
Sparse recovery with partial support knowledge

Khanh Do Ba Piotr Indyk

August 17, 2011

1 / 14

Sparse recovery

Measurement:

• Data/signal in n-dimensional space: x
• Goal: compress x into a “sketch” Ax , where A is an m × n matrix,
m� n A

 x

 =

 Ax

Recovery:

• Sparsity parameter k

• Informal: recover largest k coordinates of x

• Formal: recover approximation x̂ of x such that

‖x̂ − x‖p ≤ C (k) min
x′
‖x ′ − x‖q

over all k-sparse x ′ (at most k non-zero coordinates)

Want:

• Good compression: small m = m(k, n)

• Efficient algorithms for encoding and recovery

2 / 14

Sparse recovery

Measurement:

• Data/signal in n-dimensional space: x
• Goal: compress x into a “sketch” Ax , where A is an m × n matrix,
m� n A

 x

 =

 Ax

Recovery:

• Sparsity parameter k

• Informal: recover largest k coordinates of x

• Formal: recover approximation x̂ of x such that

‖x̂ − x‖p ≤ C (k) min
x′
‖x ′ − x‖q

over all k-sparse x ′ (at most k non-zero coordinates)

Want:

• Good compression: small m = m(k, n)

• Efficient algorithms for encoding and recovery

2 / 14

Sparse recovery

Measurement:

• Data/signal in n-dimensional space: x
• Goal: compress x into a “sketch” Ax , where A is an m × n matrix,
m� n A

 x

 =

 Ax

Recovery:

• Sparsity parameter k

• Informal: recover largest k coordinates of x

• Formal: recover approximation x̂ of x such that

‖x̂ − x‖p ≤ C (k) min
x′
‖x ′ − x‖q

over all k-sparse x ′ (at most k non-zero coordinates)

Want:

• Good compression: small m = m(k , n)

• Efficient algorithms for encoding and recovery
2 / 14

Applications

• Monitoring network traffic data streams
• x is traffic matrix, for every source/destination pair
• Too big to store!
• Need to compress yet allow quick updates
• Linear compression allows quick update: A(x + ∆) = Ax + A∆

• Single-pixel camera (Wakin et al.’06)

• Various forms of pooling experiments

3 / 14

Applications

• Monitoring network traffic data streams
• x is traffic matrix, for every source/destination pair
• Too big to store!
• Need to compress yet allow quick updates
• Linear compression allows quick update: A(x + ∆) = Ax + A∆

• Single-pixel camera (Wakin et al.’06)

• Various forms of pooling experiments

3 / 14

Applications

• Monitoring network traffic data streams
• x is traffic matrix, for every source/destination pair
• Too big to store!
• Need to compress yet allow quick updates
• Linear compression allows quick update: A(x + ∆) = Ax + A∆

• Single-pixel camera (Wakin et al.’06)

• Various forms of pooling experiments

3 / 14

Previous results in sparse recovery

Paper Sketch length Approx

CRT’04 O(k log(n/k)) `1 ≤ O(1)`1

GLPS’10 O((k/ε) log(n/k)) `2 ≤ (1 + ε)`2

DIPW’10,FPRU’10 Ω(k log(n/k)) `1 ≤ O(1)`1, `2 ≤ O(1)`2

Can we do better than O(k log(n/k))?
Yes! With additional knowledge about the signal.

4 / 14

Previous results in sparse recovery

Paper Sketch length Approx

CRT’04 O(k log(n/k)) `1 ≤ O(1)`1

GLPS’10 O((k/ε) log(n/k)) `2 ≤ (1 + ε)`2

DIPW’10,FPRU’10 Ω(k log(n/k)) `1 ≤ O(1)`1, `2 ≤ O(1)`2

Can we do better than O(k log(n/k))?

Yes! With additional knowledge about the signal.

