Modeling Call Forwarding in Alloy

Michel Lambert

Massachusetts Institute of Technology
450 Memoria Drive, J217

Cambridge MA, 02139
mlambert@mit.edu

Abstract:

Call forwarding in telephone systems alows for a variety of configurations in redirecting
telephone calls. This paper describes the results of using Alloy, a structure-modeling tool,
to visualize and find constraints in some models of the call-forwarding system. First, an
example involving delegate forwarding and follow me forwarding is described and
analyzed. Next, an orthogonal model involving the time-changing nature of people
availability is used to analyze other conditions in the telephone system. Findly, the
results are analyzed to see if they have animpact on the real world.

Background and Motivation:

While modern call forwarding systems are
quite powerful these days, the mgjority of
them still retain the simple constructs from
which they were derived. A basic call
forwarding system includes the two notions
of delegate forwarding and follow-me
forwarding. Delegate forwarding is used to
assign your incoming phone calls to another
person, who will be responsible for handling
your calls. Followme forwarding is used
when calls you will still be answering your
incoming phone calls, albeit in adifferent
location. The delegate relation is transitive,
wheresas the follow me relation is not.

final

followrne

final

Person_0
(Dawid)

Take the hypothetical case of Alice, Bob,
Carl, and David. Alice is going on vacation,
and so she closes off her portion of the
building, delegating her callsto Bob. Carl is
working across the company in David's
office working to finalize the specs for the _
company’s latest project, and sets up a Figure1

follow- me forward to David's office. Bab,

unable to get into his office due to a misunderstanding, and is working from Carl’s
vacated office, and so sets up a follow- me forward to his temporary office. In this smple

final

example, all of Alice and Bob's callswill go to Carl’ s office, whereas Carl and David's
calswill end up in David's office. A diagram of this setup can be found in Figure 1.

In addition, more complex call forwarding systems allow for more complex forwarding
situations, such as delegate-aways, delegate-busy, and delegate- no-answer. These
conditional delegations, along with their follow- me counterparts, increase the chance of
complex interactions creating undesirable configurations of a system. Failure of a call-
forwarding system results can easily result in undesirable situations. In many cases, it is
possible to have situations where an incoming call gets stuck in aforwarding cycle, or
failsto get answered at al. This research project intended to analyze call forwarding
systems to discover kind of constraints are needed to ensure that the configuration stays
inavaid state.

Summary and Evaluation:

Using Alloy, telephone call forwarding configurations were analyzed for weaknesses and
used to find solutions to prevent inconsistencies. In analyzing these systems, two
different alloy models were used.

Primary M odd:

The first model allowed configurations such as the smple Alice, Bob, Carl, and David
example given above. It had the concept of a Person, and a State that contained the
delegate and follow-me relations at that point in time. Calls did not physically exist, but
rather found their destination in an instantaneous amount of time through Alloy functions
that gave the destination Person. By analyzing this model, a few inconsistent
configurations were found.

First, the constraint that all configurations had a single destination for every call did not
hold up. If adelegate cycle were created in the system, each phone call would cycle
forever between the people, unable to find a destination telephone to handle the call.
There were two ways that | found to solve this problem. The simplest was to smply
guarantee that a person did not appear in his or her own delegation chain (all s. Sate, p:
Person | p not in (s.delegate)[p]). While thisis avalid solution to the problem, it might
not adequately explain to the user why their particular request to create a delegate
forwarding did not work. A second solution to this problem is to declare an ordering over
Persons, as often exists in a company. With atotal ordering, one can create the constraint
that the only valid delegations are to people farther down

in the order. The total ordering explicitly ensures that no

such cycles can be generated. Real companies usually

have a partial ordering with employees. If delegations to -
unordered employees are disallowed, then a partial order
also satisfies this problem because it has degenerated into
atotal order among a subset of the employees of the
company.

Figure?2

In addition to the above congtraint, it was found that the telephone call-forwarding
configurations created by Alloy sometimes contained unnecessary information. For
example, in Figure 2, the call-forwarding algorithm described above never traverses the
thicker follow-me link. This small problem with telephone configuration systemsis easily
fixed by ensuring that every Person can either have a follow-me link or a delegate link,
but not both.

The first model also allowed for states that changed their configuration tables with each
transition. However, allowing states to change with a transition did no produce any
additional violations of the constraints. It was merely stringing multiple states together
with no coherency.

