An Alloy Analysis of CVS

Michael Harder

Alan Donovan

MIT Lab for Computer Science NE43-525
200 Technology Square
Cambridge, MA 02139 USA
{mharder,adonovan}@Ics.mit.edu

Abstract

CVS is the Concurrent Versions System, a free, distributed
version—control system. We used Alloy to construct three
models of CVS: a model to analyze file-level locking proper-
ties, a model to investigate the atomicity of checkins, and a
model of CVS semantics from the user’s point of view. We
found undesirable properties in the locking and checkin mod-
els, and proposed and evaluated changes to fix the problems.
The user-level model could serve as an aid for understanding
CVS and provides a precise definition of various concepts.
This paper assumes that readers are familiar with the usage
and concepts both of CVS and of Alloy.

1. File-level locking
1.1 Background

CVS stores its internal data structures as ordinary files,
and uses locks to protect these files. Any number of clients
can be reading a file at a time, but if a client is writing then
there must be no other readers or writers.

CVS also uses files to implement its locking protocol. Locks
are created using the mkdir () system call, which is assumed
to be atomic on all supported systems. Each lock protects a
single directory in the repository, not including subdirecto-
ries which represent other directories under version control.
To lock an entire tree, each directory must be locked sepa-
rately.

There are three types of locks: master, read, and write.
The master lock must be held before either read or write
locks can be held. At most one client can hold the master
lock for a directory. Read and write locks must be held
before files can be read or written. Any number of clients
can hold read locks for a directory, and at most one client
can hold the write lock for a directory.

CVS uses the following algorithms for reading from and
writing to directories [Ced].

To read files in a directory
. Obtain the master lock.

. Obtain a read lock.

. Release the master lock.

. Read files in the directory.

Tt s W N

. Release the read lock.

To write files in a directory

1. Obtain the master lock.

2. If there are any read locks, release the master lock and
try again later.

3. Obtain the write lock.
4. Write files in the directory.
5. Release the write lock.

6. Release the master lock.

1.2 Alloy model

We created an Alloy model of the CVS locking protocol
(Appendix A), and used it to check several properties of the
protocol.

First, we checked that the protocol satisfies its main goals.
The Alloy assertions NoReadWrite and NoWriteWrite assert
that if a client is writing, there must be no other readers
or writers. We checked these assertions for 3 clients and 10
states, and Alloy found no counterexamples. This makes us
relatively confident that the protocol successfully protects
the files.

Next, we checked that multiple clients could simultane-
ously read a directory (Alloy function MultipleReads). Al-
loy found an solution to this function, which means there is
at least one instance where multiple clients can read simul-
taneously.

Finally, we investigated the fairness of the protocol to
readers and writers. We defined fairness as follows:

Assume each read and write is of finite length.
Whenever a client desires to read or write, it
should be able to do so within a finite amount
of time.

We checked this property for both reads and writes (Alloy
functions StarveRead and StarveWrite). Alloy found no
solutions to the StarveRead function, but did find a solution
to the StarveWrite function. This means a desire to write
can be forced to wait indefinitely.

By examining the solution produced by Alloy, we deter-
mined the cause of the problem. Reads are allowed to over-
lap, and the write lock can never be held as long as there
are read locks. An infinite chain of overlapping reads will
prevent a write from ever taking place.

We made the locking protocol more fair by changing the
second step in the write files protocol. In the original proto-
col, if any read locks are present after obtaining the master

lock, the master lock is released and the client must try again
later. In our new protocol, if any read locks are present af-
ter obtaining the master lock, the client simply waits until
all the read locks are released. This will happen eventually,
since no new read locks can be obtained. Once the read
locks are gone, the client proceeds to obtain the write lock
and write the files.

This change required a 1-line modification to our Alloy
model. After modifying our model, we used Alloy to checked
the StarveRead and StarveWrite function. Alloy found
no solutions to either function, meaning neither reads nor
writes can be starved indefinitely. Just to be safe, we re-
checked the NoReadWrite, NoWriteWrite, and MultipleReads
properties. These properties held as well, meaning our mod-
ification did not affect the other properties of the model.

2. Atomic check-ins
2.1 Background

This model addresses the following property, as stated in
the CVS manual [Ced]:

If someone commits some changes in one cvs
command, then an update by someone else will
either get all the changes, or none of them.

We refer to this property as the atomic check-ins. The
manual states that CVS does not have this property. As far
as we can tell, check-ins involving multiple files in one direc-
tory are atomic, but check-ins involving multiple directories
are not atomic. This is because all locking is performed at
the directory level.

For example, assume someone runs cvs checkin a/one.c
b/two.c, and someone runs cvs update at the same time.
The person running update might get the changes to a/one.c,
but not to b/two.c.

This is more than a theoretical flaw in the system — it
causes problems for real users. For example, the Mozilla
daily builds have been known to fail if a developer is checking-
in at the same time the build system is checking-out.

The CVS commands update and checkout are identical for
our purposes, and we use the terms interchangably through-
out this section.

2.2 Alloy model

We created an Alloy model of the CVS check-in and check-
out protocols, to better understand this problem and pro-
pose solutions.

First, we had to reverse-engineer the locking scheme used
by CVS when processing multiple directories. We ran CVS
against a test repository, and observed the lock files created.
The locks used are the same read and write locks from Sec-
tion 1, but for the purposes of this section we consider a
directory as being locked if a client holds either a read or
write lock. The locking scheme is as follows:

To check-out directories A and B
1. Obtain the lock for A.

2. Read from A.

3. Release the lock for A.

4. Obtain the lock for B.

5. Read from B.
6. Release the lock for B.

To check-in directories A and B

1. Obtain the lock for A.
. Obtain the lock for B.
. Write to A.

2
3
4. Write to B.
5. Release the lock for A.
6

. Release the lock for B.

The locking scheme is extended in the obvious way for
more than two directories. The directories are processed in
no particular order.

We created an Alloy model of the above locking scheme
(Appendix B), and used it to check properties of the scheme.
First, we asserted that check-ins are atomic (Alloy assertion
AtomicCheckin). Alloy found the following counterexample:

1. Client 1 is checking-out A and B, Client 2 is checking-
in A and B.

2. Client 1 obtains lock for A, reads from A, releases lock
for A.

3. Client 2 obtains locks for A and B, writes to A and B,
releases locks for A and B.

4. Client 1 obtains lock for B, reads from B, releases lock
for B.

Client 1 got the changes for B, but not for A. To solve this
problem, we made the locking scheme for check-in the same
as check-out — obtain locks for all directories before reading
any directory. We changed our model, and used Alloy to re-
check the AtomicCheckin assertion. This time, Alloy found
no counterexamples, giving us confidence our new scheme is
correct.

As an orthogonal problem, we analyzed the potential for
deadlock in this model. Multiple check-ins can deadlock in
the original model, and multiple check-outs can deadlock as
well in our revised model. We wrote an assertion that the
model can never reach a state of deadlock (Alloy assertion
DeadLock). Alloy found the following counterexample:

1. Client 1 is checking-in A and B, Client 2 is cheking in
A and B.

2. Client 1 obtains lock A.
3. Client 2 obtains lock B.

CVS solves this problem as follows: if a needed lock is
held by someone else, release all locks and try again later.
We propose a more elegant solution: apply a total ordering
to the locks, and obtain the locks in ascending order. We
added this to our Alloy model, and re-checked the DeadLock
assertion. Alloy found no counterexamples.

3. User-level model

3.1 Background

In this section, we will discuss another model of CVS; the
level of abstraction of this model is the user level, by which
we mean it describes the operation of CVS using concepts
such as Event, Status, Client, File and Version, which are
familiar to users of CVS, not just its maintainers.

Such a model is useful to gain an understanding of how the
CVS application works, which would be essential for someone
considering making extensions to it. Though it is largely
a stable codebase now, we believe such a model would be
extremely valuable during the design and implementation
phases of CVS, or of any similar tools involving distributed
state-machines.

