
Semantics of Functions in Alloy

Manu Sridharan
6.898 Final Project

May 16, 2002

Abstract

While functions have been a very useful feature in the new Alloy language, their semantics
have some undesirable properties and seem to be counterintuitive for most Alloy users. For
my final project, I studied the semantics of Alloy functions more carefully with the hope of
identifying its problems more concretely and finding a new semantics which addresses those
problems. With the help of Daniel Jackson, I identified an issue related to partial functions
which may have been the source of a great deal of confusion and found a way to restrict the
language to avoid confusing invocation semantics as much as possible.

1 Background

Alloy functions are a flexible construct which can make an Alloy model much easier to write
and understand. Function paragraphs (declared with keyword fun) are a generalization of the
cond paragraph from Alloy’s predecessor, Alloy Alpha. Unlike functions in typical programming
languages, Alloy functions are just typed macros, so an invocation of a function always desugars to
some sort of inlining of the function body. Because of the variety of ways in which a function can
be written and invoked, interesting issues arise in defining the exact semantics of this inlining step.

Consider the following partial model of processes and mutexes, in which the global state of the
system is represented by the holds and waits relation, respectively representing which mutexes
are held and waited on in each state:

sig Process {}
sig Mutex {}
sig State { holds, waits: Process -> Mutex }
fun freeInState(s : State, m : Mutex) {

no s.holds.m
}

As with cond paragraphs in Alloy Alpha, functions can be invoked where a formula is expected,
and the semantics of such an invocation are a straightforward inlining; so, the invocation
freeInState(s’,m’) desugars to no s’.holds.m’. However, unlike cond paragraphs, functions
can also be invoked where an expression is expected. For example, the following function defines
the condition where a process grabs a mutex that was free in another state:

fun GrabMutex(s, s’: State, p : Process) {
p -> freeInState(s) in s’.holds

}

1



This invocation of freeInState has no obvious meaning that handles all cases. If it is known
that exactly one mutex m is free in state s, a sensible behavior for this invocation would be for
it to return m. However, several mutexes could be free in state s. In this case, current Alloy
semantics treats the function as being non-deterministic and tries to check the formula containing
the invocation for all possible return values. Unfortunately, this treatment of non-determinism
has some counterintuitive results. For example, in the above case, the GrabMutex function would
desugar into a formula stating that p grabs all free mutexes from state s, as opposed to non-
deterministically choosing one of them. Also, what if there are no mutexes free in s? Current Alloy
semantics allows for essentially arbitrary behavior in this case, which can be extremely puzzling.
The new semantics proposed in this paper disallows invocations like these and slightly changes
the handling of other constructs, in the hope of limiting function invocations to cases where their
behavior is reasonable and easy to understand.

2 Deficiencies in Current Semantics

The handling of invocations as a formula and as a expression when the function uses the “result
= ...” syntax is straightforward and will not be discussed here. In the remaining case, when a
function is invoked as an expression and its body constrains its result implicitly, the current inlining
method depends on whether the function was declared to be deterministic (with the keyword det).
Consider an invocation f(a0, a1, ..., an) whose smallest enclosing formula is F, where f has n + 1
arguments and its second argument (the result) has A as the right-hand side of its declaration. If
f is non-deterministic, the invocation desugars to

all result : A | f(a0,result,a1,...,an) => F [result / f(a0, a1, ..., an)]

which says that for all possible values for the result of the invocation of f, F should be true when
the invocation is replaced by the result value. f can be declared as deterministic, in which case the
invocation desugars to

some result : A | f(a0,result,a1,...,an) && F [result / f(a0, a1, ..., an)]

which says that F is true when the invocation is replaced by the one valid result it can return. Note
that determinism is not defined precisely, an issue that I will return to later.

One problem with these semantics is that they do not seem to match the intuitions of many Alloy
users. From experience, most people writing Alloy models seem to expect the inlining behavior
associated with deterministic functions as the default, and when a user is having problems with
functions, adding the det keyword to the relevant function declarations makes things work as
they expect most of the time. Also, it seems to be quite difficult to identify a bug related to a
misunderstanding of function semantics, with users often reporting that they spent many hours
stumped over the problem with their model (however, this may reflect the general difficulty of
debugging Alloy specifications).

Apart from comprehensibility issues, the existing handling of non-deterministic functions is
problematic. It is currently impossible to use the result of a non-deterministic function twice,
decreasing its usefulness. For someone used to the behavior of let declarations in programming
languages like Scheme and ML, it may seem like binding the result of the function invocation in a
let would have the desired behavior. However, Alloy’s let construct is desugared by simple syntactic
replacement, so placing an invocation in a let declaration would lead to multiple invocations after
desugaring rather than multiple uses of one result.

