
Efficient sketches for Earth-Mover Distance, with applications∗

Alexandr Andoni
MIT

Khanh Do Ba
MIT

Piotr Indyk
MIT

David Woodruff
IBM Almaden

Abstract

We provide the first sub-linear sketching algorithm for estimating the planar Earth-Mover
Distance with a constant approximation. For sets living in the two-dimensional grid [∆]2, we
achieve space ∆ε for approximation O(1/ε), for any desired 0 < ε < 1. Our sketch has immediate
applications to the streaming and nearest neighbor search problems.

∗This work was supported in part by NSF CAREER award CCR-0133849, David and Lucille Packard Fellowship
and Alfred P. Sloan Fellowship.

1 Introduction

For any two multisets A,B of points in R2, |A| = |B| = N , the (planar) Earth-Mover Distance1

between A and B is defined as the minimum cost of a perfect matching with edges between A and
B, i.e.,

EMD(A,B) = min
π:A→B

∑

a∈A

‖a− π(a)‖

where π ranges over all one-to-one mappings. Computing the minimum cost bi-chromatic matching
is one of the most fundamental problems in geometric optimization, and there has been an extensive
body of work focused on designing efficient algorithms for this problem [Law76, Vai89, AES95,
AV99, Cha02, IT03, AV04, Ind07a].

Recently, there has been a significant interest in developing methods for geometric representation
of EMD. The goal of this line of research is to provide mappings (say, f) that map a set of points A
into a vector f(A) in a k-dimensional space, such that the distance EMD(A,B) between any two
point sets can be approximated from the vectors f(A) and f(B). To be useful, the space that f
maps into must be “simple”, e.g., its dimension k must be low, or its distance estimation function
should of simple form. For example, [Cha02, IT03] provide a mapping f that works when the sets
A,B are subsets of the discrete square grid [∆]2, and guarantees that, for some absolute constant
C > 0, we have

‖f(A)− f(B)‖1 ≤ EMD(A,B) ≤ C log ∆ · ‖f(A)− f(B)‖1.

Geometric representations of EMD have found applications in several areas, including:

• Data streaming computation: The mapping of EMD into `1, combined with `1-distance-
preserving mappings into low-dimensions [Ind00], yields an efficient algorithm for estimating
the EMD between a set of points given in a streaming fashion [Ind04]. Specifically, the algo-
rithm provides an O(log ∆) approximation in one pass over the data, using only logO(1)(∆N)
space. Obtaining a better EMD estimation algorithm has been an important open problem
in the streaming literature [McG06].

• Visual search and recognition: The aforementioned embedding, together with efficient nearest
neighbor search methods, has been applied to fast image search in large collections of im-
ages [IT03]. Kernel variants of that embedding, such as pyramid kernels [GD05] and spatial
pyramid kernels [LSP06], are some of the best known practical methods for image recognition
in large data sets [LSP06].

However, representing EMD as vectors in the `1 space has limitations: it has been shown [NS07]
that any such mapping must incur a distortion of at least Ω(

√
log ∆). Thus, in order to obtain

more accurate representations, one must consider mappings into spaces other than `1.
In this paper, we provide a construction of such mappings. Their key feature is that they map

the sets into spaces of dimension that is significantly sub-linear in ∆. For a multiset A ⊆ [∆]2, let
x(A) ∈ R∆2

be the characteristic vector of A. Our main result is:

Theorem 1.1. For any 0 < ε < 1, there is a distribution over linear mappings F : R∆2 → R∆εk,
for k = logO(1) ∆, as well as an estimator function E such that for any two multisets A,B ⊆ [∆]2

1Variants of this notion are also known as the transportation distance or bi-chromatic matching distance.

1

of equal size, we have

EMD(A,B) ≤ E(F · x(A), F · x(B)) = O(1/ε) · EMD(A,B)

with probability 2/3.

The estimation function E(·, ·) can be evaluated in time (log ∆)O(1). However, E(·, ·) is not a
metric distance function. Instead, it involves operations such as median, and as a result it does not
satisfy triangle inequality.

