filters in series: *) 
  let a3 = new step_generator 1.0 ;; 
  let f = Array.of_list [(-0.5); 0.9];; 
  let i2 = new causal_iir_filter a3#y f ;; 
  let out3 = new identity i2#y;; 
  let pipe = new identity i2#y;; 
 
  let f2 = Array.of_list [0.5; 1.0; 0.5];; 
  let i3 = new causal_fir_filter pipe#y f ;; 
  let out4 = new identity i3#y;; 
 
  (* CANT DO THIS?  need to decouple typing for multiple observers of 
various 
     types.  splitting and adding values *) 
  let out5 = new adder  ;; 
  let out5b = (out5 : ('a,'b) adder :> ('b,float) processor);; 
  out5b#add_inputs [out3#y; out4#y];; 
 
  a3#output;; 
 
  (* processor init with a stream will use all values currently 
defined:*) 
  let out4b = new identity out4#y;; 
  (* but, it will not purge the previous stream in case we haven't 
finished 
     connecting processors *) 
     
  (* once we run the system again, it will push more data through and 
purge 
     all streams *) 
  a3#output;; 
 
 
(* IIR and FIR filters in series: *) 
 
(* a step generator is zero for values less than zero *) 



  let a3 = new step_generator 1.0 ;; 
(* we produce an IIR filter, which implements: 
   y[n] = x[n] + (-0.5) *. y[n-1] + (0.9) *. y[n-2] 
*) 
  let f = Array.of_list [(-0.5); 0.9];; 
  let i2 = new causal_iir_filter a3#y f ;; 
(* Here we attach an output, which will save data, and a pipe, which 
will 
   attach to a later stage.  When a stream has observers, the data will 
be 
   purged when all the observers say it's ok.  I could attach a "no 
purge" 
   processor, which locks the entire stream. *) 
  let out3 = new identity i2#y;; 
  let pipe = new identity i2#y;; 
(* and an FIR filter... y[n] = 0.5 x[n] + 1.0 x[n-1] + 0.5 x[n-2] *) 
  let f2 = Array.of_list [0.5; 1.0; 0.5];; 
  let i3 = new causal_fir_filter pipe#y f2 ;; 
(* and the final output *) 
  let out4 = new identity i3#y;; 
 
 
# val a3 : < notify_at : unit; _.. > Processor.step_generator = <obj> 
# val f : float array = [|-0.5; 0.9|] 
# val i2 : ('a, 'a) Processor.causal_iir_filter as 'a = <obj> 
# val out3 : ('a, float, 'a) Processor.identity as 'a = <obj> 
# val pipe : ('a, float, 'a) Processor.identity as 'a = <obj> 
# val f2 : float array = [|0.5; 1; 0.5|] 
# val i3 : ('a, 'a) Processor.causal_fir_filter as 'a = <obj> 
# val out4 : ('a, float, 'a) Processor.identity as 'a = <obj> 
 
(* Here we tell the generator a3 to produce output *) 
a3#output;; 
- : unit = () 
 
(* We check the output streams with nothing attached and find our 
filtered 
values *) 
out3#y#get_defined;; 
- : (Signal.domain * float) list = 
[(9, -0.642134375); (8, 3.41038125); (7, 0.0700625); (6, 2.717125); 
 (5, 0.47625); (4, 2.1725); (3, 0.625); (2, 1.65); (1, 0.5); (0, 1)] 
 
out4#y#get_defined;; 
- : (Signal.domain * float) list = 
[(9, 3.3904103125); (8, -1.642134375); (7, 2.41038125); (6, -
0.9299375); 
 (5, 1.717125); (4, -0.52375); (3, 1.1725); (2, -0.375); (1, 0.65); 
 (0, -0.5)] 
 
(* after the system is in operation, output waiting for use, we can 
attach 
further processors: *) 
let out4b = new identity out4#y;; 
# val out4b : ('a, float, 'a) Processor.identity as 'a = <obj> 
 



(* note, that initialization of a processor causes it to immediately 
process 
defined data from input streams, but it doesn't purge those streams in 
case 
we want to connect more processors. *) 
 