3.2 Alloy model

This Alloy description models the state of the CVS repos-
itory and one or more clients, while users at each client issue
a stream of CVS events. One event corresponds to one CVS
command (e.g. checkin, update) operating on exactly one
file. In practice, users typically issue operations on all the
files in a directory; however since we are not concerned with
atomicity or synchronisation, multiple-file operations can be
serialised into a stream of similar operations.

Our model is incomplete: it examines only a single repos-
itory; it supports only a single branch; it does not include
all possible CVS commands, and it has no notion of history.
However, we believe it would be relatively easy to extend it
to include branches and history, at which point the model
would cover the majority of all CVS scenarios occurring in
practice.

3.2.1 Signatures

The principal signatures in our model are as follows:

File represents the set of all files.!

Version is a totally-ordered set, representing the various
versions of a file.

Client represents the set of all clients using the repository.

Event represents the type of a single CVS command. Each
Event is associated with exactly one File and one
Client. Users are familiar with these events from the
various CVS commands: UpdateEvent, ModifyEvent,
AddEvent, RemoveEvent, and CheckinEvent.

Status represents the status of a particular file from
the point of view of a given client. Users of
CVS are familiar with these statii from the vari-
ous messages displayed by the CVS update com-
mand: UpToDate, LocallyAdded, LocallyRemoved,
LocallyModified, NeedsMerge, NeedsPatch,
HadConflicts, NotCheckedIn, and NeedsCheckout.

State represents an ordered set of points on the timeline as
the simulation proceeds.

3.2.2 Relations

All the relations of this model belong to the signature
State which is shown below.

!Note that File-equivalence models name-equality, so two
clients can refer to the same File even before it has been
checked-in, if the names are the same.

sig State

{

// representation:
// global state:

event_type: Event,
event_client: Client,
event_file: File,

repository: File ->! Version,

// per-client state:

entries: Client -> File ->! Version,
localMods: Client -> File,
localConflicts: Client -> File,
localRemoved: Client -> File,

// ‘public interface’:
status_p:
event_p:

Client -> File -> Status,
Client -> File -> Event
}

The first three relations define the pending event, which
consists of an Event type, an issuing Client, and a File on
which to operate. The next relation, repository, abstracts
the state at the server, and is a partial function from a File
to its latest checked-in Version. Together, these relations
make up the global state.

The following relations model the per-client state: entries
(which has the same type as repository once the client has
been projected away) abstracts the CVS/Entries database
at the client, and maps locals files to the server version they
were last synchronised with. The following three relations
are per-file flags (membership = true) that, in the ab-
sence of file data, abstract the the contents of files. They
model whether a file has been modified locally (localMods),
whether it had conflicts during a merge (localConflicts),
and whether it has been locally removed (lLocalRemoved).

The remaining two relations, status_p and entries_p,
represent the ‘public’ interface: they model the aspects of
the system seen by a casual user who does not peek into the
database, and they are each defined as a total function of
the current State. Note that status is never used by the
model, but is provided to clients of the model so that they
need not be concerned with the relations forming the con-
crete implementation, upon which the state-transition logic
is based. It is particularly useful for visualisation, and for
terse formulation of test scenarios.

The status relation is totally defined by the whatStatus
function, which is implemented with one predicate per Status.
We have proved with an Alloy assertion that not only do
these predicates cover all possible values of State (constrained
only by its manifest facts), but that they are all mutually
exclusive. In fact, it was only by using Alloy assertions to
ensure the validity of the predicates that we discovered we
had omitted the status NeedsPatch — once we added it,
the assertion succeeded. The partitioning induced by these
predicates is valuable, since their definitions serve as the in-
variants of the CVS system, and would be useful to anyone
wishing to modify or extend it.

3.3 Example model

We will briefly describe a few steps of the model during
simulation. Please read the following in conjunction with
the visualisation diagrams in Appendix C.

3.3.1 Single client, simple modify/check-in

In the first example, we have a single client and a single

file; initially, the client is working on version 1 of that file,
and is about to check it in.

1. Note that the version at the client and repository match,
that the file is in the client’s localMods set, and that
the status is LocallyModified. A CheckinEvent is
pending.

2. Now the file is no longer modified, and the reposi-
tory and client’s CVS/Entries database show version
2. A ModifyEvent is pending, which changes the sta-
tus back to LocallyModified.

3.3.2 Multiple clients, conflicting update

The second example shows two clients, working on a single
file. Imitially, both clients are working on version 3 of the
file, and both have made local modifications.

1. Both clients have made modifications, so the file’s sta-
tus is LocallyModified. A CheckinEvent from Client
1 is pending.

2. Client 1 is now UpToDate with version 4, but Client 0,
which is working on a stale file, needs a patch, hence
NeedsMerge. It issues an UpdateEvent.

3. Having updated, Client 0 is now working on a modified
version 4, but during the merge, the file HadConflicts.

3.4 Evaluation

We hope to use the Event/Status abstraction to build
a description of the state-transition logic that matches the
users’ conceptual model instead of the more detailed rep-
resentation model. In particular, we believe the interesting
cases are when an Event at one client causes a change in the
Status of files at another client. Also, we hope to use this
model to prove various other consistency properties of CVS,
such as monotonicity of version numbering, etc.

The model is unsound in a number of regards:

No branches. For simplicity, we have modelled the common-
case usage of CVS in which the version tree degenerates
to a linear list. Although adding support for branches
would require a change in the chosen abstractions, it
should not cause any fundamental problems; however,
adding complexity increases the run-time of the anal-
yser, making debugging slower.

File contents are approximated The merge operations
that CVS performs are complex, so we make no at-
tempt to model the actual file contents. It suffices
to abstract the file contents by the three local<X>
flags. However, this is only an approximation: we treat
merge updates pessimistically (i.e. it always causes a
conflict if the file was stale) and we treat modifications
optimistically (in that we assume any conflict is always
resolved).

Add and Remove events are inexact. In reality, these two
events can be issued in either order. Add before Remove
is a no-op. Remove before Add, which is not possible
in the model, should cause the latest version to be
checked-out (as if by update).

Attic not supported. Inthe model, when a locally-removed
file is checked-in, the corresponding file in the reposi-
tory is deleted. In reality, however, CVS simply moves
the file to a special directory called the Attic, which
permits files that were removed to be restored later.

Model requires further testing. The model as shown in
Appendix C, while sufficient to generate the visuali-
sations shown in Appendix D, contains a number of
minor faults, purely due to time pressure. We hope to
eliminate these in the future.

The abstraction chosen for this model was in many ways
the obvious one; it was decided upon quite early-on, and
changed little during development. The event relation was
originally defined as State -> Client -> File -> Event
but was later split into three parts to avoid the more com-
plex syntax it required to express constraints (in particular,
when ‘extracting columns’). However, the original quater-
nary relation was left in (now a simple function of the others)
as it proved useful during visualisation.

We believe the current model, extended with history and
branches, will serve as a useful tool for maintainers of the
CVS system.

4. Remarks on the Alloy system

Modelling CVS with Alloy was for the most part straight-
forward; Alloy’s syntax is very expressive and allows terse
specification of constraints. For example, to specify “pro-
duce a model in which some file at some client gets into
status HadConflicts and then subsequently returns to sta-
tus UpToDate”, we simply write:

some s: State, f: File, c:Client | {
HadConflicts in s.status[c][f]
UpToDate in OrdNexts(s).status[c][f]

[u}

However, the modelling was extremely time-consuming,
due in large part to a number of specific difficulties encoun-
tered when using the tool:

Analyser diagnostics are too terse. When the analyser
fails to find a solution to the model, it gives no indi-
cation as to what is the probable cause of the failure.
This puts a heavy burden on the user of selectively en-
abling and disabling parts of the model until they can
identify the contradictory constraints.