Applications. Theorem 1.1 almost immediately provides an improved algorithm for streaming
and nearest neighbor search problems. In the streaming model (cf. [Mut03, Ind07b]), consider the
aforementioned problem of computing the EMD between the sets A and B of points given in a
stream. It can be seen that the “sketch” vectors Fx(A) and Fx(B) can be maintained under
insertions of points to A and B (as well as deletions of points from A and B). Moreover, as
per [Ind00], the random bits defining a linear mapping F can be generated using a pseudo-random
generator for bounded space [Nis90] that requires generating and storing only ∆ε logO(1)(∆N) truly
random bits. Finally, our construction guarantees that the entries in the matrix defining F are
integers in the range {−∆O(1) . . .∆O(1)}. As a result, for any multi-set B of size at most N ,
each coordinate of Fx(B) is in the range {−(∆N)O(1) . . . − (∆N)O(1)} and can be stored using
O(log(∆N)) bits. We obtain the following theorem.

Theorem 1.2. For any 0 < ε < 1, there is a one-pass streaming algorithm that maintains an
O(1/ε)-approximation of the value of EMD between point-sets from [∆]2 given in a stream of length
N , using ∆ε logO(1)(∆N) space.

Another application of Theorem 1.1 is to give an improved data structure for the approximate
nearest neighbor problem under EMD. Specifically, consider a set S consisting of s multi-sets
Ai ⊆ [∆]2, each of size at most N . By increasing the dimension of the mapping F by a factor
of O(log s) we can ensure that, for any fixed multi-set B, one can estimate the distance between
B and all sets in S up to a factor of O(1/ε) with probability 2/3. We build a lookup table that,
for each value of Fx(B), stores the index i that minimizes the value of the estimated distance
E(Fx(Ai), Fx(B)). From the properties of the mapping F , we obtain the following theorem.

Theorem 1.3. For any 0 < ε < 1, there is a data structure that, given a “query” multi-set B,
reports a O(1/ε)-approximate nearest neighbor of B in S with probability at least 2/3. The data
structure uses 2∆ε log(s∆N)O(1)

space and (∆ log(s∆N))O(1) query time.

Thus, we obtain a data structure with very fast query time and space sub-exponential in the
dimension ∆2 of the underlying EMD space. This improves over the result of [AIK09], who obtained
an algorithm with similar space bound while having super-constant approximation guarantee with
query time polynomial in the number of data points s.

Techniques. Our mapping utilizes two components: one old, and one new. The first compo-
nent, introduced in [Ind07a], provides a decomposition of EMD over [∆]2 into a convex combination
of closely related metrics, called EEMD, defined over [∆ε]2. Specifically, consider an extension of
EMD to any sets A,B ⊆ [∆]2 (not necessarily of the same size), defined as:

EEMD∆(A,B) = min
S⊆A,S′⊆B,|S|=|S′|

[EMD(S, S′) + ∆(|A− S|+ |B − S′|)]

2

(we often skip the subscript ∆ when it is clear from the context). It is known that the EEMD
metric can be induced by a norm ‖x‖EEMD, such that for any sets A,B we have EEMD(A,B) =
‖x(A) − x(B)‖EEMD (see Section 2 for the definition). The decomposition from [Ind07a] can be
now stated as follows (after adapting the notation to the setup in this paper):

Fact 1.4. For any 0 < ε < 1, there exists a distribution over T -tuples of linear mappings
〈F1, . . . , FT 〉, for Fi : R∆2 → Rm2

with m = ∆ε , such that for any x ∈ Rn2
, we have

• ‖x‖EEMD ≤
∑

i ‖Fi(x)‖EEMD with probability 1, and

• E [
∑

i ‖Fi(x)‖EEMD] ≤ O(1/ε) · ‖x‖EEMD.

It suffices to estimate the sum of the terms ‖Fi(x)‖EEMD in the decomposition. The second
component needed for our result (and the main technical development of this paper) is showing that
the sum estimation can be accomplished by using a proper linear mapping. In fact, the method
works for estimating the sum

∑
i ‖xi‖X for a vector x = (x1, . . . , xT) ∈ XT for any normed space

X = (Rm, ‖·‖X) . We denote ‖x‖1,X =
∑

i∈[T] ‖xi‖X . This component is formalized in the following
theorem.

Theorem 1.5 (Linear sketching of a sum of norms). Fix n ∈ [N], a threshold M > 0, and
approximation γ > 1. For k = (γ log n)O(1), there exists a distribution over random linear mappings
µ : Xn → Xk, and a reconstruction algorithm R, such that for any x ∈ Xn satisfying M/γ ≤
‖x‖1,X ≤ M , the algorithm R produces an O(1)-approximation to ‖x‖1,X from µ(x).