(* here is the new output: *) 
out4b#y#get_defined;; 
- : (Signal.domain * float) list = 
[(9, 3.3904103125); (8, -1.642134375); (7, 2.41038125); (6, -
0.9299375); 
 (5, 1.717125); (4, -0.52375); (3, 1.1725); (2, -0.375); (1, 0.65); 
 (0, -0.5)] 
 
(* here is the previous output, which remains untouched: *) 
out4#y#get_defined;; 
- : (Signal.domain * float) list = 
[(9, 3.3904103125); (8, -1.642134375); (7, 2.41038125); (6, -
0.9299375); 
 (5, 1.717125); (4, -0.52375); (3, 1.1725); (2, -0.375); (1, 0.65); 
 (0, -0.5)] 
 
(* when we tell the generator to push more input into the head of the 
system, 
then the locking mechanism will purge data not needed by observers. *) 
a3#output;; 
- : unit = () 
 
(* we see here that the identity processor only requires the present 
value, so 
all values in the previous stream are purged *) 
#   out4#y#get_defined;; 
- : (Signal.domain * float) list = [] 
 
(* and there are more output points resulting from the second set of 
input  
points from the generator *) 
# out4b#y#get_defined;; 
- : (Signal.domain * float) list = 
[(19, 22.7948353484); (18, -17.3122652851); (17, 15.2652252287); 
 (16, -11.1996140787); (15, 10.2949090993); (14, -7.16906614336); 
 (13, 7.01152891953); (12, -4.51477964844); (11, 4.83793232812); 
 (10, -2.77312609375); (9, 3.3904103125); (8, -1.642134375); (7, 
2.41038125); 
 (6, -0.9299375); (5, 1.717125); (4, -0.52375); (3, 1.1725); (2, -
0.375); 
 (1, 0.65); (0, -0.5)] 
 
 
*) 
 

Processor.ml 
 
open Signal 
open Observer 



open Intervals 
 
 
(* the generator requires a <kernel> for determining an output from an 
index  
number.  each call to self#output will attempt to produce <buf_len> 
number of 
output values from the <kernel> function.  If the kernel throws an  
<Undefined_value> exception, then the generator quits producing output 
points. 
This is used in the <processor> derived class.  *) 
 
class virtual ['O, 'T] generator (buf : int) =  
  object (self) 
    val mutable output : ('O,'T) signal = new signal 
 
    val mutable n : int = 0  
    val mutable buf_len = buf 
    val mutable count : int = 0 
 
    method virtual kernel : int -> 'T 
    method start_at (n' : int) = n <- n' 
 
    method init () = () 
 
    method output = 
      try  
   for i = 1 to buf_len do  
          (* THIS is messy.  n++ in case this def works! Must be easier 
way *) 
       n <- succ n;   
       output#define (self#kernel (n-1)) (n-1) 
        done           
      with 
        Undefined_value -> n <- pred n 
 
    method y = output 
    method get m = output#get m (*  called like a signal *) 
end;; 
 
(* the <processor> inherits generator to produce output points, and the 
<kernel> function can rely on input <signal>s.  When the kernal trys to 
<get> a 
value from an input <signal>, if the value is undefined, then the 
kernel  
returns an <Undefined_value> exception, which causes the <generator> 
super  
class to quit producing points.   
 
The <processor> also inherits <observer>, and derived classes must 
implement  
the <register_inputs> function that should call <add_observer> for each 
input  
<signal> in the derived class.  The <signal> as the <subject> calls the  
<processor> as an <observer> using the <notify_at> function when there 
are  



newly defined values in an input <signal>.  The <processor> then 
initiates  
calls to <generator#output> to again attempt to produce more <output> 
points. 
 
The <processor> also must implement a <lock> on the input <signals> 
(and in  
some cases, like IIR filters, on the output signal too) by implementing 
the 
<update_lock> function.  It depends on the value <n> from the generate 
class, 
and the function is written to lock any present and future value needed 
by a 
signal.  The <lock> description uses the <interval> data type, which 
allows  
easy description of complicated intervals. 
 
Upon initialization, the processor calls <register_inputs> and 
<update_lock> so 
that the streams know about the observers and so the processor 
immediately  
locks the data points it needs.  Each processor also calls 
<generator#output>. 
It is important that <kernel>s define negative values for IIR filters 
and  
delays.  For initialization purposes, a <processor> must not get stuck 
because 
of loops.  Consider how the delay kernel is written so that it returns 
zero for 
values less than the delay.  During initialization, the delay function 
pushes 
zeros onto its output stream until the delay so that feedback loops can  
utilize those zeros in producing futures inputs for the delay.   
 
