Title: A Simple Model of Filesystem Synchronization

Tina Nolte 6.898 Final Project

Abstract:

There are a number of software tools that offer the ability for a user to syn-
chronize data in the face of conflicting updates on the part of multiple users, but
most often it is unclear what properties and policies these tools employ, as well
as difficult to understand what the policies might guarantee in the synchronized
filesystems. Alloy is used in an exploration of filesystem synchronization prop-
erties and algorithms. The Alloy language has a fully automatic simulation and
checking tool which is used to interactively construct a model of filesystem syn-
chronization as well as understand intricacies associated with synchronization
policies.

1 Background and Motivation

There are a number of software tools that offer the ability for a user to syn-
chronize data in the mobile computing world, but most often it is unclear what
properties and policies these tools employ, as well as what the policies might
guarantee in the synchronized filesystems. These are important considerations
since no user wants to discover that after synchronizing their mobile computer’s
data with another user’s mobile computer they have lost whole files that may
have been the product of hours of work. Even more subtle, users don’t want
to look at the synchronized filesystem and see that the directory structure and
directory contents are as expected and continue with the belief that files have
the changes they made to them only to find that some files have been replaced
with a file of the same name from another user’s filesystem.

File synchronization can be split into two different tasks: update detection
and reconciliation. Update detection is the identification of updates made to
different replicas since the last synchronization. Reconciliation uses this infor-
mation to produce new filesystems that take into account conflicting updates
and reflect the updates made to the filesystems that are non-conflicting, where
conflicting updates are those where the contents of modified filesystems are
different.

2 Summary and Evaluation

The first thing to model when modelling filesystem synchronization is, of course,
filesystems. I have three different kinds of atoms: Names, Paths, and Nodes.
Names are what you expect; they name directories and files. Paths are se-
quences of names. Nodes are either Files or Filesystems. Of interest is the
departure from the standard recursive filesystem description where filesystems
are partial mappings from names to files or other filesystems. Instead, filesys-
tems are partial functions mapping whole paths to contents, either a file or
another filesystem.

Next is update detection. One description of update detection is as follows:
Say filesystem S is an update of filesystem O. dirtys safely estimates updates
from O if p ¢ dirtys => O(p) = S(p). Also, it is convenient for reconciliation
to have dirtiness be upclosed; if a path q is dirty then any pathprefix of q is
also dirty.

One of the most exciting modelling challenges was reconciliation. Recon-
ciliation, obviously, is recursive in nature. I did write a ”true to a published
algorithm” description of reconciliation, but it required some fudging, namely
chaining a series of copies of the reconciliation function together to the depth
that I needed for any given test. However, even this was difficult to do correctly
since the algorithm did a lot of chained computations that would go something
like, ”when you hit a directory while reconciling, you order the children of the
directory and reconcile each child one after the other, passing the results of each
synchronization into the next.” This was great to do since it feels very close to

the algorithm that is employed. However, I had difficulties getting descriptions
that did a great deal of passing to even compile. Hence, I needed a more declar-
ative description which had to include statements such as ones constraining
solutions to not change portions of the filesystems that should be left alone.

However, for a more elegant model that did not require recursion cheating
I needed a different kind of description. I found one solution in introducing a
new kind of atom: a synchronizer. This contained a relation that would map
triplets of filesystems corresponding to an original and two updates as well as
a path to a new pair of filesystems. This model would have to constrain the
relation defined as part of a synchronizer to relate the results of reconciling a
particular path in two filesystems to the results of reconciling its children in the
same filesystems. What was key here was noting that there was a relationship
between these things.

I stated and verified using the analyzer several properties about synchroniza-
tion, including that there can only be one maximal synchronization of filesystems
A and B off of an original filesystem O and that the published reconciliation
algorithm employed by Unison calculated that unique maximal synchronization.
Some others are:

e First is a property of the update detector: if a given portion of a filesystem
is not found as dirty in either of two modified replicas then that portion must
be the same in both replicas.

e Second is a property of synchronizations: given two replicas of an original
filesystem and a particular rule for determining dirtiness, there can only be one
pair of filesystems satisfying the requirements of synchronization.

e Third is a property of reconciliation: given two replicas of an original
filesystem and a particular rule for determining dirtiness, reconciliation produces
synchronized versions of the input filesystems.