Theorem 1.5 immediately implies Theorem 1.1, since we can use the mapping from [Cha02,
IT03] to obtain an estimation M of ‖x‖1,EEMD with an approximation factor γ = O(log ∆). For
completeness, we include its proof in Section 4.

The main idea behind the construction of the mapping is as follows. First, observe that a
natural approach to the sum estimation problem would be to randomly sample a few blocks xi of
the vector x. This does not work, however: the mass of the sum could be concentrated in only a
single block, and a random sample would likely miss it. An alternative approach, used in the off-line
algorithm of [Ind07a], is to sample each block xi with probability approximately proportional to
‖xi‖EEMD. However, this requires existence of a streaming algorithm that supports such sampling.
A recent paper of [JW09] is a step towards achieving such an algorithm. However, it applies to the
case 2 where one samples just individual coordinates, while we need to sample and retrieve blocks,
in order to compute the value of EMD on them directly. Although the two problems are related in
principle (having enough samples of block coordinates could provide some information about the
norm of the block itself), the tasks seem technically different. Indeed, the recovery procedure forms
the main technical part of the paper, even though the final algorithm is quite simple.

2 Preliminaries

We start by defining the ‖·‖EEMD norm. For any x ∈ Rn2
, let x+ = (|x|+x)/2 be the vector contain-

ing only the positive entries in x, and let x− = x− x+. Then define ‖x‖EEMD = EEMD(x+, x−).
Observe that for any sets A,B we have EEMD(A,B) = ‖x(A)− x(B)‖EEMD.

We consider all logs to be in base 2. The notation χ[A] stands for 1 if expression A is true and
0 otherwise.

2There are other technical obstacles such as that their algorithm samples with probability proportional to |xi|p for
p > 2, while here we would need the sampling probability to be proportional to the norm of xi, i.e., p = 1. However,
these issues are not much of a problem.

3

3 Proof of Theorem 1.5

We first present the construction of the sketching function µ and of the reconstruction algorithm
R. The respective algorithms are presented in Figures 1 and 2. We then prove the correctness
guarantee, namely that the reconstruction algorithm R approximates well the norm ‖x‖1,X .

3.1 Sketch and reconstruction algorithms

We start by giving some intuition behind our constructions.
Fix an input x ∈ Xn. We will refer to xi’s as the elements of x. As in [IW05] and several

further papers, the idea is to partition these elements into exponential levels, depending on their
X-norm. Specifically, for a level j ∈ N, we set the threshold Tj = M/2j and define the level j to
be the set

Sj =
{
i ∈ [n] | ‖xi‖X ∈ (Tj , 2Tj]

}
.

Let sj = |Sj | be the size of Sj . We will observe that ‖x‖1,X is approximated by
∑

j≥1 Tj · sj .
Furthermore, it is sufficient to consider only levels j ≤ ` := log(4nγ). Henceforth, we will drop the
“j ∈ [`]” in the summation.

The main challenge is to estimate each sj for j ∈ [`]. We will do so for each j separately. We
will subsample the elements from [n] such that, with “good probability”, we subsample exactly one
element from Sj and no element from Sj′ for j′ < j. We refer to this event as E. This “isolation”
of an element of i is needed, since in order to verify if i ∈ Sj , we need to estimate ‖xi‖X , which
requires the recovery of an “approximation” of xi.

The probability that E holds is in fact roughly proportional to the size of the set Sj , and thus
it suffices to just estimate the probability that E holds. To ensure the “rough proportionality”
we subsample the elements at a rate for which E holds with a probability that is inversely poly-
logarithmic, log−Θ(1) n. Thus we repeat the subsampling experiment for t = (γ log n)O(1) times
and count in how many experiments the event E holds; this count gives an estimate for sj (when
appropriately scaled).

The following core problem remains: for each subsampling experiment u ∈ [t], we need to
actually verify that E holds in this experiment, i.e., whether exactly one element of Sj is subsampled
and no element from Sj′ for j′ < j. To do so, we hash the subsampled elements, denoted Ij,u, into
a hash table. Then, E holds roughly when there is one cell that has norm in the right range, which
is roughly (Tj , 2Tj], and all the other cells are small. Ideally, if the hash table were huge, then the
subsampled elements, Ij,u, do not collide in the hash table and then the verification procedure is
accurate. Since the hash table size is much smaller, of only poly-logarithmic size, this verification
procedure may fail. Specifically, the verification procedure fails when either the elements from the
“lighter” level-sets Sj′ for j′ > j contribute a lot to one of the cells, or some elements from “heavier”
level-sets Sj′ for j′ < j are subsampled and collide. If we set the size w of the hash table sufficiently
high, we will ensure that neither of these two bad events happens with a significant probability.