(imagine an IIR filter:  
            x[n] -> adder -> scaler -> split -> output 
                       \---scaler<--delay/ 
 the adder requires a value from scaler at time zero before it will 
continue, 
 so the delay had better produce a zero that can be passes on by the 
scaler. 
) 
 
*) 
 
class virtual ['O, 'T] processor (buf : int) =  
  object (self) 
    inherit observer 
    inherit ['O, 'T] generator buf as generator 
 
    initializer self#init ()  
 
    method init () = 
      self#register_inputs ();  
      self#update_lock ();  
      generator#output 
 



(*    method  
      self#notify_at *) 
 
    method virtual register_inputs : unit -> unit 
    method virtual update_lock : unit -> unit 
 
    method notify_at = 
      generator#output; 
      self#update_lock () 
end;; 
 
 
(* y[n] = a' * n *) 
class ['Oout] ramp_generator (a' : float) = 
  object (self) 
    inherit ['Oout, float] generator 10 
    method kernel (n:int) = a' *. (float_of_int n) 
end;; 
 
(* y[n] = 1 for n=0, 0 otherwise *) 
class ['Oout] impulse_generator (a' : float) = 
  object (self) 
    inherit ['Oout, float] generator 10 
    method kernel (n:int) = if (n=0) then a' else 0.0 
end;; 
 
(* y[n] = 1 for n>=0, 0 otherwise *) 
class ['Oout] step_generator (a' : float) = 
  object (self) 
    inherit ['Oout, float] generator 10 
    method kernel (n:int) = if (n>=0) then a' else 0.0 
end;;    
 
(* y[n] = x[n] *) 
class ['Oin, 'T, 'Oout] identity (x' : ('Oin,'T) signal) = 
  object (self) 
    inherit ['Oout, 'T] processor 10 as super 
    val mutable x = x' 
 
    method register_inputs () = x#add_observer(self) 
    method kernel n = x#get n 
    method update_lock () = x#lock (self) (GreaterThanEq n) 
end;; 
 
(* y[n] = a' * x[n] *) 
class ['Oin, 'Oout] scale_float (x' : ('Oin, float) signal) (a' : 
float) = 
  object (self) 
    inherit ['Oin, float, 'Oout] identity x' 
    val a = a' 
    method kernel n = (x#get n) *. a 
end;; 
 
(* y[n] = x[n-m] u[n-m] *) 
class ['Oin, 'Oout, 'T] delay (x' : ('Oin, 'T) signal) (m : 
Signal.domain)  
 (zero_val': 'T) = 



  object (self) 
    inherit ['Oin, 'T, 'Oout] identity x' 
    val n' = m 
    val zero_val = zero_val' 
 
    method kernel n = if (n<n') then zero_val else (x#get (n-n')) 
    method update_lock () = x#lock self (GreaterThanEq (n-n')) 
end;; 
 
(* y[n] = x1[n] + x2[n] + ... + xN[n] ; because of feedback, the inputs 
are 
provided after definition; initialization occurs when inputs are given 
*) 
class ['Oin, 'Oout] adder  = 
  object (self) 
    inherit ['Oout, float] processor 10 as super 
    val mutable x = [] 
 
    method add_inputs (x' : ('Oin,float) signal list) =  
      x <- x'; 
      self#init () 
 
    method register_inputs () =  
      List.iter (fun s -> s#add_observer(self)) x 
    method kernel n =  
      if (List.length x > 0) then 
        List.fold_left (+.) 0.0 (List.map (fun s->s#get n) x) 
      else 
        raise Signal.Undefined_value 
    method update_lock () =  
      List.iter (fun s->s#lock (self) (GreaterThanEq n)) x 
end;; 
 