Scope clauses must be manually kept consistent with sig
declarations. When defining a number of static disj
sigs (such as the sub-sigs of Event or Status), the user
must ensure that the model’s run command accurately
reflects the cardinality of these sets, or else no solution
will be found. Failure to keep these consistent was fre-
quently the cause of honerous debugging sessions. (In
addition the user must provide and maintain a cover-
age constraint of the form E = E; + E»> + ... + Ey).

Visualisation is powerful | but complex to use. We found
that, with sufficient experimentation, it was possible to
get very clear visualisations of the model simulations;
however, the interactions of the various GUI features
are unclear and a process of trial-and-error was usually
required to achieve the desired results.

Semantics of fun are not transparent. Failure to use the
det modifier on function declarations can result in
complex and apparently incorrect behaviour, with no
warning as to the possible fault. We understand this is
a known issue with the use of functions in expressions
(as opposed to formulae).

5. Lessons Learned

This section lists what we learned from this project.

e Models are much easier to write in Alloy if they are
written in a certain way. The current version of our
file-level locking model (Appendix A) is written as a
state machine, with functions to identify each state
(Idle, NewReadReq, etc.), and a single function (Trans)
describing the legal transitions between states. Earlier
versions of the model were just an ad-hoc collection of
rules that seemed to work. The state-machine model
is much easier to work with, since the relationship be-
tween the prestate and poststate is clearly defined.

We made 5 different versions of the file-level locking
model before we decided on the state machine rep-
resentation. In contrast, the atomic checkin model
(Appendix B) was created using a state machine right
away, and the model presented in this paper is the first
version.

e Writing the properties to check can be more difficult
than writing the model itself. The hardest part of
the file-level locking model was writing the StarveRead
and StarveWrite functions.

e Alloy is useful for “regression testing” changes to a
model, to make sure a change didn’t have any unex-
pected consequences. After we changed the file-level
locking model so writes can’t be starved, we rechecked
the earlier assertions that the locking protocol cor-
rectly protects files.

References
[Ced] Per Cederqgvist. Version Management with CVS.

[Jac] Daniel Jackson. Micromodels of Software: Lightweight
Modelling and Analysis with Alloy.

Appendix A: Alloy model of file-level locking

module project
open std/ord

// A CVS process executing on a machine. Could have used
// "client" instead.
sig Process {}

sig State {
// The processes that want to read or write, but haven’t yet
// completed the read or write
readRequest: set Process,
writeRequest: set Process,

// Used to insert new requests into the system
newReadRequest: set Process,
newWriteRequest: set Process,

// The processes that are currently reading or writing
read: set Process,
write: set Process,

// The process that holds the master lock
masterLock: option Process,

// The processes that hold read or write locks. Multiple processes

// could theoretically hold write locks, but the transition rules prevent
// this from happening.

readLock: set Process,

writeLock: set Process

}

fact FullSets {
Process = univ[Process]
State = univ[State]

}

/*
* STATE MACHINE
*/
fun Trans(s, s’: State) {
all p: Process {
// Unconstrained, or constrained by external rules
Idle(s, p) => Idle(s’, p) ||
NewReadReq(s’, p) ||
NewWriteReq(s’, p)

NewReadReq(s, p) => ReadReq(s’, p)

// Constrained by MasterLockMustTry
ReadReq(s, p) => ReadReq(s’, p) || ReadReqMaster(s’, p)

ReadReqMaster(s, p) => ReadLockMaster(s’, p)
ReadLockMaster(s, p) => ReadLockNoMaster(s’, p)
ReadLockNoMaster(s, p) => Read(s’, p)

// Unconstrained
Read(s, p) => Read(s’, p) || ReadLockNoReq(s’, p)

}
}

fun
P
N
N
}

fun
P
P
P
P
P
N

}

fun

p
P
p
p

P
N

}

fun

P
p
P
p

p
N

}

fun
P

ReadLockNoReq(s, p) => Idle(s’, p)

NewWriteReq(s, p) => WriteReq(s’, p)

// Constrained by MasterLockMustTry
WriteReq(s, p) => WriteReq(s’, p) || WriteReqMaster(s’, p)

// Orignal model: writes can be starved by overlapping reads
// VWriteReqMaster(s, p) && some s.readLock => WriteReq(s’, p)

// Fixed model: writes *cannot* be starved by overlapping reads, since
// the writer holds the master lock until the read locks are released
WriteReqMaster(s, p) && some s.readLock => WriteReqMaster(s’, p)

WriteReqMaster(s, p) && no s.readLock => WriteLockMaster(s’, p)
WriteLockMaster(s, p) => Write(s’, p)

// Unconstrained
Write(s, p) => Write(s’, p) || WriteLockNoReq(s’, p)

WriteLockNoReq(s, p) => MasterLock(s’, p)

MasterLock(s, p) => Idle(s’, p)

Idle(s: State, p: Process) {
not in s.masterLock

oRead (s, p)

oWrite(s, p)

NewReadReq(s: State, p: Process) {
not in s.masterLock
not in s.readLock
not in s.read
not in s.readRequest
in s.newReadRequest
oWrite(s, p)

S
S
S
S

ReadReq(s: State, p: Process) {
not in s.masterLock
not in s.readLock
not in s.read

in s.readRequest
not in s.newReadRequest
oWrite(s, p)

S.
S.
S.
S.

ReadReqMaster(s: State, p: Process) {
in s.masterLock

not in s.readLock

not in s.read
in s.readRequest

not in s.newReadRequest

oWrite(s, p)

ReadLockMaster(s: State, p: Process) {
in s.masterLock

.readLock
.read

P in
p not in
P in s.readRequest
p not in s.newReadRequest
NoWrite(s, p)

}

S
S
S
S

fun ReadLockNoMaster(s: State, p: Process) {
p not in s.masterLock

P in s.readLock
p not in s.read
P in s.readRequest
p not in s.newReadRequest
NoWrite(s, p)
}
fun Read(s: State, p: Process) {
p not in s.masterLock
P in s.readLock
P in s.read
P in s.readRequest
p not in s.newReadRequest
NoWrite(s, p)

fun ReadLockNoReq(s: State, p: Process) {
p not in s.masterLock

P in s.readLock

p not in s.read

p not in s.readRequest

p not in s.newReadRequest

NoWrite(s, p)

S
S
S
S

fun NewWriteReq(s: State, p: Process) {

p not in s.masterLock

p not in s.writeLock

p not in s.write

p not in s.writeRequest

P in s.newWriteRequest
NoRead(s, p)

}

fun WriteReq(s: State, p: Process) {
p not in s.masterLock

p not in s.writeLock
p not in s.write
P in s.writeRequest
p not in s.newWriteRequest
NoRead (s, p)
}
fun WriteReqMaster(s: State, p: Process) {
P in s.masterLock
p not in s.writeLock
p not in s.write
P in s.writeRequest
p not in s.newWriteRequest
NoRead (s, p)

}

fun WriteLockMaster(s: State, p: Process) {
P in s.masterLock

P in s.writelLock
p not in s.write
P in s.writeRequest
p not in s.newWriteRequest
NoRead(s, p)
}
fun Write(s: State, p: Process) {
P in s.masterLock
P in s.writeLock
P in s.write
P in s.writeRequest
p not in s.newWriteRequest
NoRead(s, p)
}
fun WriteLockNoReq(s: State, p: Process) {
P in s.masterLock
P in s.writeLock
p not in s.write
p not in s.writeRequest
p not in s.newWriteRequest
NoRead (s, p)

}

fun MasterLock(s: State, p: Process) {
P in s.masterLock
NoWrite(s, p)
NoRead (s, p)