Secondary Model:

The knowledge that there were certain inconsistencies that would only show up with the
progression of a telephone call through the forwarding system necessitated the need of a
second model. This model only had the concept of a delegate relation to make things
simpler, but made up for it with the concept of a Call signature, which progressed
through the call-forwarding graph over state transitions. It may not seem realistic to allow
nonfinite amount of time for a call to traverse, when that same amount of time can allow
multiple people to change their delegation relations. However, some calls may take a
long time to reach afina destination, if they must wait through delegate-no-answer or
delegate-busy conditions. As such, it is believed that the model can still accurately reflect
possible situations.

With this model, it became much easier to see the path a call traveled through in the call
forwarding graph during its lifetime. It was found that even if no loops were allowed at
any given state, that calls could still traverse indefinitely as the forwarding graph changed
while the call was moving. If we took the second approach mentioned above, such that
delegation relation does not point to any person higher in the total order, then it also
eliminated the infinitely traversing graphs.

Other situations that were found to occur included a call that terminated its search while
failing to find atelephone. In red life situations, this usually cannot occur, since every
person, by default, has a delegate-no-answer and/or delegate-busy to their respective
answering machine. Since answering machines are never busy or unavailable, this solves
this particular problem. (Of course, if you have a limited number of lines on your
answering machine, then you must worry about this particular situation as well.)

In conclusion, when one is setting up a telephone call forwarding system, one must be
careful to ensure that all cases are alowed for, and that there are backups in place such
that no incoming calls get stuck in the interna telephone system void, or get dropped
without a proper resolution. With proper alloy models, and some additional constraints
that reflect the setup of the company, thisis possible.

L essons Learned:

When starting to work on this particular modeling problem, | thought it would be too
simple and trivia to find any useful information. But after playing with afew different
ways of modelling the system, | found it to be complex enough to warrant the project,
and did proceed to find interesting scenarios.

Alloy, as atool, was quite helpful. | was disappointed in it’s lack of supporting recursive
functions, although that is understandable given it’s approach of inlining functions. This
made me redlize that Alloy was quite successful at modelling the progress and transitions
in state of a given algorithm, but was not particularly adept at alowing one to implement
the agorithm.

In the example of the call forwarding models, the second model included the transitions
of acal asit travelled through the system. The first model, was intended to allow the
result of the algorithm to be generated via functions, which returned the result of the call
given the initial Person that was called. While | was eventually able to succeed in this,
(by returning al nondelegating nodes in the transitive closure of the delegating nodes,) t
did require a rethinking of the problem in set theory before | was successful.

There were afew situations that became dlightly annoying when using Alloy, including

the NotEnoughM emoryException. Many times | would try to evaluate some constraints,
only to receive the error. If | immediately re-ran the command, then it would proceed to
check the constraints just fine.

Finally, | found the help of diagnostic relations helpful. In the case of the primary model
below, | created three additional relations that were merely byproducts of the other
relations. Named final, final_del, and final_fol, they were helpful in modelling the
system’s half-completed results, to verify that my functions were correct in their data.

The problem with these diagnostic relations came when attempting to edit instances to
debug my constraints. In order to avoid filling out these particular constraints which were
byproducts of my primary relations, | had to comment out the code and recompile. |
would have been nice to have ternary checkboxes in the Edit Instance screen which
would allow ore to specify On, Off, and Figure-it-out. This would alow you to partialy
specify an instance, and have Alloy figure out which constraints were violated by your
partial completion of the instance, or say that nothing was violated by those aone.

Primary M odel

nmodul e sanpl es/tel esystem
open std/ord

sig Person {}

sig State {
del egat e: Person->?Person,
fol | owne: Person->?Person,
/1 these three are variables used to visualize
/1 the results of the translation functions in the G aph
final _del: Person->Person,
final _fol: Person->Person,
final: Person->Person

}

fact Setuplnfo {
all s: State, p: Person {
s. final _del [p]
s.final _fol [p]
s. final [p]
}

Del egateDest(s, p)
Fol | owreDest (s, p)
Dest (s, p)

}

fact SomePeopl e {
Person = uni v[Per son]
State = univ[State]

}

fun Del egateDest(s: State, p: Person): Person {
result = *(s.delegate)[p] - (s.delegate).(*(s.delegate)[p])