The detailed algorithm for the sketch µ is presented in Figure 1. The notation χ[E] stands for
1 if expression E is true and 0 otherwise. Note that the constructed sketch µ is linear.

Before giving the reconstruction algorithm R, we need the following definition, which describes
our the procedure of verifying that the event E from the above discussion holds.

Definition 3.1. For j ∈ [`], u ∈ [t], call the pair (j, u) an accepting pair if the following holds:

• there is exactly one position v ∈ [w] such that ‖H(j,u)
v ‖X ∈ (0.9 · Tj , 2.1 · Tj], and

4

For each j ∈ [`], create t = 4γ`2 log n hash tables, denoted H(j,u) for u ∈ [t], each with1

w = 640γ`2 log2 n cells, and assign to them independent hash functions hj,u : [n] → [w]
For each hash table H(j,u)2

Subsample a set Ij,u ⊂ [n] where each i ∈ [n] is included independently with3

probability pj = 2−j/(40`)
For each v ∈ [w]4

H
(j,u)
v :=

∑
i∈[n] χ[i ∈ Ij,u] · χ[hj,u(i) = v] · xi5

Algorithm 1: Construction of the sketch µ.

For each j ∈ [`], let cj count the number of accepting pairs (j, u) for u ∈ [t]1

Return E =
∑

j Tj · cj

t · 1
pj2

Algorithm 2: Reconstruction algorithm R.

• for all other v′ ∈ [w], ‖H(j,u)
v′ ‖X ≤ 0.9 · Tj.

The resulting reconstruction algorithm is given in Figure 2.

3.2 Proof of correctness

First we observe that the norm ‖x‖1,X is approximated by
∑

j∈[`] Tj ·|Sj | up to a factor of 4. Indeed,
‖x‖1,X is 2-approximated by the same sum with unrestricted j, i.e.,

∑
j≥1 Tj · |Sj |. Moreover, every

element i ∈ [n] from a higher level j > ` contributes a norm that is at most

‖xi‖X ≤ M

2`
=

1
4n

· M

γ
≤ 1

4n
‖x‖1,X .

Thus the elements from the ignored levels constitute at most a 1/4-fraction of ‖x‖1,X .
We set sj = |Sj | to be the size of Sj . By notational convention, we also assume that for j 6∈ [`],

we have Sj = ∅ and sj = 0. Also, we can assume that γ ≤ nc for some absolute constant c > 0,
since, otherwise, the construction with k = γ1/c is trivial.

We define s̃j = cj

t · 1
pj

, which one should think of as our estimate of sj . Then the reconstruction
algorithm returns the estimate E =

∑
j Tj · s̃j of the norm ‖x‖1,X .

Our main challenge is to prove that s̃j is a good estimate of sj for each j ∈ [`]. While we
can prove a good upper bound on s̃j for all j ∈ [`], we cannot prove a good lower bound on all
s̃j ’s. Namely, if sj is very small, we cannot lower-bound s̃j (as we do not have enough subsampling
experiments). But in this case, the level j contributes a negligible mass to the norm ‖x‖1,X , and
thus it can simply be ignored.

To formalize the above point, we partition the levels j into two types — important and non-
important levels — depending on the number sj of elements in the corresponding level. Intuitively,
the non-important levels are those who contribute a negligible amount of mass to the norm ‖x‖1,X .

Definition 3.2. Call level j important if sj ≥ M/γ
Tj

· 1
8` = 2j

8γ` . Let J denote the set of important
levels.

The following two lemmas prove, respectively, lower and upper bound on our estimates s̃j .

5

Lemma 3.3. For every important level j ∈ J , with high probability,

s̃j ≥ sj/8.

Lemma 3.4. For every level j ∈ [`], with high probability,

s̃j ≤ 2
(

sj−1 + sj + sj+1 +
2j

8γ`

)
.

First, we show how the two lemmas prove Theorem 1.5.

Proof of Theorem 1.5. We have already observed that
∑

j Tj ·sj approximates ‖x‖1,X up to a factor
of 4. Thus, by Lemma 3.4, we have

E =
∑

j

Tj · s̃j ≤ O(1)
∑

j

Tj ·
(

sj−1 + sj + sj+1 +
2j

8γ`

)
≤ O(1)

∑

j

Tj · sj + O(`) · M

8γ`
≤ O(1) · ‖x‖1,X ,

where we have used the fact that ‖x‖1,X ≥ M/γ.
On the other hand, we can lower bound E by dropping all the non-important levels j. By

Lemma 3.3, we have
E ≥

∑

j∈J
Tj · s̃j ≥ Ω(1)

∑

j∈J
Tj · sj .