What was perhaps more interesting was that the Unison synchronizer itself
(based on formalized notions of filesystem synchronization) has an informal de-
scription in its user’s manual that suffers from ambiguity, leading to an easily
believed incorrect understanding of what Unison does. On another note, I dis-
covered a very operational description buried deep in Microsoft’s website for
their Briefcase program that is installed on many Windows machines. Upon
modelling what the description says I discover that it is the same as what Uni-
son claims to do. However, there are many published examples of ”unusual”
behaviour by Briefcase that actually demonstrate that while the spec might be
right, the implementation doesn’t have to abide by the spec.

3 Lessons

T've already discussed some difficulties relating to recursion. Making a gen-
eral model without need for manual unfolding required use of a great deal of
additional reasoning which made the entire verification task much more time
consuming as well as difficult.

After I had models that did not have find counterexamples for any of my

assertions, I decided to start examining the examples that the model generated.
I saw examples of successful recursive reasoning and then I noticed something
a little odd; there were no files in any of my models... just directories and
subdirectories. I asked the analyzer to show me an example with a file and
none were produced. There was a small and almost insignificant error in the
description of filesystems that was even present in the published formalizations
and which disallowed the existence of files. I then added a new assertion just
for fun to make sure that all examples of filesystem synchronization were being
tackled and that I wasn’t overconstraining the model in any way. Of course,
I was overconstraining the model. Moral of the story: be sure to have a lot
of error checking for yourself... you aren’t just verifying that an algorithm is
correct, you are also verifying that your model is.

In a paper describing behaviour of Unison, maximality of reconciliations is
described by saying that over all filesystems that are partial synchronizations of
input filesystems, if a particular path is propogated as non-conflicting in some
partial synchronization then that path is propogated in the maximal version.
This gives uniqueness. However, when I modelled this I actually tried to write
that exact statement: for all filesystems that are partial synchronizations the
result of Unison’s recon algorithm is maximal w.r.t. them. Unfortunately,
this is not true since I had confused universes. When the statement is made
in a paper, the universe of filesystems is all filesystems. However, in Alloy,
it is restricted by the number of atoms I am considering. Hence, I would get
counterexamples in a scope of 3 that showed me that the maximal reconciliation
in that restricted universe was not generated by the Unison recon algorithm.
However, this is because a maximal synchronized version of the filesystem in
the real world would require more than 3 nodes in the universe.

Memory requirements were problematic. I could only check my models up
to five atoms. During the course of my work, I received suggestions from Daniel
and Manu that helped me cut down on the number of Boolean nodes that were
needed by simple tricks like passing results into my uses of Alloy functions and
avoiding nondeterminism.

Finally, I found the ”how much is enough” question difficult to answer since
the tendency is to do more or describe something just a little differently. As
a result, I am currently standing at 19 separate models, each demonstrating
some approach or combination of approaches that are different from the other
models, which is difficult to manage.

References

[1]

[2]

(8]

[9]

S. Balasubramaniam and B. C. Pierce. File synchronization. Technical
Report 507, Computer Science Department, Indiana University, Apr. 1998.

S. Balasubramaniam and B. C. Pierce. What is a file synchronizer? In
Fourth Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom ’98), Oct. 1998. Full version available as Indiana
University CSCI technical report #507, April 1998.

G. J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, Special Issue on Formal Methods in Software Practice, 23(5),
May 1997.

D. Jackson. Micromodels of software: Lightweight modelling
and analysis with alloy. Reference Manual; available through
http://sdg.lcs.mit.edu/alloy/, 2001, 2002.

D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism.
In Proceedings of the ACM SIGSOFT Conference on the Foundations of
Software Engineering / European Software Engineering Conference (FSE /
ESEC 01), Sept. 2001.

D. Jackson and K. Sullivan. Com revisited: Tool assisted modelling and
analysis of software structures. In Proc. ACM SIGSOFT Conf. Foundations
of Software Engineering, San Diego, Nov. 2000.

S. Khurshid and D. Jackson. Exploring the design of an intentional naming
scheme with an automatic constraint analyzer. In 15th IEEE International
Conference on Automated Software Engineering (ASE 2000), Sept. 2000.

B. C. Pierce and J. Vouillon. Unison: A file synchronizer
and its specification. Technical report; available through
http://www.cis.upenn.edu/ bepierce, 2001.

The PVS Specification and Verification System. http://pvs.csl.sri.com, April
2002.