}

fun NoWrite(s: State, p: Process) {
not in s.writeLock

not in s.write

not in s.writeRequest

not in s.newWriteRequest

oo oo

fun NoRead(s: State, p: Process) {
not in s.readLock

not in s.read

not in s.readRequest

not in s.newReadRequest

oo oo

}

// If a process has a read or write request, it must actively try to obtain
// the master lock
fun MasterLockMustTry(s, s’: State) {
all p: Process {
P in s.readRequest && p not in s.readLock
=>
some s’.masterLock

p in s.writeRequest && p not in s.masterLock
=>
some s’.masterLock

/*
* UTILITY FUNCTIONS

*/

fun FirstProcess(): Process { result = Ord[Process].first }

fun SecondProcess(): Process { result = OrdNext(FirstProcess()) }
fun ThirdProcess(): Process { result = OrdNext(SecondProcess()) }

fun FirstState(): State { result = Ord[State] .first }

fun SecondState(): State { result = OrdNext(FirstState()) }
fun ThirdState(): State { result = OrdNext(SecondState()) }
fun FourthState(): State { result = OrdNext(ThirdState()) }
fun FifthState(): State { result = OrdNext(FourthState()) }
fun LastState(): State { result = Ord[State].last }

fun SameState(s, s’: State) {
.newReadRequest = s’.newReadRequest
.newWriteRequest = s’.newWriteRequest
.readRequest = s’.readRequest
.writeRequest = s’.writeRequest

.read = s’.read

.write = s’.write

.masterLock = s’.masterLock

.readLock = s’.readLock

.writeLock = s’.writeLock

n n unonnonnonon

}

fun Loop(s, s’: State) {
s !I= g’
SameState(s, s’)

}

// True if the process had a chance to obtain the master lock between
// the two states
fun ChanceAtMasterLock(s, s’: State, p: Process) {

no s.masterlLock || (s.masterLock != s’.masterLock)

}

/*
* MODEL MECHANICS
*/
fun LegalTransition(s, s’: State) {
Trans(s, s’)
MasterLockMustTry(s, s’)
}

fun AllLegalTransitions() {
all s: (State-LastState()) {
let s’ = OrdNext(s) {
LegalTransition(s, s?)
}
}
}

fun Init(s: State) {
no s.newReadRequest
no s.newWriteRequest

no s.readRequest
no s.writeRequest
no s.read

no s.write

no s.masterLock
no s.readLock

no s.writeLock

10

fun InitAllLegal() {
Init(Ord[State].first)
AllLegalTransitions()

}

/*
* PROPERTIES TO CHECK
*/

// True if a read request can be starved
fun StarveRead() {
InitAllLegal()
some begin: State {
Loop(begin, LastState())
let loopStates = begin + OrdNexts(begin) {
some p: Process {
all s: loopStates {p in s.readRequest}
no s: loopStates - LastState() | let s’ = OrdNext(s) {
ChanceAtMasterLock(s, s’, p)
}
}
no p: Process | all s: loopStates {
p in (s.masterLock + s.readLock)
}
}
}
}

// True if a write request can be starved
fun StarveWrite() {
InitAllLegal()
some begin: State {
Loop(begin, LastState())
let loopStates = begin + OrdNexts(begin) {
some p: Process {
all s: loopStates {p in s.writeRequest}
no s: loopStates - LastState() | let s’ = OrdNext(s) {
ChanceAtMasterLock(s, s’, p) & no s’.readlLock
}
}
no p: Process | all s: loopStates {
p in (s.masterLock + s.readLock)
}
}
}
}

// No two processes should be able to read and write simultaneously
assert NoReadWrite {

InitAllLegal()

=>

(all s: State | (some s.write) => (no s.read))

}

// No two processes should be able to write simultaneously
assert NoWriteWrite {

InitAllLegal()

=>

(all s: State | sole s.write)

}

11

// Multiple processes should be able to read simultaneously
fun MultipleReads() {

InitAllLegal()

some s: State | #s.read > 1

}
/*
* TESTS
*/
fun test1() {
InitAllLegal()
all s: State - SecondState() | no s.newReadRequest
SecondState () .newReadRequest = FirstProcess()
no State$newWriteRequest
}

fun test2() {
InitAllLegal()
all s: State - SecondState() | no s.newWriteRequest
SecondState () .newWriteRequest = FirstProcess()
no State$newReadRequest
all p: Process | Idle(LastState(), p)

run testl for 2 Process, 10 State

run test2 for 2 Process, 10 State

check NoReadWrite for 3 Process, 10 State
check NoWriteWrite for 3 Process, 10 State
run MultipleReads for 2 Process, 10 State
run StarveWrite for 3 Process, 13 State
run StarveRead for 3 Process, 13 State

/*

* Local Variables:

* compile-command: "java -cp alloy.jar alloy.cli.AlloyCLI -E -n cvs-sm.als"
* End:

*/

12

Appendix B: Alloy model of atomic check-ins

module project
open std/ord

// A CVS process executing on a machine. Could have used
// "client" instead.
sig Proc {}

// Directories in the repository. Don’t need to model files in the
// directory, since locking is done at the directory level.
sig Dir {}

// Possible versions for the directories.
sig Ver {}

sig State {
// Version of the directory on the server
serverVer: Dir ->! Ver,

// Version of the directory on each client
clientVer: Proc -> Dir ->! Ver,

// The processes that want to checkout or checkin directories,
// but haven’t yet completed the checkin or checkout
coRequest: Proc -> Dir,

ciRequest: Proc -> Dir,

// Used to insert new requests into the system
newCoRequest: Proc -> Dir,
newCiRequest: Proc -> Dir,

// The process that holds the lock for a directory
lock: Proc 7-> Dir

}

fact FullSets {
Proc = univ[Proc]
Dir = univ[Dir]
Ver = univ[Ver]
State = univ[State]

}

/*
* STATE MACHINE
*/
fun Trans(s, s’: State) {
all p: Proc {
Idle(s, p)
=>
(Idle(s’, p) || NewCoRequest(s’, p) || NewCiRequest(s’, p)) &&
NoClientVersionChange(s, s’, p)

NewCoRequest (s, p)

=>

CoRequest(s’, p) &&

s’.coRequest[p] = s.newCoRequest[p] &&
NoClientVersionChange(s, s’, p)

NewCiRequest(s, p)

=>
CiRequest(s’, p) &&

13

/*

*/

s’.ciRequest[p] = s.newCiRequest[p] &&
NoClientVersionChange(s, s’, p)

CoRequest (s, p)

=>

((CoRequest(s’, p) &&
s’.coRequest[p] = s.coRequest[p] &&
NoClientVersionChange(s, s’, p))
I
(CoRequestLock(s’, p) &&
s’.coRequest[p] = s.coRequest[p] &&
// Add only one lock in the transition
one s’.lock[p] &&
NoClientVersionChange(s, s’, p)))

CiRequest (s, p)
=>
((CiRequest(s’, p) &&
s’.ciRequest[p] = s.ciRequest[p] &&

NoClientVersionChange(s, s’, p))

[

(CiRequestLock(s’, p) &&
s’.ciRequest[p] = s.ciRequest[p] &&
// Add only one lock in the transition
one s’.lock[p] &&
NoClientVersionChange(s, s’, p)))

// Original behavior, as implemented by CVS
CoRequestLock(s, p) && #s.coRequest[p] > 1
=>
(CoRequestLock(s’, p) &&
s’.coRequest[p] = s.coRequest[p] &&
s’.lock[p] = s.lock[p]l &%
NoClientVersionChange(s, s’, p))
I
(CoRequest(s’, p) &&
s’.coRequest[p] = s.coRequest[p]l - s.lock[p]l &&
CheckoutVersionChange(s, s’, p))

CoRequestLock(s, p) && #s.coRequest[p] = 1
=>

(CoRequestLock(s’, p) &&

s’.coRequest[p] = s.coRequest[p] &&
s’.lock[p] = s.locklpl &&
NoClientVersionChange(s, s’, p))

I

(Idle(s’, p) &&

CheckoutVersionChange(s, s’, p))

// Fix to make checkins atomic. Obtain all locks before checking out.
// Same transitions as CiRequestLock
CoRequestLock(s, p) && s.lock[p] != s.coRequest[p]
=>
(CoRequestLock(s’, p) &&
s’.coRequest[p] = s.coRequest[p]l &&
s.lock[p] in s’.lock[p] &&
// Add at most one lock in a transition
sole (s’.locklpl - s.lock[pl) &&
NoClientVersionChange(s, s’, p))

