Sparse recovery with partial support knowledge

Khanh Do Ba Piotr Indyk

August 17, 2011

Sparse recovery

Measurement:

- Data/signal in n-dimensional space: x
- Goal: compress x into a "sketch" $A x$, where A is an $m \times n$ matrix, $m \ll n$

$$
\left(\begin{array}{ll}
A & x
\end{array}\right)=(A x)
$$

Sparse recovery

Measurement:

- Data/signal in n-dimensional space: x
- Goal: compress x into a "sketch" $A x$, where A is an $m \times n$ matrix, $m \ll n$

$$
\left(\begin{array}{ll}
A & x
\end{array}\right)=(A x)
$$

Recovery:

- Sparsity parameter k
- Informal: recover largest k coordinates of x
- Formal: recover approximation \hat{x} of x such that

$$
\|\hat{x}-x\|_{p} \leq C(k) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{q}
$$

over all k-sparse x^{\prime} (at most k non-zero coordinates)

Sparse recovery

Measurement:

- Data/signal in n-dimensional space: x
- Goal: compress x into a "sketch" $A x$, where A is an $m \times n$ matrix, $m \ll n$

$$
\left(\begin{array}{ll}
A & x
\end{array}\right)=(A x)
$$

Recovery:

- Sparsity parameter k
- Informal: recover largest k coordinates of x
- Formal: recover approximation \hat{x} of x such that

$$
\|\hat{x}-x\|_{p} \leq C(k) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{q}
$$

over all k-sparse x^{\prime} (at most k non-zero coordinates)
Want:

- Good compression: small $m=m(k, n)$
- Efficient algorithms for encoding and recovery

Applications

- Monitoring network traffic data streams
- x is traffic matrix, for every source/destination pair
- Too big to store!
- Need to compress yet allow quick updates
- Linear compression allows quick update: $A(x+\Delta)=A x+A \Delta$

Applications

- Monitoring network traffic data streams
- x is traffic matrix, for every source/destination pair
- Too big to store!
- Need to compress yet allow quick updates
- Linear compression allows quick update: $A(x+\Delta)=A x+A \Delta$
- Single-pixel camera (Wakin et al.'06)

Applications

- Monitoring network traffic data streams
- x is traffic matrix, for every source/destination pair
- Too big to store!
- Need to compress yet allow quick updates
- Linear compression allows quick update: $A(x+\Delta)=A x+A \Delta$
- Single-pixel camera (Wakin et al.'06)

- Various forms of pooling experiments

Previous results in sparse recovery

Paper	Sketch length	Approx
CRT'04	$O(k \log (n / k))$	$\ell_{1} \leq O(1) \ell_{1}$
GLPS'10	$O((k / \epsilon) \log (n / k))$	$\ell_{2} \leq(1+\epsilon) \ell_{2}$
DIPW'10,FPRU'10	$\Omega(k \log (n / k))$	$\ell_{1} \leq O(1) \ell_{1}, \ell_{2} \leq O(1) \ell_{2}$

Previous results in sparse recovery

Paper	Sketch length	Approx
CRT'04	$O(k \log (n / k))$	$\ell_{1} \leq O(1) \ell_{1}$
GLPS'10	$O((k / \epsilon) \log (n / k))$	$\ell_{2} \leq(1+\epsilon) \ell_{2}$
DIPW'10,FPRU'10	$\Omega(k \log (n / k))$	$\ell_{1} \leq O(1) \ell_{1}, \ell_{2} \leq O(1) \ell_{2}$

Can we do better than $O(k \log (n / k))$?

Previous results in sparse recovery

Paper	Sketch length	Approx
CRT'04	$O(k \log (n / k))$	$\ell_{1} \leq O(1) \ell_{1}$
GLPS'10	$O((k / \epsilon) \log (n / k))$	$\ell_{2} \leq(1+\epsilon) \ell_{2}$
DIPW'10,FPRU'10	$\Omega(k \log (n / k))$	$\ell_{1} \leq O(1) \ell_{1}, \ell_{2} \leq O(1) \ell_{2}$

Can we do better than $O(k \log (n / k))$?
Yes! With additional knowledge about the signal.