(* implements y[n] = sum m=0..len(x_coeffs)-1 {x_coeff.(m) *. x(n-m)} 
*) 
class  ['Oin, 'Oout] causal_fir_filter (x' : ('Oin, float) signal)  
 ( x_coeffs' : float array )= 
  object (self) 
    inherit ['Oin, float, 'Oout] identity x' 
    val x_coeffs = x_coeffs' 
    val max_delay = (Array.length x_coeffs') - 1 
 
    method kernel n = (* could be more efficient... *) 
      (Array.fold_right (+.) 
        (Array.mapi  
          (fun n' e ->  
            if (n-n') < 0 then 0.0 else (x#get (n-n')) *. e)  
              x_coeffs) 
          0.0 
      ) 
 
    method update_lock () = x#lock (self) (GreaterThanEq (n-max_delay)) 
end;; 
 
(* implements an iir filter: y[n] = x[n] + sum m=1..len(y_coeffs) a_m 
y(n-m).  values of y for negative n are zero. the array y_coeffs 
describe the a_i's above.  the coeff for x[n] is fixed at 1 *) 



 
class ['Oin, 'Oout] causal_iir_filter (x' : ('Oin, float) signal) 
  ( y_coeffs' : float array ) = 
  object (self) 
    inherit ['Oin, float, 'Oout] identity x' as super 
    val y_coeffs = y_coeffs' 
    val max_output_delay = (Array.length y_coeffs') 
 
    method kernel n = (* could be more efficient... *) 
      (Array.fold_right (+.)  
        (Array.mapi  
          (fun n' e ->  
             (if (n-(n'+1)) < 0 then 0.0 else output#get (n-(n'+1))) *. 
e)  
               y_coeffs) 
        (x#get n) 
      ) 
 
    method update_lock () =  
      x#lock (self) (GreaterThanEq (n)); 
      output#lock (self) (GreaterThanEq (-max_output_delay)) 
    method register_inputs () =  
      output#add_locker (self); (* need to rely on output values *) 
      super#register_inputs () 
end;; 
 
 

Signal.ml 
open Observer;; 
open Intervals;; 
open Lock;; 
 
signal_basic simply allows definition of arbitrary length signals, 
limited by 
  the *int* domain data type.   
signal uses a lock to allow observers to lock parts of the signal.  
purge will 
  delete any parts of the signal not locked. 
 
A signal is an infinite stream towards positive and negative infinity.   
Data can be defined at any point of the signal.   
Data is stored by an associative array with an int index 
The signal class assumes that signals will be defined from left to 
right and  
  that once an observer to the signal releases a lock on the signal it 
will not 
  access the signal again.  It would be better to include a mechanism 
to track 
  erased sections of the signal.   
If the value is defined, it is returned, else the Undefined_value 
exception is  
  thrown.   
Undefined_value is to be the mechanism which allows calling routines to  
  operate: an attempted calculation will fail if any value is Undefined 
and  



  then the calculation will wait and try again when new values are 
defined. 
 
  (More efficiency can later be added, such as 
  an efficient abstract interval representation of defined values so a 
check 
  can be performed independent of the lookup.  Then a signal observer 
can do 
  a definition check before initiating a series of complicated 
lookups.) 
 
The data is remembered until it is explicitly erased.  An abstract 
interval  
  describes the erasure.  This interval is or'ed with the previous 
erasure to 
  determine the new erasure.  Once a value is erased, it is considered 
defined  
  but lost and an Erased exception will be thrown.  In all cases, this 
  exception should be considered an error. 
*) 
 
exception Undefined_value;; 
exception Redefinition of string;; 
exception Error;; 
 
type domain = int;; 
 
(* <signal_basic> allows definition of a <signal> point-by-point using 
<define> 
or as a list using <define_list>.  The storage is an associative array 
with 
domain element (integers) and abstract output type.  Assoc. arrays may 
not be the best implementation, but it is easy to change later if 
needed.   
 
<signal_basic> is derived from <subject> so that <observers> can 
register for 
notification when data is defined.  This is effectively a push 
mechanism. 
 
Data is defined and cannot be overwritten, hence the exception 
<Redefinition>.  
When each data point is defined, the observers are notified.  
Inefficient, and 
a buffering scheme may be better.  Also, the indices will run out 
eventually, 
so an index shifting may be necessary. 
 