4 / 14

Previous results in sparse recovery

Paper Sketch length Approx

CRT’04 O(k log(n/k)) `1 ≤ O(1)`1

GLPS’10 O((k/ε) log(n/k)) `2 ≤ (1 + ε)`2

DIPW’10,FPRU’10 Ω(k log(n/k)) `1 ≤ O(1)`1, `2 ≤ O(1)`2

Can we do better than O(k log(n/k))?
Yes! With additional knowledge about the signal.

4 / 14

Partial knowledge

• Model-based compressive sensing (Baraniuk et al.’10,
Eldar-Bolcskei’09)

sets of large coefficients known to exhibit some patterns

• Bayesian compressive sensing (Cevher et al.’10)

signal generated from known distribution

• Support knowledge (Price’10, this paper)

some knowledge available about where the large coefficients lie

5 / 14

Partial knowledge

• Model-based compressive sensing (Baraniuk et al.’10,
Eldar-Bolcskei’09)

sets of large coefficients known to exhibit some patterns

• Bayesian compressive sensing (Cevher et al.’10)

signal generated from known distribution

• Support knowledge (Price’10, this paper)

some knowledge available about where the large coefficients lie

5 / 14

Partial knowledge

• Model-based compressive sensing (Baraniuk et al.’10,
Eldar-Bolcskei’09)

sets of large coefficients known to exhibit some patterns

• Bayesian compressive sensing (Cevher et al.’10)

signal generated from known distribution

• Support knowledge (Price’10, this paper)

some knowledge available about where the large coefficients lie

5 / 14

Partial support knowledge

Sparse recovery with partial support knowledge (SRPSK):

1 Construction of A: parameters n, k and s

2 Measurement: Ax

3 Support knowledge: set S ⊂ [n], |S | = s, where top-k “likely” lies

4 Recovery: from Ax and S , find x̂ such that

‖x̂ − x‖p ≤ C min
x′
‖x ′ − x‖q

over all k-sparse x ′ with support in S

6 / 14

Motivation

Applications:

• Tracking tasks: object position typically does not change quickly

• Exploratory tasks: support lies in one of several sets

Theoretical:

• s = n: “regular” sparse recovery

• s = k: set query (Price’10)

7 / 14

Motivation

Applications:

• Tracking tasks: object position typically does not change quickly

• Exploratory tasks: support lies in one of several sets

Theoretical:

• s = n: “regular” sparse recovery

• s = k : set query (Price’10)

7 / 14

Our results

Theorem (Upper bound)

SRPSK with the `2/`2 guarantee can be solved (1 + ε)-approximately
using O((k/ε) log(s/k)) measurements.

Theorem (Lower bound)

Any (1 + ε)-approximate solution to SRPSK with either the `1/`1 or the
`2/`2 guarantee requires Ω((k/ε) log(s/k)) measurements, assuming
s = O(εn/ log(n/ε)).

8 / 14

Our results

Theorem (Upper bound)

SRPSK with the `2/`2 guarantee can be solved (1 + ε)-approximately
using O((k/ε) log(s/k)) measurements.

Theorem (Lower bound)

Any (1 + ε)-approximate solution to SRPSK with either the `1/`1 or the
`2/`2 guarantee requires Ω((k/ε) log(s/k)) measurements, assuming
s = O(εn/ log(n/ε)).

8 / 14

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover x̂ from Ax + ν such that

‖x̂ − x‖p ≤ (1 + ε) min
x′
‖x ′ − x‖p + ε‖ν‖p

where E[‖Av‖p] ≤ ‖v‖p for every v .

GLPS’10 gives this guarantee!

sketch noise

How to construct matrix so that specifying any s columns yields a
“good” measurement (sub)matrix? Independently generated columns!

9 / 14

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover x̂ from Ax + ν such that

‖x̂ − x‖p ≤ (1 + ε) min
x′
‖x ′ − x‖p + ε‖ν‖p

where E[‖Av‖p] ≤ ‖v‖p for every v .