The contribution of the non-important levels is, by the definition of importance,
∑

j /∈J
Tj · sj < ` · M/γ

8`
≤ 1

8
‖x‖1,X .

Thus, we conclude
∑

j∈J
Tj · sj =

∑

j

Tj · sj −
∑

j /∈J
Tj · sj ≥ 1

4
‖x‖1,X − 1

8
‖x‖1,X = Ω(1) · ‖x‖1,X ,

which completes the proof of Theorem 1.5.

3.2.1 Proofs of the Lemmas 3.3 and 3.4

As mentioned before, at a given level j, we are trying to estimate the size sj of the set Sj . We do so
by subsampling the elements t times, each at a rate of roughly 1/|Sj |, and counting how many times
the subsampling produced exactly one element from Sj (and there will be a negligible probability
that more than one element is subsampled). The hope is that the pair (j, u) is accepting iff the
event E holds, that is the subsample Ij,u contains only one element from Sj and none from Sj′ for
j′ < j − 1. The main difficulty turns out to be bounding the contribution of the elements from the
sets Sj′ for j′ ≥ j +2: the sets Sj′ may be much larger than Sj and thus a fraction of them is likely
to be present in the subsample. Nonetheless, the elements from these sets Sj′ are small in norm
and thus are distributed nearly uniformly in the hash table H(j,u).

To formalize this intuition, we will prove the Noise Lemma that quantifies the “noise” (norm
mass) contributed by the elements from the sets Sj′ , for j′ ≥ j + 2, in a hash table H(j,u). This
Noise Lemma will be used for both Lemma 3.3 and Lemma 3.4.

The Noise Lemma has two parts. The first part gives a tight bound on the noise in a given
cell of the hash table H(j,u), but the probability guarantee is for a given cell only. The second part
gives a somewhat weaker bound on the noise, but holds for all the cells of H(j,u) simultaneously.

6

Lemma 3.5 (Noise Lemma). Fix some j ∈ [l] and u ∈ [t]. Consider some cell v of the hash table
H(j,u), and let S≥j+2 =

⋃
j′≥j+2 Sj′. Then
∑

i∈S≥j+2

χ[i ∈ Ij,u] · χ[hj,u(i) = v] · ‖xi‖X ≤ 0.1 · Tj (1)

with probability at least 1− 1
2w .

Furthermore, with probability at least 1− log2 n
w , we have

max
v′∈[w]

∑

i∈S≥j+2

χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X ≤ 0.6 · Tj . (2)

Proof. We begin by proving equation (1). Consider some level j′ ≥ j +2. Level j′ contains sj′ ≤ 2j′

elements, each subsampled with probability pj , and hashed to v with probability 1/w. Thus, we
can write

E


 ∑

i∈Sj′

χ[i ∈ Ij,u] · χ[hj,u(i) = v] · ‖xi‖X


 =

∑

i∈Sj′

pj

w
· ‖xi‖X ≤ 2j′ · 2−j

40`w
· 2Tj′ =

Tj

20`w
.

Then, denoting by LHS the left-hand side of Equation (1), we have

E[LHS] ≤
∑

j′≥j+2

Tj

20`w
≤ Tj

20w
.

Using Markov’s bound, we can thus conclude that Pr[LHS ≥ 0.1 · Tj] ≤ 1
2w , which proves the first

part of the Noise Lemma.
We now prove the second part of the Noise Lemma, Equation (2). Note that we cannot hope

to prove that all cells will noise at most 0.1 · Tj , because even just one element from a set Sj+2

can contribute as much as Tj/2. To prove this part, we partition the elements in S≥j+2 into two
types: heavy elements (of mass close to Tj) and light elements (of mass much smaller than Tj). For
heavy elements, we will prove that we subsample only a few of them, and thus they are unlikely to
collide in the hash table. The light elements as so light that they can be upper-bounded using a
tight concentration bound.