Partial knowledge

- Model-based compressive sensing (Baraniuk et al.' 10 , Eldar-Bolcskei'09)
sets of large coefficients known to exhibit some patterns

Partial knowledge

- Model-based compressive sensing (Baraniuk et al.' 10 , Eldar-Bolcskei'09)
sets of large coefficients known to exhibit some patterns
- Bayesian compressive sensing (Cevher et al.'10)
signal generated from known distribution

Partial knowledge

- Model-based compressive sensing (Baraniuk et al.' 10 , Eldar-Bolcskei'09)
sets of large coefficients known to exhibit some patterns
- Bayesian compressive sensing (Cevher et al.'10)
signal generated from known distribution
- Support knowledge (Price'10, this paper)
some knowledge available about where the large coefficients lie

Partial support knowledge

Sparse recovery with partial support knowledge (SRPSK):
(1) Construction of A : parameters n, k and s
(2) Measurement: $A x$
(3) Support knowledge: set $S \subset[n],|S|=s$, where top- k "likely" lies
(4) Recovery: from $A x$ and S, find \hat{x} such that

$$
\|\hat{x}-x\|_{p} \leq C \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{q}
$$

over all k-sparse x^{\prime} with support in S

Motivation

Applications:

- Tracking tasks: object position typically does not change quickly
- Exploratory tasks: support lies in one of several sets

Motivation

Applications:

- Tracking tasks: object position typically does not change quickly
- Exploratory tasks: support lies in one of several sets

Theoretical:

- $s=n$: "regular" sparse recovery
- $s=k$: set query (Price'10)

Our results

Theorem (Upper bound)

SRPSK with the ℓ_{2} / ℓ_{2} guarantee can be solved $(1+\epsilon)$-approximately using $O((k / \epsilon) \log (s / k))$ measurements.

Our results

Theorem (Upper bound)

SRPSK with the ℓ_{2} / ℓ_{2} guarantee can be solved $(1+\epsilon)$-approximately using $O((k / \epsilon) \log (s / k))$ measurements.

Theorem (Lower bound)

Any $(1+\epsilon)$-approximate solution to SRPSK with either the ℓ_{1} / ℓ_{1} or the ℓ_{2} / ℓ_{2} guarantee requires $\Omega((k / \epsilon) \log (s / k))$ measurements, assuming $s=O(\epsilon n / \log (n / \epsilon))$.

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover \hat{x} from $A x+\nu$ such that

$$
\|\hat{x}-x\|_{p} \leq(1+\epsilon) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{p}+\epsilon\|\nu\|_{p}
$$

where $\mathbb{E}\left[\|A v\|_{\rho}\right] \leq\|v\|_{p}$ for every v.

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover \hat{x} from $A x+\nu$ such that

$$
\|\hat{x}-x\|_{p} \leq(1+\epsilon) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{p}+\epsilon\|\nu\|_{p}
$$

where $\mathbb{E}\left[\|A v\|_{p}\right] \leq\|v\|_{p}$ for every v.
GLPS'10 gives this guarantee!

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover \hat{x} from $A x+\nu$ such that

$$
\|\hat{x}-x\|_{p} \leq(1+\epsilon) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{p}+\epsilon\|\nu\|_{p}
$$

where $\mathbb{E}\left[\|A v\|_{p}\right] \leq\|v\|_{p}$ for every v.
GLPS'10 gives this guarantee!

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover \hat{x} from $A x+\nu$ such that

$$
\|\hat{x}-x\|_{p} \leq(1+\epsilon) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{p}+\epsilon\|\nu\|_{p}
$$

where $\mathbb{E}\left[\|A v\|_{p}\right] \leq\|v\|_{p}$ for every v.
GLPS'10 gives this guarantee!

How to construct matrix so that specifying any s columns yields a "good" measurement (sub)matrix?