GLPS’10 gives this guarantee!

sketch noise

How to construct matrix so that specifying any s columns yields a
“good” measurement (sub)matrix? Independently generated columns!

9 / 14

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover x̂ from Ax + ν such that

‖x̂ − x‖p ≤ (1 + ε) min
x′
‖x ′ − x‖p + ε‖ν‖p

where E[‖Av‖p] ≤ ‖v‖p for every v .

GLPS’10 gives this guarantee!

sketch noise

How to construct matrix so that specifying any s columns yields a
“good” measurement (sub)matrix? Independently generated columns!

9 / 14

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover x̂ from Ax + ν such that

‖x̂ − x‖p ≤ (1 + ε) min
x′
‖x ′ − x‖p + ε‖ν‖p

where E[‖Av‖p] ≤ ‖v‖p for every v .

GLPS’10 gives this guarantee!

sketch noise

How to construct matrix so that specifying any s columns yields a
“good” measurement (sub)matrix?

Independently generated columns!

9 / 14

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover x̂ from Ax + ν such that

‖x̂ − x‖p ≤ (1 + ε) min
x′
‖x ′ − x‖p + ε‖ν‖p

where E[‖Av‖p] ≤ ‖v‖p for every v .

GLPS’10 gives this guarantee!

sketch noise

How to construct matrix so that specifying any s columns yields a
“good” measurement (sub)matrix? Independently generated columns!

9 / 14

Proof sketch: upper bound (cont.)

Part of GLPS’10 measurement matrix that is not independent:

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)
1

B(j)
2

B(j)
3

…

A

• Code words w1,w2, . . . only need to be distinct within each “block”

• If h code words used, pick independently from O(h3) code words
instead

• If b blocks used, construct 2b blocks instead and, given S , pick b
“good” blocks to use

• Result: about 6 times as many rows, but columns now independent!

10 / 14

Proof sketch: upper bound (cont.)

Part of GLPS’10 measurement matrix that is not independent:

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)
1

B(j)
2

B(j)
3

…

A

• Code words w1,w2, . . . only need to be distinct within each “block”

• If h code words used, pick independently from O(h3) code words
instead

• If b blocks used, construct 2b blocks instead and, given S , pick b
“good” blocks to use

• Result: about 6 times as many rows, but columns now independent!

10 / 14

Proof sketch: upper bound (cont.)

Part of GLPS’10 measurement matrix that is not independent:

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)
1

B(j)
2

B(j)
3

…

A

• Code words w1,w2, . . . only need to be distinct within each “block”

• If h code words used, pick independently from O(h3) code words
instead

• If b blocks used, construct 2b blocks instead and, given S , pick b
“good” blocks to use

• Result: about 6 times as many rows, but columns now independent!

10 / 14

Proof sketch: upper bound (cont.)

Part of GLPS’10 measurement matrix that is not independent:

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)
1

B(j)
2

B(j)
3

…

A

• Code words w1,w2, . . . only need to be distinct within each “block”

• If h code words used, pick independently from O(h3) code words
instead

• If b blocks used, construct 2b blocks instead and, given S , pick b
“good” blocks to use

• Result: about 6 times as many rows, but columns now independent!

10 / 14

Proof sketch: upper bound (cont.)

Part of GLPS’10 measurement matrix that is not independent:

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)
1

B(j)
2

B(j)
3

…

A

• Code words w1,w2, . . . only need to be distinct within each “block”

• If h code words used, pick independently from O(h3) code words
instead

• If b blocks used, construct 2b blocks instead and, given S , pick b
“good” blocks to use

• Result: about 6 times as many rows, but columns now independent!

10 / 14

Proof sketch: lower bound

Based on proof in DIPW’10 of lower bound for sparse recovery

Augmented Indexing:

Communication complexityCommunication complexity

• Augmented Indexing:ug e ted de g:

r = 011000101110…

Input: b = (b1, b2, …, bd) œ {0,1}d Input: iœ[d], bi+1, bi+2, …, bd
Output: bi

• Theorem: Communication cost of Augmented
Indexing is Ω(d) [Milterson, Nisan, Safra, Wigderson ‘98].g ()

• We will reduce AI to sparse recovery.