}

fun Fol | owneDest (s: State, p: Person): Person {
result = if sone s.followre[p] then s.followmre[p] else p
}

fun Dest(s: State, p: Person): Person {
result = Foll owreDest(s, DelegateDest(s, p))
}

// New Constraints Needed
//fixes NotAll Del egate
fun NoQ rcul ar Del egat eRef erence() {
all s: State, p: Person | p not in "(s.delegate)[p]

}
//fixes AILinksUsed
fun NoDel egat eAndFol | owre() {
all s: State, p: Person {
not (sone s.del egate[p] and sone s.followre[p])

}

/I Checks and Assertions
fun OneDestination() {
all s: State, p: Person | one Dest(s, p)

}

assert OneDestinati on_NoLoops {
NoGi r cul ar Del egat eRef erence() => OneDestination()

}
check OneDestination_NoLoops for 3 but 1 State

/1 this solves the OneDestination problemas well

assert OneDestination_Total Ordering {
(all p: Person | State.delegate[p] in OdPrevs(p)-p)
=> OneDestination()
}

check OneDestination_Total Ordering for 3 but 1 State

assert Not Al | Del egate {
NoGi r cul ar Del egat eRef erence() =>
(some s: State, p: Person | p = DelegateDest(s, p))

}
check Not Al l Del egate for 3 but 1 State

fun Get UsedFol | owneMappi ngs(s: State): Person->Person {
all p: DelegateDest(s, Person) {
p->Fol |l owneDest(s, p) in result
}
}

assert AllLinksUsed {
(NoGi rcul ar Del egat eRef erence() && NoDel egat eAndFol | owre()) =>
=>
(all s: State {
all fm s.followre {
fmin GetUsedFol | owreMappi ngs(s)
}
)

}
check Al LinksUsed for 3 but 1 State

fun BaseChecks() {
NoDel egat eAndFol | owne()
NoGi r cul ar Del egat eRef er ence()

}
/' Runni ng Exanpl es

fun AllFollow() {
BaseChecks()
all s: State, p: Person | p != FollowreDest(s, p)

}
run All Follow for 4 but 1 State

fun Al Del egat eBut One() {
BaseChecks()
all s: State {
one p: Person | p = DelegateDest(s, p)

}
}
run Al | Del egateButOne for 3 but 1 State

fun ChangePer Transition() {
BaseChecks()
all s: State - Ord[State].last {
one p: Person {
O dNext (s) . del egate[p] != s.del egate|p]
or
O dNext (s).foll owne[p] != s.foll owre[p]

}
}

run ChangePerTransition for 3 but 2 State

/* Disabled so all people don't show up with these nanes
part sig Alice, Bob, Carl, David extends Person {}
fun ABCDExanpl e() {

BaseChecks()

#Alice = 1

#Bob =1

#Carl =1

#David = 1

State. fol | owre[Bob] = Carl

State.followre[Carl] = David

State. del egate[Alice] = Bob

}

run ABCDExanple for 4 but 1 State
*/

Secondary Model

nmodul e sanpl es/tel esystentinme
open std/ord

sig Person {}
si g AnsweringMachi ne extends Person {}

sig Status {}
part sig Avail able, Unavail abl e extends Status {}
fact StatusFact {

#Avai lable = 1
#Unavai l able = 1
#Status = 2
}

sig Call {}

sig State {

entitystatus: Person->!Status,
entityforward: Person->!Person,
cal I status: Call ?->?Person,

cal | sconpl eted: Call - >?Person,
callsfailed: Call->?Person

}

fact CallLogistics {
all c: Call | sone State.callstatus[c]
no Od[State].first.callsconpleted[Call]
no Ord[State].first.callsfailed[Call]

}

fact AnsweringMachi neConstraints {
State. entitystatus[Answeri ngMachine] in Available
no State.entityforward[Answeri ngMachi ne]

}

fact useAl {
uni v[Person] = Person
univ[Call] = Call
uni v[Status] = Status

}

fact AllPeopl eHaveSt atus {
all p: Person, s: State | one s.entitystatus[p]

}

fact Call Onl yl nOnePl ace {
all s: State, c: Call {
#s.call status[c] + #s.callsconpleted[c] + #s.callsfailed[c] < 2