Specifically, we define the following sets of light and heavy elements:

Sl :=
⋃

j′≥j+log log n+1

Sj′

Sh := S≥j+2 \ Sl =
⋃

j+2≤j′<j+log log n+1

Sj′

We first show that the light elements do not contribute more than (0.1)Tj to any cell w.h.p. Namely,
we will bound the noise in a cell v′ ∈ [w] using a Hoeffding bound, and then use a union bound over
all v′. We use the following variant of Hoeffding inequality, which can be deduced from [Hoe63].

Lemma 3.6 (Hoeffding bound). Let Zi be n independent random variables such that Zi ∈ [0, B],
for B > 0, and E[

∑
i Zi] = µ. Then, for any a > 0, we have that

Pr

[∑

i

Zi > a

]
≤ e−(a−2µ)/B.

7

We use the lemma for variables Zi = χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X , where i ∈ Sl. To get
a bound on B, we observe that, for i ∈ Sl, we have ‖xi‖X ≤ Tj+log log n = Tj/2log log n = Tj/ log n.
We also have an upper bound of µ = E[

∑
j∈Sl

Zi] ≤ Tj/(20w) by applying a union bound over all
` levels to the bound in Equation (3). Thus, applying Lemma 3.6, we obtain

Pr


∑

i∈Sl

χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X > (0.1)Tj


 ≤ e−(0.1−1/(20w))Tj/(Tj/ log n) < e−0.05 log n = n−Ω(1).

Taking the union bound over all cells, we obtain the same bound on all cells v′ ∈ [w].
We now analyze the behavior of the heavy elements, i.e., elements from the set Sh. We can

bound the expected number of subsampled heavy elements as follows:

E


∑

i∈Sh

χ[i ∈ Ij,u]


 ≤




j+log log n∑

j′=j+2

2j′


 · pj < 2j+log log n+1 · 2−j

40`
=

log n

20`
≤ O(1).

Applying the Hoeffding bound from above, we obtain

Pr


∑

i∈Sh

χ[i ∈ Ij,u] > log n


 ≤ e−Ω(log n) = n−Ω(1).

Thus, no more than log n heavy elements are subsampled, w.h.p. We can further bound the
probability that any two of them hash into the same cell by

Pr[there exists a collision of heavy elements] ≤
(

log n

2

)
/w ≤ log2 n

2w
.

To conclude, for every cell v′, the light elements can contribute at most 0.1 · Tj , and the heavy
elements can contribute at most Tj/2. The lemma then follows.

We are now ready to prove Lemmas 3.3 and 3.4.

Proof of Lemma 3.3. Fix an important j ∈ J . For each hash table H(j,u), for u ∈ [t], let Aj,u

denote the event that (j, u) is an accepting pair. Define the following two events:

E1: exactly one element of Sj is subsampled in Ij,u, and

E2: no element from Sj′ is subsampled in Ij,u, for all j′ < j and j′ = j + 1.

We will prove the following claim.

Claim 3.7. For fixed u ∈ [t], if E1 and E2 hold, then Aj,u occurs with probability at least 1/2.
Moreover, E1 and E2 occur simultaneously with probability at least 1

2sjpj.

Proof of Claim 3.7. To prove the first part, assume E1 and E2 hold. Let i∗ be the the element in
Ij,u ∩ Sj (guaranteed to be unique by E1), and let v∗ be the cell that contains element i∗. First,
we note that, using the triangle inequality in X and the Noise Lemma 3.5, we have

‖H(j,u)
v∗ ‖X ≥ ‖xi∗‖X −

∑

i∈Ij,u\{i∗}
χ[hj,u(i) = v∗] · ‖xi‖X > Tj − 0.1 · Tj = 0.9 · Tj ,

8

and
‖H(j,u)

v∗ ‖X ≤ ‖xi∗‖X +
∑

i∈Ij,u\{i∗}
χ[hj,u(i) = v∗] · ‖xi‖X ≤ 2.1 · Tj ,

with probability at least 3/4. Furthermore, for every other cell v 6= v∗, we have that, similarly to
above:

max
v 6=v∗

‖H(j,u)
v ‖X ≤ max

v 6=v∗

∑

i∈Ij,u

χ[hj,u(i) = v] · ‖xi‖X ≤ 0.6 · Tj

with probability at least 3/4. The two bounds hold at the same time with probability at least 1/2,
in which case Aj,u occurs.