14

CoRequestLock(s, p) && s.lock[p] = s.coRequest[p]
=>

(CoRequestLock(s’, p) &&

s’.coRequest[p] = s.coRequest[p] &&

s’.lock[p] = s.locklpl &&
NoClientVersionChange(s, s’, p))

I

(Idle(s’, p) &&

CheckoutVersionChange(s, s’, p))

CiRequestLock(s, p) && s.lock[p] !'= s.ciRequest[p]
=>

(CiRequestLock(s’, p) &&

s’.ciRequest[p] = s.ciRequest[p] &&

s.lock[p]l in s’.locklp] &&

// Add at most one lock in a transition

sole (s’.lockl[pl - s.lock[pl) &&
NoClientVersionChange(s, s’, p))

CiRequestLock(s, p) && s.lock[p] = s.ciRequest[p]
=>
(CiRequestLock(s’, p) &&
s’.ciRequest[p] = s.ciRequest[p] &&
s’.lock[p]l = s.locklpl &&
NoClientVersionChange(s, s’, p))
I
// CheckinVersionChange handled by ServerVer function
(Idle(s’, p) && NoClientVersionChange(s, s’, p))
}
}

fun Idle(s: State, p: Proc) {
no s.newCoRequest [p]

no s.newCiRequest [p]
no s.coRequest [p]

no s.ciRequest[p]

no s.lock[p]

}

fun NewCoRequest(s: State, p: Proc) {
some s.newCoRequest [p]
no s.newCiRequest [p]

no s.coRequest [p]
no s.ciRequest[p]
no s.lock[p]

}

fun CoRequest(s: State, p: Proc) {
no s.newCoRequest[p]
no s.newCiRequest [p]
some s.coRequest[p]
no s.ciRequest [p]
no s.lock[p]
}

fun CoRequestLock(s: State, p: Proc) {
no s.newCoRequest [p]
no s.newCiRequest[p]
some s.coRequest [p]
no s.ciRequest [p]
some s.lock[p]
s.lock[p] in s.coRequest[p]
}

15

fun NewCiRequest(s: State, p: Proc) {
no s.newCoRequest [p]
some s.newCiRequest [p]
no s.coRequest[p]
no s.ciRequest [p]
no s.lock[pl
}

fun CiRequest(s: State, p: Proc) {
no s.newCoRequest [p]
no s.newCiRequest[p]
no s.coRequest [p]
some s.ciRequest[p]
no s.lock[p]
}

fun CiRequestLock(s: State, p: Proc) {
no s.newCoRequest [p]
no s.newCiRequest [p]
no s.coRequest [p]
some s.ciRequest[p]
some s.lock[p]
s.lock[p] in s.ciRequest[p]
}

fun NoClientVersionChange(s, s’: State, p: Proc) {
s’.clientVer[p] = s.clientVer[p]
}

fun CheckoutVersionChange(s, s’: State, p: Proc) {
all d: Dir {
d in s.lock[p] => s’.clientVer[p][d] = s.serverVer[d]
d not in s.lock[pl => s’.clientVer[pl[d] = s.clientVer[p][d]
}
}

// Updates the server version of a file when some process checks in
// the file. Must be constrained outside of Trans, because we must look
// at *all* processes in a state to determine the new server version, while
// trans looks at one process at a time.
fun ServerVer(s, s’: State) {
all d: Dir {
// Because of locks, there can only be one updating proc for a directory
(some p: Proc | CiRequestLock(s, p) && Idle(s’, p) && d in s.lock[p])
=>
let updatingProc = “(s.lock)[d] {
s’ .serverVer[d] = s.clientVer[updatingProc] [d]

}

!(some p: Proc | CiRequestLock(s, p) && Idle(s’, p) && d in s.lockl[pl)
=>

s’.serverVer[d] = s.serverVer[d]

}
}

// Solves deadlock problem
// Imposes total ordering on the order in which locks can be obtained
fun LockOrdering(s, s’: State) {
all p: Proc {
all d: (s’.lock[p] - s.lock[pl),
d’: (s.ciRequest[p] + s.coRequest[p]) - s.lock[p] {
OrdLE(d, d’)

16

/*

* UTILITY FUNCTIONS

*/

fun FirstProc(): Proc { result =
fun SecondProc(): Proc { result = OrdNext(FirstProc()) }
fun ThirdProc(): Proc { result =

Ord[Proc] .first }

OrdNext (SecondProc()) }

fun FirstDir(): Dir { result = Ord[Dir].first }
fun SecondDir(): Dir { result =0
fun ThirdDir(): Dir { result = OrdNext(SecondDir()) 1}

rdNext (FirstDir()) }

fun FirstVer(): Ver { result = QOrd[Ver].first }
fun SecondVer(): Ver { result =0
fun ThirdVer(): Ver { result = OrdNext(SecondVer()) }

rdNext (FirstVer()) }

fun FirstState(): State { result = Ord[State].first }
fun SecondState(): State { result
fun ThirdState(): State { result = OrdNext(SecondState()) }
fun FourthState(): State { result
fun FifthState(): State { result
fun SixthState(): State { result
fun SeventhState(): State { resul
fun EighthState(): State { result
fun NinthState(): State { result
fun TenthState(): State { result
fun LastState(): State { result = Ord[State].last }

/*

* MODEL MECHANICS

*/

= OrdNext (FirstState()) }

= OrdNext(ThirdState()) }
= OrdNext (FourthState()) }
= OrdNext(FifthState()) }
t = OrdNext(SixthState()) }
= OrdNext(SeventhState()) }
= OrdNext (EighthState()) }
= OrdNext (NinthState()) }

fun LegalTransition(s, s’: State) {
Trans(s, s’)
ServerVer(s, s’)
LockOrdering(s, s’)

}

fun AllLegalTransitions() {
all s: (State-LastState()) {
let s’ = OrdNext(s) {

}
}
}

LegalTransition(s, s?)

fun Init(s: State) {
no s.newCoRequest

no
no
no
no

}

S

S
S
S

.newCiRequest
.coRequest
.ciRequest
.lock

fun InitAllLegal() {
Init(0rd[State] .first)
AlllLegalTransitions ()

}

17

/*
* PROPERTIES TO CHECK
*/

// If you do a checkout, you actually get the new versions of files
assert CheckoutWorks {
{InitAl1lLegal()
all p: Proc, d: Dir {
FirstState() .serverVer[d] = SecondVer()
FirstState().clientVer[p]l [d] = FirstVer()
}
all s: State-SecondState() | no s.newCoRequest
SecondState () .newCoRequest [FirstProc()] = FirstDir() + SecondDir()
all s: State | mno s.newCiRequest
all p: Proc | Idle(LastState(), p)}
=>
all d: Dir | LastState().clientVer[FirstProc()][d] = LastState().serverVer[d]
}

// If you do a checkin, you actually update the files on the server
assert CheckinWorks {
{InitAl1lLegal()
all d: Dir {
FirstState().serverVer[d] = FirstVer()
FirstState().clientVer[FirstProc()][d] = SecondVer()
}
all s: State-SecondState() | no s.newCiRequest
SecondState () .newCiRequest [FirstProc()] = FirstDir() + SecondDir()
all s: State | no s.newCoRequest
all p: Proc | Idle(LastState(), p)

[ad

>
all d: Dir | LastState().serverVer[d] = LastState().clientVer[FirstProc()][d]
}

// If someone commits some changes in one cvs checkin, then a checkout
// by someone else will either get all the changes, or none of them.
assert AtomicCheckin {

{InitAl1lLegal()

// For each client, all directories start at the same version
all p: Proc, disj d, d’: Dir {

FirstState().clientVer[p] [d] = FirstState().clientVer[p] [d’]
}

// For the server, all directories start at the same version
all disj d, d’: Dir {

