tential bugs.

1 Introduction

Peer-to-peer (P2P) systems have recently gained pop-
ularity in both academia and industry because they
allow distributed computation and storage without
the need for centralized control. This paper investi-
gates Chord, a set of protocols for a P2P system. We
model and analyze the Chord maintenance protocols
described in [1], using the Alloy Analyzer [2]. We dis-
cuss some anomalies uncovered by both our precise
modeling and automated analysis.

2 Overview of Chord

Chord is a peer-to-peer routing protocol that allows
for efficient key lookups. The protocol describes an
“ideal” overlay structure for the network that allows
for efficient lookups; the procedures for nodes joining
the network; and maintenance routines to maintain
the structure of the overlay. In the presence of possi-
bly concurrent node arrivals and departures, the ide-
alization routine will return the network overlay to an
ideal structure; with high probability in logarithmic
time (in the number of nodes).

We give a brief overview of the structure and
lookup of a Chord network, the ideal overlay struc-
ture of a Chord network, a model of joins, a model
of failures, and a description of maintenance algo-
rithms. The pseudo-code for the operations in the
protocol appears in Appendix A.

Figure 1: The Chord key-node mapping (from [1]).

2.1 Structure and Lookup

The core structure of a Chord network is a ring con-
taining nodes and key-value pairs. FEach node and
key are assigned an identifier using a consistent hash
function. Henceforth we will assume all keys lie in
the identifier space. Each key k is assigned to the
first node that is equal to or follows the key in the
identifier space (we call this the successor of k). The
identifier space can be thought of as a ring, and the
successor of k is the first node found by traversing the
ring in a clockwise direction. Each node maintains a
successor list, so that even if a node’s successor fails,
it can still contact the rest of the network. Each node
also maintains the id of the the node immediately pre-
ceding it on the ring, which is called the predecessor.
The predecessor reference is used to properly place
new nodes on the ring. A sample network can be
seen in Figure 1.

Each node maintains a finger table, which is used to
resolve requests for data. In short, a finger table maps
offsets from the current node to the closest preceding
node of that offset. When a request comes in for a
particular key, the node looks up the closest preceding

Figure 2: A Loopy Chord Ring (from [1]).

node in its finger table, and forwards the request to
that node, which then looks up the key in its table,
etc. If each finger table contains mappings for all
offsets 2¢, then the lookup time is logarithmic in the
number of id’s. Our model is not concerned with
the efficiency of the protocol. Correctness of lookups
only requires that the next node on the ring is in the
finger table. Thus, our model is concerned with the
correctness of the successors of nodes.

2.2 An Ideal Network

The motivation of a the maintenance protocol for
Chord is to allow a Chord network to return to a
“good” state even in the face of concurrent joins and
failures, and possibly unforeseen errors/bugs that de-
viate from the protocol. First, we describe a one error
that can occur in a Chord network, a loopy cycle.

2.2.1 Loopy Cycle

A Chord network is weakly ideal if, for all nodes
u, (u.successor).predecessor = u. A network is
strongly ideal if it is weakly ideal, and for each node
u, there is no node v that is reachable from u so that
u < v < u.successor. A loopy network is one that
is weakly ideal but not strongly ideal. The mainte-
nance protocol for Chord only aims for a weakly ideal
network. So a loopy network could result. In a loopy
network, the same query beginning at two different
nodes can result in different behavior. A sample net-
work in the loopy state can be seen in Figure 2.

u. finger[i].

To avoid confusion between ideal, weakly ideal, and
strongly ideal states, we shall henceforth refer to the
ideal state as the “perfect” state.

2.3 A Pure Join Model

The pseudo-code for the join operation appears in
Appendix A. In our Alloy model, we model a protocol
that allows only joins. In this model, successor lists
are not necessary; each node keeps track of just one
successor node. After a node joins the network, it will
have a pointer to its successor, but it will not be on
the cycle yet, since other nodes on the network do not
know of the new node’s presence. We define a cycle-
with-appendages state that restricts such a network
to maintain the good properties of an ideal state.

A Chord network is in cycle with appendages state
if: 1 and 2 are as in the ideal state.