2



Another peculiarity of non-deterministic functions stems from negation of the set equality oper-
ator. In the current semantics, the formulas b != f(a) and !(b = f(a)) have different meanings
when f is a non-deterministic function. Assuming f has result declaration A, b != f(a) desugars
to

all result : A | f(a,result) => b != result

which means that b should not equal any possible result of f(a). In contrast, !(b = f(a))
translates to

some result : A | f(a,result) && !(b = result)

which says that there exists some possible result value of f(a) other than b. Our use of the smallest
enclosing formula when inlining results in this bizarre difference.

The most serious problem with non-deterministic function inlining is its poor semantics when
the function is partial. Previously, we assumed that the following formula was true for any non-
deterministic function f which has argument and result with declaration A:

all a, b: A | b = f(a) => f(a,b)

However, Sarfraz Khurshid and Darko Marinov recently provided a function which disproved this
hypothesis:

fun f(a : A): A { a != a }

With this function, b = f(a) desugars to true, since the invocation f(a,result) on the left-hand
side of the implication in the resulting quantifier will always be false. So, for any a and b, the
above formula evaluates to false, since the body becomes true implies false. In general, if a non-
deterministic function is undefined for the arguments of some invocation, then the formula enclosing
that invocation becomes true. This behavior is both counterintuitive and inconsistent with how
Alloy makes other partial functions false outside their domain (by having the join operator evaluate
to the empty set for such cases).

3 New Semantics

In considering how inlining semantics could be improved, it seemed that the cases in which in-
vocation of a non-deterministic function leads to the creation of a universal quantifier were not
compelling enough to offset its problem. Therefore, the proposed new semantics for Alloy functions
disallows this behavior by adding the rule that functions which constrain their result implicitly
must be marked as deterministic to be invoked as an expression. This new semantics eliminates the
bad behavior of partial functions, since with the inlining method used for deterministic functions,
the invocation of a function with arguments outside its domain will make the enclosing formula
false instead of true (since the generated existentially quantified formula becomes false if no result
exists). Furthermore, prohibiting the old non-deterministic function inlining will hopefully save
time for Alloy users since they will not have to puzzle out its often unexpected effects on their
models.

This proposed restriction has the unfortunate side effect of not allowing unnamed intermediate
states for several invocations of non-deterministic functions. For example, the following formula
from the lists example given in the Alloy book would be illegal under the new semantics:

assert GetBack { all p: List, e: Elt | car (cons (p,e)) = e }

3



Instead, if the car and cons functions must remain non-deterministic, the more verbose version of
the formula must be written:

assert GetBack { all p,q: List, e,f: Elt | cons (p,q,e) && car(q,f)
=> f = e }

Although this restriction sometimes forces a bit more typing, it seems that users have lost much
more time figuring out the bad cases of non-deterministic function inlining than they would ever
gain by avoiding this typing, so the tradeoff seems reasonable.

Some weird behavior remains with respect to the != operator, but I believe it is more tractable.
The meaning of writing a formula with != and moving the negation out now only differs for partial
functions, where the formula is false for the != case and is true for the outer negation when the
function is undefined on its arguments. To be consistent with the policy of making formulas false
when partial functions are evaluated outside their domain, it is proposed that negations are moved
in so that != is always used.

Another interesting issue is what exactly it means for a function to be deterministic. The above
discussion of != assumes that if a function is deterministic, then it will always have the same set of
atoms as its result given the same values for the other arguments. This definition of determinism
would often require the user to canonicalize atoms of types used as results, so that each atom has
some field value distinct from those of all other atoms. Others have proposed a more semantic
notion of determinism based on always returning atoms with the same field values, but I think
basing determinism on equality of atoms is simpler and leads to more understandable behavior
(such as the case of !=). Also, if deterministic functions are allowed to return different sets of
atoms on different invocations with the same arguments, the problem of not being able to use an
invocation result twice remains. It may be useful to add macros or some reflective features to the
language to make writing the canonicalization condition easier.

4 Conclusions

After careful study of the drawbacks of the existing semantics of Alloy functions, we have developed
a new semantics which is more sensible and intuitive. One lesson I learned from this project was
to respect the intuitions of users: if some language feature seems to confuse many users of the
language, it is a strong sign that there are deeper problems with the feature. Also, I think the
decision to disallow the confusing non-deterministic function invocations in the new semantics
reflects a good language design principle espoused by Daniel Jackson: if a language construct has
no obvious and satisfying meaning, it is probably better not to have the construct rather than
giving it a possibly confusing meaning. Finally, if a feature with potentially confusing semantics
such as non-deterministic functions are included in a language, there should be strong, concrete
evidence that excluding the feature would make using the language much more tedious or complex
(this evidence seemed to be a bit lacking for non-deterministic functions).

4