FirstState() .serverVer[d] = FirstState().serverVer[d’]
}

// A1l checkouts and checkins must be all directories, or no directories
// Avoids trivial solution where client only checks out/in some directories
all s: State, p: Proc {

s.newCoRequest[p] = univ[Dir] || s.newCoRequest[p] = none[Dir]
s.newCiRequest[p] = univ[Dir] || s.newCiRequest[p] = none[Dir]
}
all p: Proc | Idle(LastState(), p)
}
=>

no p: Proc {

18

some disj d, d’: Dir {
LastState() .clientVer[p] [d] != LastState().clientVer[p][d’]
}
}
}

// If two processes each hold a lock that the other process needs
assert Deadlock {
InitAllLegal()
=>
no disj p, p’: Proc, s: State {
some 1: s.lock[p]l, 1’: s.lock[p’] {
1 in (s.coRequest[p’] + s.ciRequest([p’])
1’ in (s.coRequest[p] + s.ciRequest([p])
}
}
}

/*
* TESTS
*/
fun test1() {
InitAllLegal()
all p: Proc, d: Dir {
FirstState() .serverVer[d] = SecondVer()
FirstState() .clientVer([p]l [d] = FirstVer()
}
all s: State-SecondState() | no s.newCoRequest
SecondState () .newCoRequest [FirstProc()] = FirstDir() + SecondDir()
all s: State | no s.newCiRequest
all p: Proc | Idle(LastState(), p)
}

fun test2() {
InitAllLegal()
all d: Dir {
FirstState() .serverVer[d] = FirstVer()
FirstState().clientVer[FirstProc()][d] = SecondVer ()
}
all s: State-SecondState() | no s.newCiRequest
SecondState () .newCiRequest [FirstProc()] = FirstDir() + SecondDir()
all s: State | no s.newCoRequest
all p: Proc | Idle(LastState(), p)
}

// Manually construct non-atomic checkin instance
fun test3() {
InitAllLegal()
all d: Dir {
FirstState() .serverVer[d] = FirstVer()
FirstState() .clientVer[SecondProc()] [d] = SecondVer()
all p: Proc - SecondProc() {
FirstState().clientVer[pl [d] = FirstVer()
}
}

NewCoRequest (SecondState (), FirstProc())
SecondState () .newCoRequest [FirstProc()] = FirstDir() + SecondDir()

Idle(SecondState(), SecondProc())

CoRequest (ThirdState(), FirstProc())
NewCiRequest (ThirdState(), SecondProc())

19

ThirdState () .newCiRequest [SecondProc()] = FirstDir() + SecondDir()

CoRequestLock(FourthState(), FirstProc())
FourthState() .lock[FirstProc()] = FirstDir()
CiRequest (FourthState(), SecondProc())

CoRequest (FifthState(), FirstProc())
CiRequestLock(FifthState(), SecondProc())

CoRequest (SixthState(), FirstProc())
CiRequestLock(SixthState(), SecondProc())

CoRequest (SeventhState (), FirstProc())
Idle(SeventhState(), SecondProc())

CoRequestLock(EighthState(), FirstProc())
Idle(EighthState(), SecondProc())

Idle(NinthState(), FirstProc())
Idle (NinthState(), SecondProc())
}

// When checking out files, you may only hold one lock at a time
assert CheckoutSoleLock {

InitAllLegal()

=>

all p: Proc, s: State {

some s.coRequest[p] => sole s.lockl[p]

}

}

check CheckoutWorks for 1 Proc, 2 Dir, 2 Ver, 10 State
check CheckinWorks for 1 Proc, 2 Dir, 2 Ver, 10 State
check AtomicCheckin for 3 Proc, 2 Dir, 2 Ver, 10 State
check Deadlock for 2 Proc, 2 Dir, 2 Ver, 5 State

run testl for 1 Proc, 2 Dir, 2 Ver, 7 State

run test2 for 1 Proc, 2 Dir, 2 Ver, 10 State

run test3 for 2 Proc, 2 Dir, 2 Ver, 9 State

check CheckoutSoleLock for 2 Proc, 2 Dir, 2 Ver, 10 State

/*

* Local Variables:

* compile-command: "java -cp alloy.jar alloy.cli.AlloyCLI -E -n multidir.als"
* End:

*/

20

Appendix C: User-level Alloy model of CVS

module CvsMethods

open std/ord

// --- Principals --—- //

sig File {}
sig Client {}
sig Version {}

// only one event can happen per state (a somewhat simplistic model of
// concurrency!)
sig State

{

~

// These relations abstract the concrete facts of the CVS system.

// Global state:

event_type: Event,
event_client: Client,
event_file: File,

repository: File ->! Version,

// Client state:

entries: Client -> File ->! Version, // models CVS/Entries
localMods: Client -> File,

localConflicts: Client -> File,

localRemoved: Client -> File,

/] === PUBLIC INTERFACE -—-—-—-—-—- //

// These relations, derived purely from the above (not in terms of
// their previous values) represent the user’s view of CVS.

status_p: Client -> File -> Status,
event_p: Client -> File -> Event

// This redundant relation prevents important "unconnected" nodes
// disappearing during visualisation:

event_p = event_client -> event_file -> event_type

one event_p

all c: Client, f: File |

{
// define status relation by whatStatus function
status_p[c] [f] = whatStatus(this,c,f)

// no client "entry" version can be later than the corresponding
// repository if both exist:
// XXX Really, we’d like to prove this like (if P true initially,
// P is always true)
let svr_ver = currentVersion(this, f) |
let cli_ver = entries[c][f] |
some svr_ver && some cli_ver =>
cli_ver in OrdPrevs(svr_ver) + svr_ver

}

// Can’t be both removed and modified
all c: Client | no localRemoved[c] & localMods[c]

21

// A conflicting file is always modified.
localConflicts in localMods

// A file can only conflict if there exists a version at the server
// [XXX and in the entries!] [XXX this rule seems to have no effect]
all f: localConflicts[Client] | some currentVersion(this, f)

}

// -—- Status --- //

sig Status {}

{
this in UpToDate + LocallyAdded + LocallyModified + LocallyRemoved +
NeedsMerge + NeedsPatch + HadConflicts + NotCheckedIn +
NeedsCheckout
}
static disj sig UpToDate,
LocallyAdded, // "Locally Added"
LocallyRemoved, // "Locally Removed"
LocallyModified, // "Locally Modified"
NeedsMerge, // "Needs Merge"
NeedsPatch, // '"Needs Patch"
HadConflicts, // "File had conflicts on merge"
NotCheckedIn, // "Unknown"
NeedsCheckout // '"Needs Checkout"

extends Status {}

fun isUpToDate(s: State, c: Client, f: File)

{
s.entries[c] [f] = currentVersion(s, f) // Versions match at client + repos
one currentVersion(s, f) // exists in repository
f !in s.localMods[c] // no mods
f 'in s.localConflicts[c]
f 'in s.localRemoved[c]

}

fun isLocallyModified(s: State, c: Client, f: File)

{
s.entries[c] [f] = currentVersion(s, f) // Versions match at client + repos
one currentVersion(s, f) // exists in repository
f in s.localMods[c] // locally modified
f !'in s.localConflicts[c]
f 'in s.localRemoved[c]

}

fun isNeedsPatch(s: State, c: Client, f: File)

{
isFileStale(s, c, f)
f 'in s.localMods[c] // unmodified
f !in s.localRemovedl[c]

}

fun isNeedsMerge(s: State, c: Client, f: File)

{
isFileStale(s, c, f)

f in s.localMods[c] // modified (don’t care about conflicts)
f !'in s.localRemoved[c]

22

}

fun isHadConflicts(s: State, c: Client, f: File)