3 [cycle sufficiency]

(a) Of the nodes on the cycle, a subset of size
at least N/2 is uniformly and independently
distributed around the identifier circle.

(b) For any cycle node u, we have |A4,|=
O(log N).

4 [non-loopiness]

(a) The cycle is non-loopy

(b) For every node v in the appendage A,, the
path of successors from v to u is increasing.

5 [successor validity] For every node v:

(a) if v is on the cycle, then v.successor is the
first cycle node following v.

the 1d€a benind tnis operation s ...
While the Chord protocol makes guarantees about
a strongly ideal state being maintained with high
probability, a loopy state could in fact occur if there
is a violation of protocol, or a low probability event
occurs. For this reason, a strong idealization protocol
exists, which will return a Chord network in any state
to a strongly ideal state. This maintenance protocol
can be run infrequently, in order to ensure that if an
error occurs in the network, it will eventually be fixed.
This strong idealization protocol is in Appendix A.

3 An Alloy Model of Chord

3.1 Overview of the Model

A complete model is attached in Appendix B. In
this section, we describe some of the elements of this
model in more detail. This model is a modified ver-
sion of the model of Chord developed by Hoeteck Wee
[3]-

The basic components of the model are Id’s,
Node’s, and NodeData.

o Id

The Id sig represents the identifiers of a Chord
ring. The identifiers are arranged in a ring, via
the next relation.

e Node

The Node sig represents a Node in a Chord ring.
The only static state that a Node has is it’s Id.
All the other state is represented by NodeData,
because this state can change with time.

e NodeData

sition describes one step of the strong idealization
protocol.

Lastly, our model contains descriptions of the dif-
ferent states a Chord ring can be in. These descrip-
tions take the form of predicates on a State element.
We have predicates for the condition of loopiness,
weak and strong idealness

4 Results
4.1 Ambiguities and Bugs

While modeling these protocols, we discovered some
ambiguities and one bug.

e In the pure join model, connectivity only holds
for root cycle. In a first pass of our model,
we modeled the mechanism for nodes joining a
Chord ring. In doing this, we found an ambi-
guity in Definition 5.4.1 of [1]. The definition
defines connectivity as “There is a path using
successor lists and finger tables connecting any
two nodes.” This definition only makes sense
for a purely ideal Chord network; there is not
path from a node on the ring to a node on an
appendage.

e Weakly and strongly ideal restricts the root cy-
cle only. For instance, the weakly ideal crite-
ria states that u.successor.predecessor = u. In
fact, this only must hold for each node on the
root cycle. We checked an assertion that a non-
loopy state would not idealize to a loopy state.
We found a counterexample in which only the
root cycle was loopy in the initial state. An au-
thor of [1] confirmed this new definition of loop-
iness.

a contradiction to the claim that a non-loopy
network stays non-loopy through idealization.
We discuss this result in more detail in Section
4.3.1.

4.2 Some Examples

In appendix C we present a series of figures showing
steps of the various protocols — join, weak idealiza-
tion, and strong idealization. Each figure represents
one state of the system. The shaded ovals represent
active Nodes. The successor and predecessor rela-
tions are text attributes of the NodeData ovals. The
center ring shows the ordering of the key and node
id’s in their ring.

4.3 Properties We Checked

4.3.1 Idealization Preserves Non-Loopiness

With the original definition of (z, z) (see Section 4.1),
we found no counterexamples to the claim that weak
idealization preserves non-loopiness. We checked this
with 4 nodes and 6 state transitions.

Using the modified definition of (z, z), a counterex-
ample arose. We show the pre- and post-states where
a network transitions from a non-loopy state to a
loopy state in Figures 3 and 4, respectively. If a
node’s predecessor is set to itself, any other node may
idealize and reset the node’s predecessor. In the case
when that predecessor link is the only link that keeps
the network from being weakly ideal, one transition
can cause the network can to become loopy.

