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Abstract.  We have investigated coordinate systems in Alloy. Coordinate structures are 
fundamental to many interesting systems, particular ones dependent on geography.  
Transportation systems, for instance, often adhere to grid formations.  Our key case study 
for this research was the classic �Fifteen�, or "Sliding Tiles," puzzle.  We were able to 
use Alloy to solve the puzzle for arbitrarily sized boards.  We also looked at other puzzles 
and games including Connect Four and Tic-Tac-Toe.  We built a reusable matrix module 
to aid us in our modeling. We highlighted common patterns we found across our models. 
 The Matrix Model. The std/matrix model is a reusable library module we built 
to aid us in modeling specific coordinate systems.  This model of a two-dimensional 
array bears strong similarity to the std/seq sequence model of a one-dimensional array. 
By observing how we extended the sequence model from one to two dimensions, we 
believe one could similarly build a three-dimensional model from our matrix model. 
 The matrix model contains a basic type named Matrix.  Matrix is 
polymorphically parameterized over another type t, which when instantiated, becomes 
the type of the matrix�s elements. The signature for Matrix contains a matrixElems field 
which is a quaternary relation from the Matrix to row indices to column indices to the 
type t.  To clarify, each row index, column index pair, is mapped to a single element of 
the matrix.  The matrix model uses to std/ord module to totally order the row and 
column index types. 
 The matrix model also contains a number of convenience functions that facilitate 
access to a matrix�s elements.  These include MatrixAt, which takes a row index and a 
column index as arguments, and returns the element located at the cross section of that 
row and column.  The MatrixRow function, when given a row index as an argument, 
returns an std/seq sequence of the elements in that row. And MatrixRight returns the 
element to the right of the element it is given.  Note that these last for functions, in 
addition to some other functions in the model, will not work properly if the matrix 
contains duplicate elements.  That is, a function cannot really return the element b to the 
right of element a, if a appears twice in the matrix. 
 Having built a reusable matrix module for ease in modeling coordinate systems, 
we began to model three grid-based puzzles: Tic-Tac-Toe, Connect Four, and Fifteen. 
 Tic-Tac-Toe. For our first case study, we modeled the game tic-tac-toe.  This 
model contains a singleton Board type, which has a field named matrix that points to a 
Matrix of Squares.  Each Square has a piece relation that points to at most one atom of 
type Piece.  Piece is partitioned into two disjoint singleton subsets X and O. 
 One of the key challenges in this problem is describing the tic-tac-toe itself.  
However with the help of the matrix model, the task was made a lot easier. We wrote a 
single function tictactoe that takes a piece p and a state s as arguments and is satisfied 
if there is a tic-tac-toe of p in state s. 
 Another important aspect of the Tic-Tac-Toe model is the function that describes 
a legal transition between states. It only constrains two aspects of the transition: (1) that 
the next piece to be played must not be the previous piece, i.e. an X must follow an O and 
vice-versa and (2) that the square the next piece is to occupy must currently be empty. A 
fact in our model constrains all consecutive states to abide by this legal transition. 



 Connect Four Three. For performance reasons, we chose to model "Connect 
Three" rather than "Connect Four.� Through practice we found a four-by-four grid to be 
computationally infeasible for continual testing and analysis. 
 Our model for Connect Three is based on, and therefore very similar to, our 
model of tic-tac-toe. The key differences between the two are in the function that 
describes the winning state and in the function that constrains legal transitions. The 
function threeInARow describes the winning state for the Connect Three model. It 
accepts a Piece p and a State s as arguments and is true if p is forms a �connect three� 
in state s.  Unlike the tic-tac-toe model, the function to constrain legal moves in Connect 
Four includes the additional stipulation that a piece must either be added on top of 
another piece or on the bottom row. 
 Fifteen. The Fifteen model was by far the most difficult of the three. The key 
basic type in this model is the Tile.  The Tile type has the relations atRow and atCol to 
refer to the Tile�s current row and column position in a given state, as well as finalRow 
and finalCol to refer to the location the tile must be located to solve the puzzle.  Tile 
also has a relation final which points to another tile currently occupying the former 
tile�s finalRow and finalCol. That is, a.final[s] = b means that in state s, b is located 
where a should be.  This is primarily for visualization purposes�it enables us to easily 
see where each tile must be located for the puzzle to be solved. The board location 
holding no tile is modeled as holding the singleton Empty tile. 
 One fundamental difference between the Fifteen model and the Tic-Tac-Toe and 
Connect Four models is that the latter two include only a single static matrix of Squares 
that can in turn hold Pieces, whereas the Fifteen model anticipates a new Matrix of 
pieces per State and contains no notion of Squares.  The matrix-per-state pattern was 
preferable in the Fifteen model because the matrix is always occupied by the same set of 
elements. This means the cardinality of Tiles is always equal to number of matrix 
positions.  Adding squares and eliminating matrices in this case would have meant for a 
larger state space to search upon analysis. The exact opposite is true of the Tic-Tac-Toe 
and Connect Three models. Unlike Fifteen, they would have required twice as many 
pieces as matrix positions under the matrix-per-state pattern, making for a nearly-
intractable state space. 
 Another interesting feature of the Fifteen model is the legalMove function that 
describes a legal transition between states.  In Fifteen, each move can be thought of as 
swapping the Empty tile for a tile adjacent to it.  This is essentially what the transition 
function stipulates: that the Empty tile move either up, down, left, or right, and that every 
other tile either stay in the same place, or swap places with the Empty tile. 
 When we began to run commands with large scopes on this model, we found the 
execution time to be simply too slow.  To optimize performance, we introduced a new 
basic type Move and a new transition function smartMove that restricts each move from 
undoing the previous move. That is, an up move cannot be followed by a down move, nor 
a right move by a left move. 
 Analyses. With the models fully built, we were able to run some nice executions 
of game play for each of the puzzles. For tic-tac-toe we could ask it to show us an 
example in which X wins, in which O wins, in which O goes first and X Wins, in which 
they tie, etc.  The same is true of Connect Four, except with Red and Black pieces.  With 
the Fifteen model fully built, we were able to ask the analyzer to show us instances in 
which the game was solved in exactly 4, 5, 7, or any specific number of states. Some of 
these visualization are shown on the attached pages. 