Next we show that E1 and E2 hold with probability at least 1
2sjpj . We have

Pr[E1] = sjpj(1− pj)sj−1 ≥ sjpj(1− sjpj) ≥ 2
3sjpj ,

where we use the fact that sj ≤ 2j = 1
40`pj

. To estimate Pr[E2], we first consider all j′ < j. Using
union bound, we can bound the probability that anything from

⋃
j′<j Sj′ is subsampled:

Pr


 ⋃

j′<j

Sj′ ∩ Ij,u 6= ∅

 ≤

∑

j′<j

sj′pj ≤
∑

j′<j

2j′pj < 2jpj =
1

40`
.

Similarly, we have

Pr[Sj+1 ∩ Ij,u 6= ∅] ≤ sj+1pj ≤ 1
20`

.

Thus we obtain that Pr[E2] ≥ 1− 1
10` .

We note that E1 and E2 are indendent events since they concern different levels. We can
conclude that

Pr[E1 ∧ E2] = Pr[E1] · Pr[E2] ≥ 2
3sjpj ·

(
1− 1

10`

)
≥ 1

2sjpj ,

which finishes the proof of Claim 3.7.

We now complete the proof of Lemma 3.3. We can lower bound the probability of Aj,u as
follows:

Pr[Aj,u] ≥ Pr[Aj,u ∧ E1 ∧ E2] = Pr[Aj,u | E1 ∧ E2] · Pr[E1 ∧ E2] ≥ 1
4sjpj .

Now, we can finally analyze the estimate s̃j of the size of the set Sj . Since s̃j = cj

t · 1
pj

, we will
lower bound cj . Note that

E[cj] = tPr[Aj,u] ≥ t

4
sjpj ≥ t

4
· 2j

8γ`
· 2−j

40`
≥ Ω(log n).

Thus, a standard application of the Chernoff bound suffices to conclude that cj ≥ t
8sjpj , w.h.p.,

and then s̃j = cj

t · 1
pj
≥ 1

8sjpj · 1
pj

= 1
8sj , also with high probability. This concludes the proof of

Lemma 3.3.

We now prove the Lemma 3.4 that upper bounds the estimate s̃j .

Proof of Lemma 3.4. First, fix any important j, and consider any particular hash table H(j,u). As
before, let Aj,u denote the event that (j, u) is an accepting pair, and define the following new event:

9

E3: at least one element of Sj−1 ∪ Sj ∪ Sj+1 is subsampled.

Claim 3.8. If E3 does not occur, Aj,u holds with probability at most pj

(
2j

8γ`

)
. Moreover, E3 holds

with probability at most pj(sj−1 + sj + sj+1).

Proof. For the first part, we prove that, with probability at least 1− pj

(
2j

8γ`

)
, no cell of H(j,u) can

have a norm that is in the accepting range of (0.9 ·Tj , 2.1 ·Tj]. A cell v of H(j,u) may have a norm in
the accepting range only when either: (1) more than one element from Sj′ , for j′ ≤ j − 2, falls into
v, or (2) the noise in v from elements in S≥j+2 exceeds by 0.6 · Tj . In particular, if neither (1) nor
(2) hold, then either v contains no element from S≥j+2, in which case ‖H(j,u)

v ‖X ≤ 0.6 ·Tj ≤ 0.9Tj ,
or v contains exactly one element from S≥j+2, in which case ‖H(j,u)

v ‖X > 4Tj − 0.6Tj > 2.1Tj .
Now, the probability that (2) holds for any cell v is at most log2 n

w by the Noise Lemma 3.5.
It remains to bound the probability of (1), that more than one element from Sj′ , for j′ ≤ j − 2,
falls into the same cell of the hash table. We note that expected number of subsampled elements
from ∪j′≤j−2Sj′ is upper bounded by 2j · pj ≤ O(1). Thus, with high probability, only log n of the
elements ∪j′≤j−2Sj′ appear in Ij,u. Furthermore, these O(log n) elements collide with probability
at most log2 n

2w . It follows that the probability that (1) holds for any cell v is at most log2 n
w .

Thus, we have that

Pr[Aj,u | E3] ≤ 2 · log2 n

w
≤ pj

(
2j

8γ`

)
=

1
320γ`2

.

For the second part, we need to bound the probability Pr[E3]. But this follows from a simple
union bound over all elements in Sj−1 ∪ Sj ∪ Sj+1.

We can now finish the proof of the lemma. From the above claim, we obtain the following
bound on the probability of an accepting pair:

Pr[Aj,u] ≤ Pr[Aj,u | E3] + Pr[E3] ≤ pj

(
sj−1 + sj + sj+1 +

2j

8γ`

)
,

We can now upper bound the estimate s̃j :

E[s̃j] =
∑

u Pr[Aj,u]
t

· 1
pj
≤

(
sj−1 + sj + sj+1 +

2j

8γ`

)
.