We have discussed this issue with one of the authors
of [1], who has provided us with a new definition of
loopiness. In this definition, a network is in the loopy
state if : there is some node n, with associated ap-
pendage node u (the first node on the root cycle from

e

idealness and the root cycle, it is not clear if there is
a guarantee that strong idealization results in a per-
fect state (where the network is a ring). We wrote an
assertion stating that a network with a strongly ideal
root cycle would end up perfect through strong ideal-
ization. However, the paper claims that this happens
in O(n?) time. This resulted in scopes that were too
large for the Alloy Analyzer, and we were not able
to get interesting results from this assertion. An-
other assertion stated that a network in a loopy state
would end up non-loopy through strong idealization.
We were also unable to check this for large enough
scopes for the same reason.

4.3.3 Cycles in Idealization

One error that could arise in idealization is the pos-
sibility of a cycle in strong idealization. That is, if
successive idealizations could result in a state that
is isomorphic to a previous state, then the network
could run the idealization protocol forever, and not
reach a perfect state. Thus, we checked an assertion
stating that an equivalent state cannot be reached af-
ter a sequence of idealizations beginning and ending
in a non-perfect state. We were not able to discover
any cycles in idealization. However, limitations of the
alloy analyzer did not permit us to investigate this in
high enough scopes to make any conclusions.

5 Conclusions and Future

Work

This project discovered several ambiguities and po-
tential bugs in the Chord maintenance protocols. In
addition to some of the properties that we checked,
there are many properties that are guaranteed with

JheldelCessOL . NOUCS /L O

next id data

NodeData_12

@ successor: Node 1
prxedecessor: Node

next |next

NodeData_ 14

@ successor: Node_3
predecessor: Node

N

Figure 3: A Chord network in a non-loopy state

JheldelCessOL . NOUCS /L O

next id data

NodeData_12
successor: Node_1
prxedecessor: Node

next |next

Node_ 2

next id data

NodeData_ 10
successor: Node 3
predecessor: Node/]

Figure 4: The network after one idealization transition, in a loopy state

teire. 10 Appceal 1l L7eliCopeesd Of LV6otltOutel
Computing, July 2002.

[2] D. Jackson, I. Shlyakhter, M. Sridharan. A Mi-
cromodularity Mechanism. In Foundations of
Software Engineering/European Software Engi-
neering Conference (FSE/ESEC ’01), Septem-
ber 2001.

[3] H. Wee. Alloy model of Chord. Available at
http://web.mit.edu/hoeteck/Public/chord

A Pseudocode from [1]
B Alloy Model

See attached Alloy code.

C Example Alloy Analyzer Vi-
sualizations

Figure 6 shows a new node joining a one-node net-
work. Figure 7 a non-loopy network that starts out
non-perfect, and through weak idealization reaches a
perfect state. Figure 8 shows a three-node network
that starts out loopy and progresses towards a non-
loopy state through strong idealization.

// join the system using information from node n'.
n.join(n')

predecessor := nil;

successor := n'.fs(n);

build_fingers(n');

// update finger table via searches by node n'.
n.build_fingers(n’)
10 := |log(successor —n)| + 1; // first non-trivial finger.

for each i > io index into finger(];
finger(i] = n' fs(n+2~Y);

// periodically verify n’s successor s, and inform s of n.
// do not run until join() is complete.
n.idealize()
x := successor.predecessor;
if (x € (n, successor))
successor = x;
successor.noti fy(n);

// n' thinks it might be our predecessor.
n.notify (n')
if (predecessor = nil or n' € (predecessor,n))
predecessor :=n/;

n.fix_fingers()
// periodically refresh finger table entries.
n.fix_fingers()

build _fingers(n);

Figure 5: Pseudocode for Chord.

Figure 6: A new node joins a one-node network.

NodeData_13
successor: Node_2
pxedecessor: Node/l

NodeData_14
successor: Node_2
>xedecessor: Node/l

NodeData_12

[successor: Node_2

NodeData_14

[successor: Node_2

Node_1 Node_1

NodeData_14
successor: Node_2
>xedecessor: Node/l

NodeData_13
successor: Node_2

Figure 7: The network starts out non-loopy in (a). After two steps of weak idealization, the network is

perfect.

/7; 6 N\

successor: Node_0

next

=

N
pred

(a)

Figure 8: The network starts out loopy in (a). It progresses through two steps of strong idealization in (b)

and (c).

