
First-Class Modules for Perl

Richard Tibbetts and Christopher Lesniewski-Laas

May 16, 2002

Abstract

ML’s functors allow developers to write code
which generates software modules at compile
time. We present a system for a similar, but
more powerful, feature for the popular industry-
grade language Perl, which is frequently used for
implementing Internet services and “glue” soft-
ware. This enables the modular development
of parameterized packages and classes, as well
as several other features often implemented, in-
flexibly, as language syntax. By using Perl’s in-
trospection features, we were able to implement
our functors without modifying the core Perl lan-
guage or its interpreter.

1 Background and Motivation

The ability to programmatically generate soft-
ware modules has long been present in research
languages. For example, in ML, a functor is a
function which maps modules to modules. This
feature is frequently in demand, but languages
with substantial industry penetration rarely pro-
vide adequate support for it. Instead, ad hoc
solutions using macros and code generators are
the rule. Unfortunately, code produced in this
way is difficult to debug and maintain: there is
no structure imposed on the generated code, and
the association between the code generator and

clients of the generated code is usually lost.
Perl, a dynamically-typed, object-oriented

language, is pragmatic in attitude and very
popular, especially for Web and server applica-
tions; it has been called “the duct-tape of the
Internet”[PFF00]. Although it is optimized for
utility rather than elegance, it has some features,
such as closures, not found in most industrial
languages.

The “package” system built in to Perl is fairly
similar to ML’s module system: Perl packages
contain a set of elements, and can be imported
by other packages. However, in Perl, packages
are not themselves objects. On the other hand,
in ML, packages are “second-class” objects: they
constitute the data for a “little language” built
on top of ML, but cannot be manipulated by
normal ML functions. Functors, the functions
of this little language, are completely evaluated
at compile time. Thus they are adequate for
many applications, such as parameterized mod-
ules, but do not support run-time generation or
loading of components.

Our desire for parameterized packages in Perl
was motivated by a number of real-world prob-
lems. Because Perl’s object system is built on
top of its package system — each class is de-
fined by a package — parameterized packages
enable parameterized classes. Auto-generation
of class types would be useful in designing data

1



marshalling libraries (desired by one of the au-
thors for an RPC system), and would reduce
boilerplate-code duplication for “glue” interfaces
(desired by the other author for a database ap-
plication). We saw functors as a way to solve
our problems.

2 Summary

Perhaps unfortunately, integrating parameters
into Perl’s native package-definition syntax
would have required modifying the interpreter.
We elected not to go this route, because it would
dramatically reduce the probability that anyone
would ever use our software. However, since Perl
allows nigh-arbitrary manipulation of its sym-
bol table from within the language, and also has
fairly sophisticated syntax-overloading features,
we were able to get most of the expressive power
that we wanted without requiring any changes
to the language’s fundamental definition.

To allow package manipulations to be ex-
pressed within the language, we designed a
Package class to wrap the concept of a pack-
age in a run-time structure. The constructor
for Package generally takes no arguments, and
creates a new empty package with a generated
name. Alternatively, it can be passed the name
of an existing package, in which case it will pro-
vide an interface for manipulating that package.

A functor is a standard Perl subroutine that
creates a Package, inserts the appropriate el-
ements, and returns the name of the package.
Because it is a standard Perl subroutine, a func-
tor can take any kind of argument, and can be
called at any point during the execution of the
program. This increases the range of problems
that can be solved using functors. Also, because
Package is a first-class data type, Packages can

be memoized, stored as elements of a package or
collection, and manipulated in many other ways.

1: package Foo;
2: sub my_print { print "FOO @_\n"; }

3: package Bar;
4: sub my_print { print "BAR @_\n"; }

5: package main;
6: sub my_functor {
7: my ($arg1, $arg2) = @_;
8: my $package = Package->new();
9: $package->( "new" ) = sub {
10: bless [] => "$package";
11: };
12: $package->( "method" ) = sub {
13: $arg1->my_print($arg2);
14: };
15: return "$package";
16: }

17: my $FooP = my_functor(Foo,123);
18: my $BarP = my_functor(Bar,456);

17: my $f = $FooP->new();
18: my $b = $BarP->new();

21: $f->method();
22: $b->method();

Figure 1: Example of a Perl functor.