}

fun Transition(s, s': State) {
//Progress all calls, or end them
all c: (s.callstatus).Person {
s.entitystatus[s.callstatus[c]] = Unavailable => {
some s.entityforward][s.callstatus[c]] =>
s'.callstatus[c] = s.entityforward[s.callstatus[c]]
no s.entityforward[s.callstatus[c]] =>{
no s'.callstatus[c]
s'.callsfailed[c] = s.entityforward[s.callstatus[c]]

}

s.entitystatus[s.callstatus[c]] = Available => {

no s'.callstatus[c]
s'.callsconpleted[c] = s.entityforward][s.callstatus[c]]
s'.entitystatus[s.callstatus[c]] = Unavail able

}

}
s.callsfailed[Call] in s'.callsfailed[Call]
s.call sconpleted[Call] in s'.callsconpleted[Call]
}

fact Constraints {
all s: State - Od[State].last {
Transition(s, OdNext(s))
}
}

/1 No conplete failure loops in one state
fun NoLoopslnState() {
all s: State | all p: Person {
p not in ~(s.entityforward)[p] or
some p': “(s.entityforward)[p] | s.entitystatus[p'] = Available
}
}

/1 At nost one new call
fun OneNewCal | PerTick(s, s': State) {
//Add at nost one new call each transition
one p: Person | s'.callstatus[Call] - p in s.callstatus[Call]

}

/1 One person nust change their status each tine
fun OneStatusChangePerTick(s, s': State) {
one p: Person | s'.entitystatus[p] != s.entitystatus[p]

}

/1 Only one person can change their status each tine
fun MaybeOneSt at usChangePer Tick(s, s': State) {
sole p: Person | s'.entitystatus[p] != s.entitystatus|[p]

}

/1 Do not allow changes to the forwarding table
fun NoForwar di ngChangesPerTick(s, s': State) {
all p: Person | s'.entityforward[p] = s.entityforward[p]

}

fun LoopW t hout Probl ens_Ful | Lengt hCal | Traversal () {
NoLoops| nSt at e()
(Od[State].first.callstatus).Person = Call
some OdPrev(Od[State].last).callstatus[Call]
(Od[State].last.callsconpleted).Person = Call
all s: State {
some p: Person | ~(s.entityforward)[p] = Person

}

all s: State - Ord[State].last {
NoFor war di ngChangesPer Ti ck(s, O dNext(s))
MaybeOneSt at usChangePer Ti ck(s, O dNext(s))
}

}

run LoopWt hout Probl ens_Ful | Lengt hCal | Traversal for 3 but 3 State, 1 Call, 2 Status

//Denonstrates that with 1 person, one can have infinite loops if directionis allowed to
onesel f
fun RunLongTi me() {
some Ord[State].first.callstatus[Call]
some Ord[State].last.callstatus[Call]
all s: State - Od[State].last {
NoFor war di ngChangesPer Ti ck(s, O dNext(s))
MaybeOneSt at usChangePer Ti ck(s, OrdNext(s))

}

run RunLongTinme for 1 but 6 State, 1 Call, 2 Status

//Denonstrates that with 1 person, one doesn't need infinite loops if direction is
all owed to onesel f
fun RunShort Ti me() {
some Ord[State].first.callstatus[Call]
some Ord[State].last.callsconpleted[Call]
all s: State - Od[State].last {
NoFor war di ngChangesPer Ti ck(s, O dNext(s))
MaybeOneSt at usChangePer Ti ck(s, OrdNext(s))
}
}

run RunShortTine for 1 but 6 State, 1 Call, 2 Status

//Denonstrates that with 4 person, and no | oops at any point in time, one can still have
infinite | oops for the Call
fun RunLongTi neW t hNoLoops() {
NoLoops! nSt at e()
sone Ord[State].first.callstatus[Call]
somre Od[State].last.callstatus[Call]
all s: State - Od[State].last {
NoFor war di ngChangesPer Ti ck(s, O dNext(s))
}
}

run RunLongTi meWt hNoLoops for 2 but 4 State, 1 Call, 2 Status

assert RunLongTi neW t hNoLoops_AndOneSt at usChangePer Ti ck {
RunLongTi meW t hNoLoops()
all s: State - Od[State].last {
MaybeOneSt at usChangePer Ti ck(s, OrdNext(s))

}
some s: State - Od[State].last | Od[State].last = s
}

check RunLongTi neW t hNoLoops_AndOneSt at usChangePer Tick for 3 but 12 State, 1 Call, 2
St at us