<get> will return a value if it is defined or will raise 
<Undefined_value>. 
*) 
 
class ['O, 'T] signal_basic = 
  object (self) 
    inherit ['O] subject 
    val mutable data : (domain * 'T) list = []  
 



    method private avail n = List.mem_assoc n data  
 
    method define (d : 'T) (n : domain) = 
      if (self#avail n) then raise (Redefinition "Attempt to redefine 
value: prohibited") 
      else data <- (n,d)::data;  self#notify 
 
    method define_list (l : (domain * 'T) list) =  
      List.iter (fun li -> match li with (n,d) -> self#define d n) l 
 
    method get (n : domain) = 
      if (self#avail n) then List.assoc n data 
      else raise Undefined_value   
 
    method get_defined = data;       
 
    method reset = 
      data <- []; 
end;; 
 
(* causal signal will return zero for any index less than zero *) 
class ['O, 'T] causal_signal_basic (zero' : 'T)= 
  object (self) 
    inherit ['O, 'T] signal_basic as super 
    val zero = zero' 
    method get (n : domain) = 
      if (n < 0) then zero 
      else super#get n 
end;; 
 
(* locked signal: when registering as an observer, set the lock region 
to the  
values that your observer will need in the future.  Using the interval 
type,  
infinitely long intervals of arbitrary complexity can be described *) 
 
class ['O,'T] signal =  
  object (self) 
    inherit ['O,'T] signal_basic as super 
    inherit [domain,'O] Lock.domain_lock as domain_lock 
 
    method add_observer (obs : 'O) = 
      super#add_observer obs; 
      self#add_locker obs 
 
    method lock (i : 'O) (l : domain Intervals.t) =  
      domain_lock#lock i l;   
      self#purge 
 
    method purge = data <- List.filter ( fun x -> self#locked (fst x) ) 
data 
 
    method reset = super#reset;  domain_lock#clear 
end;; 
 
 



Lock.ml 
 
open Intervals 
 
exception DuplicateLocker 
class ['D,'I] domain_lock = 
  object (self) 
    val mutable lock : 'D Intervals.t array = Array.make 1 None 
    val mutable id : ('I*int) list = [] 
 
    method add_locker (i : 'I) =  
      if (List.mem_assoc i id) then 
        raise DuplicateLocker 
      else 
   lock <- Array.append lock (Array.make 1 Intervals.None); 
   id <- (i, (Array.length lock)-1)::id 
  
    method lock (i : 'I) (d : 'D Intervals.t) = lock.(List.assoc i id) 
<- d 
    method locked (n : 'D) =  
      (  Array.fold_left (fun f1 f2 -> (fun n -> f1 n || f2 n))  
      (fun n -> false) (Array.map Intervals.inside lock)  )  n 
    method clear = lock <- Array.make 1 None; id <- [] 
end;; 
 
 
 

Intervals.ml 
(* Intervals *) 
type 'a t =  
  None  
  | All  
 
  | Element of 'a 
  | LessThan of 'a  
  | GreaterThan of 'a  
  | LessThanEq of 'a 
  | GreaterThanEq of 'a 
 
  | Outside of 'a*'a 
  | OutsideEq of 'a * 'a  
  | Between of 'a*'a  
  | BetweenEq of 'a*'a 
 
  | And of ('a t) * ('a t)  
  | Or of ('a t) * ('a t)  
  | Inverse of ('a t)  
 
(* Delta Intervals  
  | JustLessThan of 'a * 'a dt 
  | JustGreaterThan of 'a * 'a dt 
  type 'a dt = 'a 
*) 
 



let rec inside (i : 'a t) = 
  match i with 
    None -> fun x -> false 
    | All -> fun x -> true 
    | Element(a) -> fun x -> x = a 
 
    | LessThan(m) -> fun x -> x < m 
    | GreaterThan(m) -> fun x -> x > m 
 
    | LessThanEq(m) -> fun x -> x <= m 
    | GreaterThanEq(m) -> fun x -> x >= m 
 
    | Outside(m1,m2) -> fun x -> x < m1 || x > m2 
    | OutsideEq(m1,m2) -> fun x -> x <= m1 || x >= m2 
    | Between(m1,m2) -> fun x -> x > m1 && x < m2 
    | BetweenEq(m1,m2) -> fun x -> x >= m1 && x <= m2 
 
    | And(a,b) -> fun x -> ((inside a) x) && ((inside b) x) 
    | Or(a,b)  -> fun x -> ((inside a) x) || ((inside b) x) 
    | Inverse(a) -> fun x -> not ((inside a) x) 
 