Proof sketch: upper bound

Noise-tolerant sparse recovery: recover \hat{x} from $A x+\nu$ such that

$$
\|\hat{x}-x\|_{p} \leq(1+\epsilon) \min _{x^{\prime}}\left\|x^{\prime}-x\right\|_{p}+\epsilon\|\nu\|_{p}
$$

where $\mathbb{E}\left[\|A v\|_{p}\right] \leq\|v\|_{p}$ for every v.
GLPS'10 gives this guarantee!

How to construct matrix so that specifying any s columns yields a "good" measurement (sub)matrix? Independently generated columns!

Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

Proof sketch: upper bound (cont.)

Part of GLPS' 10 measurement matrix that is not independent:

- Code words w_{1}, w_{2}, \ldots only need to be distinct within each "block"

Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

- Code words w_{1}, w_{2}, \ldots only need to be distinct within each "block"
- If h code words used, pick independently from $O\left(h^{3}\right)$ code words instead

Proof sketch: upper bound (cont.)

Part of GLPS' 10 measurement matrix that is not independent:

- Code words w_{1}, w_{2}, \ldots only need to be distinct within each "block"
- If h code words used, pick independently from $O\left(h^{3}\right)$ code words instead
- If b blocks used, construct $2 b$ blocks instead and, given S, pick b "good" blocks to use

Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

- Code words w_{1}, w_{2}, \ldots only need to be distinct within each "block"
- If h code words used, pick independently from $O\left(h^{3}\right)$ code words instead
- If b blocks used, construct $2 b$ blocks instead and, given S, pick b "good" blocks to use
- Result: about 6 times as many rows, but columns now independent!

Proof sketch: lower bound

Based on proof in DIPW'10 of lower bound for sparse recovery

Proof sketch: lower bound

Based on proof in DIPW'10 of lower bound for sparse recovery
Augmented Indexing:

Proof sketch: lower bound

Based on proof in DIPW'10 of lower bound for sparse recovery
Augmented Indexing:

Known: requires $\Omega(d)$ bits of communication

Proof sketch: lower bound (cont.)

Proof sketch: lower bound (cont.)

Proof sketch: lower bound (cont.)

Proof sketch: lower bound (cont.)

- From linearity Bob can compute $A\left(D^{1} x_{1}+\cdots+D^{j} x_{j}\right)$

Proof sketch: lower bound (cont.)

- From linearity Bob can compute $A\left(D^{1} x_{1}+\cdots+D^{j} x_{j}\right)$
- "Signal" $D^{1} x_{1}+\cdots+D^{j} x_{j}$ dominated by $D^{j} x_{j}$ with support in $j^{\text {th }}$ block S_{j}

Proof sketch: lower bound (cont.)

- From linearity Bob can compute $A\left(D^{1} x_{1}+\cdots+D^{j} x_{j}\right)$
- "Signal" $D^{1} x_{1}+\cdots+D^{j} x_{j}$ dominated by $D^{j} x_{j}$ with support in $j^{\text {th }}$ block S_{j}
- Use support knowledge to recover approximate x_{j}

Proof sketch: lower bound (cont.)

- From linearity Bob can compute $A\left(D^{1} x_{1}+\cdots+D^{j} x_{j}\right)$
- "Signal" $D^{1} x_{1}+\cdots+D^{j} x_{j}$ dominated by $D^{j} x_{j}$ with support in $j^{\text {th }}$ block S_{j}
- Use support knowledge to recover approximate x_{j}
- Use error correction to recover exact x_{j}

Proof sketch: lower bound (cont.)

- From linearity Bob can compute $A\left(D^{1} x_{1}+\cdots+D^{j} x_{j}\right)$
- "Signal" $D^{1} x_{1}+\cdots+D^{j} x_{j}$ dominated by $D^{j} x_{j}$ with support in $j^{\text {th }}$ block S_{j}
- Use support knowledge to recover approximate x_{j}
- Use error correction to recover exact x_{j}
- Lower bound of AI implies lower bound for SRPSK