Known: requires Ω(d) bits of communication

11 / 14

Proof sketch: lower bound

Based on proof in DIPW’10 of lower bound for sparse recovery

Augmented Indexing:

Communication complexityCommunication complexity

• Augmented Indexing:ug e ted de g:

r = 011000101110…

Input: b = (b1, b2, …, bd) œ {0,1}d Input: iœ[d], bi+1, bi+2, …, bd
Output: bi

• Theorem: Communication cost of Augmented
Indexing is Ω(d) [Milterson, Nisan, Safra, Wigderson ‘98].g ()

• We will reduce AI to sparse recovery.

Known: requires Ω(d) bits of communication

11 / 14

Proof sketch: lower bound

Based on proof in DIPW’10 of lower bound for sparse recovery

Augmented Indexing:

Communication complexityCommunication complexity

• Augmented Indexing:ug e ted de g:

r = 011000101110…

Input: b = (b1, b2, …, bd) œ {0,1}d Input: iœ[d], bi+1, bi+2, …, bd
Output: bi

• Theorem: Communication cost of Augmented
Indexing is Ω(d) [Milterson, Nisan, Safra, Wigderson ‘98].g ()

• We will reduce AI to sparse recovery.

Known: requires Ω(d) bits of communication

11 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

12 / 14

Proof sketch: lower bound (cont.)

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

13 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

• From linearity Bob can
compute A(D1x1 + · · ·+ D jxj)

• “Signal” D1x1 + · · ·+ D jxj
dominated by D jxj with
support in j th block Sj

• Use support knowledge to
recover approximate xj

• Use error correction to recover
exact xj

• Lower bound of AI implies
lower bound for SRPSK

14 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

• From linearity Bob can
compute A(D1x1 + · · ·+ D jxj)

• “Signal” D1x1 + · · ·+ D jxj
dominated by D jxj with
support in j th block Sj

• Use support knowledge to
recover approximate xj

• Use error correction to recover
exact xj

• Lower bound of AI implies
lower bound for SRPSK

14 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

• From linearity Bob can
compute A(D1x1 + · · ·+ D jxj)

• “Signal” D1x1 + · · ·+ D jxj
dominated by D jxj with
support in j th block Sj

• Use support knowledge to
recover approximate xj

• Use error correction to recover
exact xj

• Lower bound of AI implies
lower bound for SRPSK

14 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

• From linearity Bob can
compute A(D1x1 + · · ·+ D jxj)

• “Signal” D1x1 + · · ·+ D jxj
dominated by D jxj with
support in j th block Sj

• Use support knowledge to
recover approximate xj

• Use error correction to recover
exact xj

• Lower bound of AI implies
lower bound for SRPSK

14 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

• From linearity Bob can
compute A(D1x1 + · · ·+ D jxj)

• “Signal” D1x1 + · · ·+ D jxj
dominated by D jxj with
support in j th block Sj

• Use support knowledge to
recover approximate xj

• Use error correction to recover
exact xj

• Lower bound of AI implies
lower bound for SRPSK

14 / 14

Proof sketch: lower bound (cont.)

Alice’s input:
…

C1 C2 Cα

x1 x2 x α…

x = D1x + D2x + + D αxx = D x1 + D x2 + … + D x α

Ax

sent to Bobsent to Bob

Bob needs to recover

Cj

xj

…
Cj+1 Cα

knowing

xj+1 x α…

and Ax

• From linearity Bob can
compute A(D1x1 + · · ·+ D jxj)

• “Signal” D1x1 + · · ·+ D jxj
dominated by D jxj with
support in j th block Sj

• Use support knowledge to
recover approximate xj

• Use error correction to recover
exact xj

• Lower bound of AI implies
lower bound for SRPSK

14 / 14