{
s.entries[c] [f] = currentVersion(s, f) // Versions match at client + repos
one currentVersion(s, f) // exists in repository
f in s.localMods[c] // mods with conflicts
f in s.localConflictsl[c]
f 'in s.localRemoved[c]
}
fun isLocallyAdded(s: State, c: Client, f: File)
{
f in s.entries[c].Version // local entry exists
no currentVersion(s, f) // doesn’t exist in repository
f !in s.localMods[c] // no mods
f 'in s.localConflictsl[c]
f !'in s.localRemoved[c]
}
fun isLocallyRemoved(s: State, c: Client, f: File)
{
f in s.entries[c].Version // local entry exists (but marked "removed")
one currentVersion(s, f) // exists at server
f in s.localRemoved[c] // removed
}
fun isNotCheckedIn(s: State, c: Client, f: File)
{
f !in s.entries[c].Version // no local entry
no currentVersion(s, f) // not in repository
// local<..> flags don’t matter.
}
fun isNeedsCheckout(s: State, c: Client, f: File)
{
f lin s.entries[c].Version // no local entry
one currentVersion(s, f) // exists in repository
// local<..> flags don’t matter.
}
det fun whatStatus(s: State, c: Client, f: File) : Status
{
// We can use Alloy to prove that these predicates are disjoint;
// to do so, we must remove all other constraints on whatStatus
// that might mask a counterexample, such as any applied to
// State$status_p.
isUpToDate(s,c,f) <=> UpToDate in result
isLocallyAdded(s,c,f) <=> LocallyAdded in result
isLocallyRemoved(s,c,f) <=> LocallyRemoved in result
isLocallyModified(s,c,f) <=> LocallyModified in result
isNeedsPatch(s,c,f) <=> NeedsPatch in result
isNeedsMerge(s,c,f) <=> NeedsMerge in result
isHadConflicts(s,c,f) <=> HadConflicts in result
isNotCheckedIn(s,c,f) <=> NotCheckedIn in result
isNeedsCheckout(s,c,f) <=> NeedsCheckout in result
}

23

// This assertion is always true, FALSE, even without other
// constraints on whatStatus, proving that whatStatus is always
// uniquely defined.
assert statusPredicatesIntersect
{
all s: State, c: Client, f: File | one whatStatus(s,c,f)

}
check statusPredicatesIntersect for 7 but 1 File, 2 Client, 9 Status, 6 Event

// -—— Event --- //

sig Event {}

{
this in UpdateEvent + ModifyEvent + AddEvent + RemoveEvent +
CheckinEvent + NonEvent
}
static disj sig UpdateEvent, // "cvs update foo.c"
ModifyEvent, // "emacs foo.c"
AddEvent, // "cvs add foo.c"
RemoveEvent, // "cvs remove foo.c"
CheckinEvent, // "cvs ci foo.c"
NonEvent // used for last state only
extends Event {}
// --- Helper predicates --- //
fun repositoryUnchanged(s, s’ : State)
{
s’.repository = s.repository
}

fun false() { 0 =11}
fun true() {}

// In the event-client, all locals other than the event-file remain unchanged.
fun thisClientOtherLocalsUnchanged(s, s’: State)

{
let client = s.event_client |
let file = s.event_file |
{
// apart from the event_file, mods/conflicts/removed are unchanged
// We don’t specify any constraints on the event_file
s’.localMods [client] - file = s.localMods [client] - file
s’.localConflicts[client] - file = s.localConflicts[client] - file
s’.localRemoved [client] - file = s.localRemoved [client] - file
all f: File - file |
s’.entries[client] [f] = s.entries[client] [f]
}
}

// All clients not in this event don’t change state (but they may change
// Status).
fun otherClientsLocalsUnchanged(s, s’: State)

all c: Client - s.event_client |

s.entries[c] // file->versions
s.localConflicts[c]
s.localMods [c]

s’.entries[c]
s’.localConflicts[c]
s’.localMods[c]

24

s’.localRemoved[c] = s.localRemoved[c]
}

// any change to the repository only affects the event file
fun reposOtherFilesUnchanged(s, s’: State)

{

// all other files unchanged in repository

all f: File - s.event_file |

currentVersion(s’, f) = currentVersion(s, f)

}
fun currentVersion(s: State, f: File) : Version
{

result = s.repository[f]
}

fun eventFileIsModified(s: State) {
s.event_file in s.localMods[s.event_client]

}

// file exists at both ends but versions differ

fun isFileStale(s: State, c: Client, f: File) {
s.entries[c] [f] in OrdPrevs(currentVersion(s, f))
some s.entries[c][f]
some currentVersion(s, f)

fun clearConflicts(s, s’: State) {
s’.localConflicts[s.event_client] =
s.localConflicts[s.event_client] - s.event_file

fun clearModified(s, s’: State) {
s’.localMods[s.event_client] =
s.localMods[s.event_client] - s.event_file

fun clearRemoved(s, s’: State) {
s’.localRemoved[s.event_client] =
s.localRemoved[s.event_client] - s.event_file

fun setConflicts(s, s’: State) {
s’.localConflicts[s.event_client] =
s.localConflicts[s.event_client] + s.event_file

fun setModified(s, s’: State) {
s’.localMods[s.event_client] =
s.localMods[s.event_client] + s.event_file

fun setRemoved(s, s’: State) {
s’.localRemoved[s.event_client] =
s.localRemoved[s.event_client] + s.event_file

fun preserveConflicts(s, s’: State) {
s’.localConflicts[s.event_client] = s.localConflicts[s.event_client]

fun preserveModified(s, s’: State) {

25

s’.localMods[s.event_client] = s.localMods[s.event_client]

}
fun preserveRemoved(s, s’: State) {
s’.localRemoved[s.event_client] = s.localRemoved[s.event_client]
}
// -—- Legality constraints on Event state-transitions --- //

fun legalEvent(s, s’ : State)
{

s.event_type != NonEvent // NonEvent is never used in state transitions

let e = s.event_type |
{
AddEvent in
UpdateEvent in
ModifyEvent in
RemoveEvent in
CheckinEvent in

=> legalAddEvent(s, s’)

=> legalUpdateEvent(s, s’)
legalModifyEvent (s, s’)
=> legalRemoveEvent(s, s’)
=> legalCheckinEvent(s, s’)

® O O 0 0
1l
v

}

// These are common invariants for all Events
thisClientOtherLocalsUnchanged(s, s’)
otherClientsLocalsUnchanged(s, s’)
reposOtherFilesUnchanged(s, s’)

// Repository version numbers only go forward (no rollback)

// between adjacent states, but the version numbering may start
// again at zero after a removal and files may appear and

// disappear over time.

// XXX We would like this to be a testable assertion!

all f: s.repository.Version | // all files in this state’s repository
let v = currentVersion(s, f) |
let v’ = currentVersion(s’, f) |
some v && some v’ => // if file exists in later repository,
v’ in OrdNexts(v) + v // must have same or later version

}

fun legalUpdateEvent(s, s’ : State)
{

// -- preconditions --

// -- postconditions --

repositoryUnchanged(s, s’)

// Version brought up to date with repository (true for empty set too)
s’ .entries[s.event_client] [s.event_file] =

currentVersion(s, s.event_file)

preserveRemoved(s, s’)
preserveModified(s, s’)

// (Pessimistically) flag a conflict if the the server version has

// increased and the event-file has been locally modified

eventFileIsModified(s) && isFileStale(s, s.event_client, s.event_file) =>
setConflicts(s, s’), preserveConflicts(s, s’)

}

fun legalModifyEvent(s, s’ : State)

26

// -- preconditions --

// file must already be in repository:
one currentVersion(s, s.event_file)

// Not marked for removal (removed => no file on disk)

// [XXX Incorrect: might be newly added. If this is the case we
// want the ModifyEvent not to change its status.]

s.event_file !in s.localRemoved[s.event_client]

// -- postconditions --
repositoryUnchanged(s, s’)

// local entries unchanged
s’ .entries[s.event_client] = s.entries[s.event_client]

setModified(s, s’)
preserveRemoved(s, s’)
clearConflicts(s, s’) // (optimistically) assume that user clears conflicts

}

// XXX Incorrect:
fun legalAddEvent(s, s’: State)