 

Observer.ml 
(* The observer design pattern, modified from 
 Développement d'applications avec Objective Caml by Emmanuel 
Chailloux, Pascal Manoury and Bruno Pagano, published by O'Reilly 
France 
*) 
 
class ['O] subject = 
  object (self) 
    val mutable observers : 'O list = [] 
     
    method add_observer (obs : 'O) = 
      observers <- obs::observers; 
    
    method notify =  
      List.iter (fun obs -> obs#notify_at) observers 
end;; 
 
class observer =  
  object 
    method notify_at = () 
end;; 
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Main products.

• A type-checkable system of signals and processor 
units using O’Caml.

• A “push” model for streaming via interconnect 
using observer design pattern.

• An architecture for signal processing that allows 
easily defined components, derived from a 
processor base class.

• Use of O’Caml’s pattern matching to define 
abstract intervals for use in the observer’s locking 
mechamism of stream data

• Generic stream can handle floats for calculation, 
or symbols for speech recognition.
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Signal_basic Class
class ['O, 'T] signal_basic =

object (self)
inherit ['O] subject
val mutable data : (domain * 'T) list = [] 

method private avail n = List.mem_assoc n data 
method define (d : 'T) (n : domain) =
if (self#avail n) then raise Redefinition
else data <- (n,d)::data;  self#notify

method get (n : domain) =
if (self#avail n) then List.assoc n data
else raise Undefined_value

method reset =
data <- [];

end;;



Signal Class
• class ['O,'T] signal = 

object (self)
inherit ['O,'T] signal_basic as super
inherit [domain,'O] Lock.dlock as domain_lock

method add_observer (obs : 'O) =
super#add_observer obs;
self#add_locker obs

method lock (i : 'O) (l : domain Intervals.t) = 
domain_lock#lock i l;  
self#purge

method purge = data <- List.filter ( fun x -> 
self#locked (fst x) ) data

method reset = super#reset;  domain_lock#clear
end;;



Generator Class
class virtual ['O, 'T] generator (buf : int) = 

object (self)
val mutable output : ('O,'T) signal = new signal

val mutable n : int = 0
val mutable buf_len = buf
val mutable count : int = 0

method virtual kernel : int -> 'T

method output =
try for i = 1 to buf_len do 

n <- succ n;  
output#define (self#kernel (n-1)) (n-1)

done          
with

Undefined_value -> n <- pred n

method y = output
method get m = output#get m (*  called like a 

signal *)
end;;



Processor Class
class virtual ['O, 'T] processor (buf : int) = 

object (self)
inherit observer
inherit ['O, 'T] generator buf as generator

initializer self#init () 

method init () =
self#register_inputs (); 
self#update_lock (); 
generator#output

method virtual register_inputs : unit -> unit
method virtual update_lock : unit -> unit
(* also virtual kernel : int -> ‘T *)

method notify_at =
generator#output;
self#update_lock ()

end;;



Example Processors
class ['Oout] step_generator (a' : float) =

object (self)
inherit ['Oout, float] generator 10
method kernel (n:int) = 

if (n>=0) then a' else 0.0
end;;   

class ['Oin, 'T, 'Oout] identity (x' : ('Oin,'T) 
signal) =
object (self)

inherit ['Oout, 'T] processor 10 as super
val mutable x = x'

method register_inputs () = x#add_observer(self)
method kernel n = x#get n
method update_lock () = 

x#lock (self) (GreaterThanEq n)
end;;



High-level code

let a = new ramp_generator 1.0 ;;
let e = new adder ;;
let out = new identity e#y;;
let c = new delay e#y 1 0.0 ;;
let d = new scale_float c#y 2.0 ;;
e#add_inputs [a#y;d#y];; (*dealing with loops*)

a#output;;  (*triggers 10 outputs from Step*)

• Upon init, each processor generates output points 
until it sees an undefined input, i.e. delay gives 0.

• Ideally, a GUI would allow the user to make a graph 
or the system and the code would then be generated.

(a)ramp_gen (e)adder (out)Output

(c) delay 1(d)scale 2.0