An illustrative example of a simple functor is
given in Figure 1. Lines 1-4 define two packages,
Foo and Bar, each with a simple static method
that prints its arguments. These packages are
not classes, because they have no new method.
Line 5 switches back to the main package. Line

2



6 begins our functor, named my functor, which
takes 2 arguments, a class name and a message.
Line 8 creates an anonymous Package. Lines
9-11 add a new method to the package, mak-
ing it a class. The new method blesss a refer-
ence to an anonymous array into the generated
package, creating a Perl object. Lines 12-14 cre-
ate a method on the new class, which calls the
my print method of $arg1 on the other functor
argument ($arg2). Line 15 returns the stringi-
fied Package object, which will be the name that
the package can be manipulated by, its name in
the symbol table. Lines 17 and 18 execute the
functor on two sets of arguments, creating new
packages. Lines 19 and 20 create instances of the
generated classes. Lines 21 and 22 show calling
the methods on these objects, which successfully
calls the methods of Foo and Bar respectively.
The output of this program is

FOO Foo 123
BOO Bar 456

3 Problems

There are a few problems associated with this
implementation; the most important is related
to the way subroutine elements are added to a
Package. Perl subroutines are lexically scoped,
and when subroutines are added to a package
in the traditional way, their bodies are compiled
within the scope of the package. However, when
subroutines are added to a Package, their bod-
ies are compiled within the scope of the enclosing
code, which is generally contained in a different
package than that represented by the Package.
Among other things, this means that they can-
not make unqualified references to subroutines
and other elements in the generated Package.

In a similar way, many types of Perl hack-
ery that depend on proper package scoping don’t
work straightforwardly with packages produced
by Package→new(). This includes some com-
mon idioms, such as importing symbols via the
use keyword, calling into a superclass via the
SUPER pseudo-package, and defining fall-back
methods via the AUTOLOAD method.

However, in general, parameterized packages
work. In particular, when used with the stan-
dard object-oriented Perl discipline (e.g., bless,
@ISA, $object→method()), generated packages
are equivalent to statically defined packages. Ad-
ditionally, the ability to generate the symbol ta-
ble largely obviates the need for some features,
such as AUTOLOAD. Those other missing features
which remain important can be worked around
without any real difficulties. In short, there
aren’t any major Perl features which are unavail-
able to generated packages, as long as the pro-
grammer is aware of the few idioms that need to
be specially handled.

4 Evaluation

In general, Perl functors are superior to ML func-
tors, due to their greater flexibility: Perl functors
can use and be manipulated by the full power of
the Perl language, while ML functors are con-
strained to their own “little language.” This
additional power of Perl functors allows them
to be more easily integrated into the flow of
code. And, for syntactic convenience, they can
be passed arbitrary values without having to en-
capsulate the values into modules.

However, it should be kept in mind that, as in
the rest of Perl, module type-checking is done at
run-time and is relatively forgiving. Perl gener-
ally assumes that the programmer knows what

3



he is doing, rather than forcing the program-
mer to make type conversions explicit. This
might confuse programmers familiar with the
very strict type checking of ML. On the other
hand, ML programmers aren’t our target au-
dience: rather, we’re attempting to provide a
new abstraction to programmers already famil-
iar with Perl.

The Package package is really just a wrap-
per around symbol table manipulations. Thus,
it can be said that, for a sufficiently capable
Perl hacker, our functors do not provide ad-
ditional functionality. However, we feel that
functors provide a useful abstraction, and mod-
ules written using them are more readable when
compared to software written using the equiva-
lent raw symbol table manipulations. They also
factor out common kinds of manipulation, and
make them more accessible to the average mod-
ule programmer.

5 Lessons Learned

In implementing Perl functors, we experimented
and worked with many of the more obscure fea-
tures of the Perl interpreter. These aspects of
the language, such as the exposed symbol table,
exist to provide functionality such as our func-
tors. However, we found insufficient freedom to
implement properly everything we would have
liked. In particular, we would have preferred to
match the scoping of our functors more closely
to the scoping of normal packages, but were pre-
vented from doing this by limitations of the Perl
parser. This indicates that Perl has failed to pro-
vide quite enough flexibility for our application.

To be fair, however, it is a difficult lan-
guage design problem to leave in the appropriate
amount of flexibility in the appropriate places.

The fundamental success of this project showed
that a minor failure in this aspect of language de-
sign is not catastrophic, but careful attention to
these details would make for a better language.
Since the benefits of implementing language fea-
tures like functors within the language, rather
than extending the language itself, are signifi-
cant, meta-language extensibility should be an
important factor in language design.

References

[PFF00] Perl fast facts. On the web at
http://www.perl.org/press/fast facts.html,
October 2000.

4