{
// -- preconditions --
// CVS will not let you add a file (to the local CVS/Entries) if
// the same file exists at the server. It issues the warning: "cvs
// server: <file> added independently by second party".
no currentVersion(s, s.event_file)
// either it’s a new file (mo local or repos entries)
let v = s.entries[s.event_client] [s.event_file] |
no v || (one v && s.event_file in s.localRemoved[s.event_client])
// -- postconditions --
repositoryUnchanged(s, s’)
s’ .entries[s.event_client] [s.event_file] = Ord[Version].first
clearConflicts(s, s’)
clearRemoved(s, s’)
clearModified(s, s’)
}

fun legalRemoveEvent(s, s’: State)
// -- preconditions --

// can’t remove if "removed" flag already set!
s.event_file !'in s.localRemoved [s.event_client]

// -- postconditions --
repositoryUnchanged(s, s’)
let cli = s.event_client |
{

setRemoved(s, s’)
clearModified(s, s’) // removed files are considered unmodified

27

clearConflicts(s, s’)

s’.entries[cli] = s.entries[cli] // local entries unchanged
}
}
fun legalCheckinEvent(s, s’: State)
{
let £ = s.event_file |
let modified = s.localMods[s.event_client] |
let removed = s.localRemoved[s.event_client] |
let added = s.entries[s.event_client].Version - s.repository.Version
{
// -- preconditions --
// must be in exactly one category:
f in added || f in removed || f in modified
// can only check in modified if repository/client versions agree:
f in modified =>
currentVersion(s, f) = s.entries[s.event_client] [f]
// can’t check in a file with conflicts
f 'in s.localConflicts[s.event_client]
// -- postconditions --
f in removed =>
{
no currentVersion(s’, f) // remove from repository,
no s’.entries[s.event_client] [f] // and from CVS/Entries
}
f in modified =>
{
// increment version
currentVersion(s’, f) = OrdNext(currentVersion(s, f))
some currentVersion(s’, f) // ensure we don’t run out of Versions!
}
f in added =>
{
// added at first version [XXX problem: add, ci, remove, ci, add]
currentVersion(s’, f) = Ord[Version].first
}
// (works even for empty-set)
s’ .entries[s.event_client] [f] = currentVersion(s’, f)
clearRemoved(s, s’)
clearModified(s, s’)
}
}
// -—-- Behavioural assertions --- //

// XXX Incomplete. We want to write a user-level consistency

// constraint, using only the "public" interface relatiomns, "status_p"
// and "event_p", to describe the changing status of files in terms of
// events received, without looking at the representation.

fun assertStatusChanges(s, s’: State)
{
let ev = s.event_type |
let stat = s.status_p [s.event_client][s.event_file] |

28

let stat’ = s’.status_p[s.event_client][s.event_file] |
{
ev : UpdateEvent => {
stat = UpToDate + LocallyModified + HadConflicts
stat’ = UpToDate + LocallyModified

ev : ModifyEvent => {
stat in LocallyModified + HadConflicts + UpToDate
stat’ in LocallyModified + HadConflicts

ev : AddEvent => {
stat = NotCheckedIn
stat’ = LocallyAdded

ev : RemoveEvent => {
stat in LocallyModified + UpToDate + HadConflicts
stat’ = LocallyRemoved

ev : CheckinEvent => {
stat in LocallyAdded + LocallyModified + NotCheckedIn =>
stat’ = UpToDate
stat in LocallyRemoved =>
stat’ = NotCheckedIn

}
// XXX
}
}
// --- Main stuff --—- //

fact FullSets

{
// No trivial solutions please
File = univ[Filel
Client = univ[Client]
State = univ[State]
}

// Constraints to filter out legal but uninteresting solutions:
fact Pretty

{
// don’t modify files that are already modified (effect is a no-op)
all s: State |
s.event_type = ModifyEvent <=>
s.event_file !in s.localMods[s.event_client]
// don’t do updates to files that aren’t stale
all s: State |
s.event_type = UpdateEvent <=>
isFileStale(s, s.event_client, s.event_file)
// NonEvent is used only in the last state. That’s because Alloy
// might otherwise put a different event type in the last slot, but it
// can’t check it’s preconditions. NonEvent has no preconditioms.
all s: State | s.event_type = NonEvent <=> s = Ord[State].last
}

fun legal()
all s: State - Ord[State].last |

let s’ = OrdNext(s) |
legalEvent(s, s’)

29

// XXX We want to test this assertion, rather than state it as fact:
// assertStatusChanges(s, s’)
}

// -——— Test Scenarios --—- //

// Scenario helper functioms:

det fun firstState() : State { result = QOrd[State].first }

det fun secondState() : State { result = OrdNext(firstState()) }
det fun thirdState() : State { result = OrdNext(secondState()) }
det fun fourthState() : State { result = OrdNext(thirdState()) }

fun Scenariol()

{
// Initial state: everything is up-to-date + clean
// let firststate = Ord[State].first | {
// no firststate.localConflicts
// no firststate.localMods
// no firststate.localRemoved
// firststate.status_p[Client] [File]l = UpToDate
// }

// XXX NeedsCheckout, LocallyAdded are problematic

// NeedsCheckout /* LocallyAdded*/ in State.status_p[Client][File]
legal()

run Scenariol for 5 but 2 File, 2 Client, 9 Status, 6 Event

fun Scenario2()

{
some s: State, f: File, c: Client | {
s.status_p[c] [f] = UpToDate
some s’ in OrdNexts(s) | s’.status_p[c][f] = NeedsMerge
}
legal()
}

// run Scenario2 for 7 but 1 File, 2 Client, 9 Status, 6 Event

fun Scenario2a()

{
// some s: State, f: File | NeedsMerge in s.status_p[Client] [f]

// }

// some s: State, f: File, c:Client | {

// HadConflicts in s.status_pl[c][f]

// some OrdNexts(s).status_p[c][f] - HadConflicts - NeedsMerge - LocallyRemoved
// ie it eventually got out of it

// }

}

// run Scenario2a for 7 but 1 File, 2 Client, 9 Status, 6 Event

fun Scenario3()
{
some cl, c2 : Client {
cl !'= c2
firstState() .event_type = AddEvent // doesn’t work yet
firstState() .event_client = ci

secondState() .event_type = ModifyEvent

30

secondState() .event_client = ci

thirdState() .event_type = CheckinEvent
thirdState() .event_client = cl

fourthState() .event_type = UpdateEvent
fourthState() .event_client = c2
}

legal()
}

//run Scenario3 for 7 but 1 File, 2 Client, 9 Status, 6 Event

/*

* Local Variables:

* mode: alloy

* compile-command: "java -cp alloy.jar alloy.cli.AlloyCLI -E -m methods.als"
* End:

*/

31

Appendix D: Visualisation of user-level model
D.1 Single clients, simple modify/check-in

Chent_0

Statpfstatus: File_0->Status _7(LocallyModified)
StateflocalMads: File_D
ies: File _0- i

Client _D

Stafefstatus: File_O->Status _S(UpToDhte)
Statefentries: File 0->Wersion 2

?
'1

|_'_H'EHT)

32

D.2 Multiple clients, conflicting update

Client_0

Client _1

Statefstatus: File_0->Status _G(LocallyModified)
StateflocalMods - File_0
Statefentries: File_0->¥Yersion_3

Statefstatus: File_0->5Status _G(LocallyModified)
StateflocalMods: File_0
Statefentries: File_0->Version_3

1

[EVENT | localMods

localMods

Client_1
State§status: File_0->Status _7(NeedsMerge)
StateflocalMods:: File_0 State§status: File_0->Status _S{UpToDate)
Statefentries: File_0->Version_3 State§entries: File _0->Version_4

[EVENT |

ocalMods

Client _0

Client_1

Statefstatus: File _0->Status _4{HadConflicts)
StateflocalMods: File_O
State§entries: File_0->Version_4

Statefstatus: File_0->Status _S(UpToDate)
Statefentries: File _O->Version_4

ocalConflicts

localMods

33