Again, by Chernoff bound, s̃j ≤ 2
(
sj−1 + sj + sj+1 + 2j

8γ`

)
w.h.p. This completes the proof of

Lemma 3.4.

4 Proof of Theorem 1.1

We now prove our main Theorem 1.1. As mentioned in the introduction, its main ingredient is
Theorem 1.5.

Proof of Theorem 1.1. The sketch F consists of two parts. The first part is just a linear map f of
planar EMD into `1 as in [Cha02, IT03], that approximates the EMD distance up to γ = O(log ∆)
approximation.

10

The second part is a collection of O(log ∆) sketches νi. Each νi is a composition of two linear
maps: the map F (i) = 〈F (i)

1 , . . . F
(i)
T 〉 obtained from an application of Fact 1.4 and a sketch µi

obtained from an application of the Theorem 1.5. Specifically, for i ≤ log ∆, the sketch µi is given
by the Theorem 1.5 for M = 2i, n = T , and γ as defined above. The final sketch is then the
following linear map:

F = 〈f, µ1 ◦ F (1), . . . µlog ∆ ◦ F (log ∆)〉.
The reconstruction algorithm E works in a straight-forward manner. Given sketches Fx(A)

and Fx(B), compute first a γ approximation to EMD(A,B) using the map f . Then, use the
corresponding map νi = µi ◦ F (i) to compute the estimate

∑
j ‖F (i)

j (x(A) − x(B))‖EEMD. This
estimate is a O(1/ε) approximation to EMD(A,B) by Fact 1.4.

This finishes the proof of Theorem 1.1.

References

[AES95] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. Proceedings of the ACM Symposium on
Computational Geometry (SoCG), 1995.

[AIK09] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the `1 non-
embeddability barrier: Algorithms for product metrics. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 865–874, 2009.

[AV99] P.K. Agarwal and K. Varadarajan. Approximation algorithms for bipartite and non-
bipartite matching in the plane. Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1999.

[AV04] P. Agarwal and K. Varadarajan. A near-linear constant factor approximation for euclidean
matching ? Proceedings of the ACM Symposium on Computational Geometry (SoCG),
2004.

[Cha02] M. Charikar. Similarity estimation techniques from rounding. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 380–388, 2002.

[GD05] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discriminative classi-
fication with sets of image features. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Beijing, China, October 2005.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963.

[Ind00] P. Indyk. Dimensionality reduction techniques for proximity problems. Proceedings of the
Ninth ACM-SIAM Symposium on Discrete Algorithms, 2000.

[Ind04] P. Indyk. Algorithms for dynamic geometric problems over data streams. Proceedings of
the Symposium on Theory of Computing (STOC), 2004.

[Ind07a] P. Indyk. A near linear time constant factor approximation for euclidean bichromatic
matching (cost). In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2007.

11

[Ind07b] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course notes,
available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[IT03] P. Indyk and N. Thaper. Fast color image retrieval via embeddings. Workshop on Sta-
tistical and Computational Theories of Vision (at ICCV), 2003.

[IW05] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments of data
streams. Proceedings of the Symposium on Theory of Computing (STOC), 2005.

[JW09] T.S. Jayram and David Woodruff. The space complexity of cascaded norms. 2009.
Manuscript (parallel submission).

[Law76] E. Lawler. Combinatorial optimization: Networks and Matroids. Holt, Rinehart and
Winston, 1976.

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid match-
ing for recognizing natural scene categories. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2006.

[McG06] Andrew McGregor. Open problems in data streams and related top-
ics. IITK Workshop on Algorithms For Data Streams, 2006. Available at
http://www.cse.iitk.ac.in/users/sganguly/workshop.html.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and applications (invited talk at soda’03).
Available at http://athos.rutgers.edu/∼muthu/stream-1-1.ps, 2003.

[Nis90] N. Nisan. Pseudorandom generators for space-bounded computation. Proceedings of the
Symposium on Theory of Computing (STOC), pages 204–212, 1990.

[NS07] A. Naor and G. Schechtman. Planar earthmover is not in l1. SIAM Journal on Computing,
37(3):804–826, 2007. An extended abstract appeared in FOCS’06.

[Vai89] P. Vaidya. Geometry helps in matching. SIAM Journal on Computing, 18:1201–1225,
1989.

12

