Sparse recovery with partial support knowledge

Khanh Do Ba  Piotr Indyk

August 17, 2011

1/14



Sparse recovery

Measurement:

e Data/signal in n-dimensional space: x
e Goal: compress x into a “sketch” Ax, where A is an m X n matrix,
m<&n

2/14



Sparse recovery

Measurement:

e Data/signal in n-dimensional space: x
e Goal: compress x into a “sketch” Ax, where A is an m X n matrix,
m<&n

Recovery:
e Sparsity parameter k
o Informal: recover largest k coordinates of x
e Formal: recover approximation X of x such that

1% = x[lp < C(k) min[Ix" = x]q

over all k-sparse x’ (at most k non-zero coordinates)

2/14



Sparse recovery

Measurement:

e Data/signal in n-dimensional space: x
e Goal: compress x into a “sketch” Ax, where A is an m X n matrix,
m<&n

Recovery:
e Sparsity parameter k
o Informal: recover largest k coordinates of x
e Formal: recover approximation X of x such that

1% = x[lp < C(k) min[Ix" = x]q

over all k-sparse x’ (at most k non-zero coordinates)
Want:
e Good compression: small m = m(k, n)
o Efficient algorithms for encoding and recovery

2/14



Applications

e Monitoring network traffic data streams
e x is traffic matrix, for every source/destination pair
Too big to store!
Need to compress yet allow quick updates
Linear compression allows quick update: A(x + A) = Ax + AA

3/14



Applications

e Monitoring network traffic data streams
e x is traffic matrix, for every source/destination pair
Too big to store!
Need to compress yet allow quick updates
e Linear compression allows quick update: A(x + A) = Ax + AA

e Single-pixel camera (Wakin et al.’06)

single

sensor
°
\

» Qs
o Q) Focusing

- lens

lens \

Digital Micromirror Device

3/14



Applications

e Monitoring network traffic data streams
e x is traffic matrix, for every source/destination pair
Too big to store!
Need to compress yet allow quick updates
e Linear compression allows quick update: A(x + A) = Ax + AA

e Single-pixel camera (Wakin et al.’06)

single

sensor
°
\

» Qs
o Q) Focusing

- lens

lens \

Digital Micromirror Device

e Various forms of pooling experiments

3/14



Previous results in sparse recovery

Paper ‘ Sketch length ‘ Approx
CRT'04 O(klog(n/k)) 6 < 0(1)4
GLPS'10 O((k/e)log(n/k)) b < (1+€)ly

DIPW'10,FPRU'10 | Q(klog(n/k)) | £1 < O(1)y, £ < O(1)t,

4/14



Previous results in sparse recovery

Paper ‘ Sketch length ‘ Approx
CRT'04 O(klog(n/k)) 6 < 0(1)4
GLPS'10 O((k/e)log(n/k)) b < (1+€)ly

DIPW'10,FPRU'10 | Q(klog(n/k)) | £1 < O(1)y, £ < O(1)t,

Can we do better than O(klog(n/k))?

4/14



Previous results in sparse recovery

Paper ‘ Sketch length ‘ Approx
CRT'04 O(klog(n/k)) 6 < 0(1)4
GLPS'10 O((k/e)log(n/k)) b < (1+€)ly

DIPW'10,FPRU'10 | Q(klog(n/k)) | £1 < O(1)y, £ < O(1)t,

Can we do better than O(klog(n/k))?
Yes! With additional knowledge about the signal.

4/14



Partial knowledge

e Model-based compressive sensing (Baraniuk et al.’10,
Eldar-Bolcskei'09)

sets of large coefficients known to exhibit some patterns

5/14



Partial knowledge

e Model-based compressive sensing (Baraniuk et al.’10,
Eldar-Bolcskei'09)

sets of large coefficients known to exhibit some patterns
¢ Bayesian compressive sensing (Cevher et al.’10)
signal generated from known distribution

5/14



Partial knowledge

e Model-based compressive sensing (Baraniuk et al.’10,
Eldar-Bolcskei'09)

sets of large coefficients known to exhibit some patterns
e Bayesian compressive sensing (Cevher et al.’10)
signal generated from known distribution
e Support knowledge (Price'10, this paper)
some knowledge available about where the large coefficients lie

5/14



Partial support knowledge

Sparse recovery with partial support knowledge (SRPSK):
@ Construction of A: parameters n, k and s
® Measurement: Ax
©® Support knowledge: set S C [n], |S| = s, where top-k “likely” lies
O Recovery: from Ax and S, find X such that

1% = xllp < Cmin ¥’ = x|

over all k-sparse x’ with support in S

6/14



Applications:
e Tracking tasks: object position typically does not change quickly
o Exploratory tasks: support lies in one of several sets

7/14



Applications:
e Tracking tasks: object position typically does not change quickly
o Exploratory tasks: support lies in one of several sets

Theoretical:
e s =n: “regular’ sparse recovery

e s = k: set query (Price'10)

7/14



Our results

Theorem (Upper bound)

SRPSK with the £/l guarantee can be solved (1 + €)-approximately
using O((k/e) log(s/k)) measurements.

8/14



Our results

Theorem (Upper bound)

SRPSK with the {5/, guarantee can be solved (1 + €)-approximately
using O((k/e) log(s/k)) measurements.

Theorem (Lower bound)

Any (1 + €)-approximate solution to SRPSK with either the ¢1/¢1 or the
U/, guarantee requires Q((k/e€)log(s/k)) measurements, assuming

s = O(en/log(n/e)).

8/14



Proof sketch: upper bound

Noise-tolerant sparse recovery: recover X from Ax + v such that
1% = xllp < (L+ ) min[Ix" = x[lp + €[],

where E[||Av||,] < |lv||, for every v.

9/14



Proof sketch: upper bound

Noise-tolerant sparse recovery: recover X from Ax + v such that
1% = xllp < (L+ ) min[Ix" = x[lp + €[],
where E[||Av||,] < |lv||, for every v.

GLPS'10 gives this guarantee!

9/14



Proof sketch: upper bound

Noise-tolerant sparse recovery: recover X from Ax + v such that
1% = xllp < (L+ ) min[Ix" = x[lp + €[],
where E[||Av||,] < |lv||, for every v.

GLPS'10 gives this guarantee!

=+

9/14



Proof sketch: upper bound

Noise-tolerant sparse recovery: recover X from Ax + v such that
1% = xllp < (L+ ) min[Ix" = x[lp + €[],
where E[||Av||,] < |lv||, for every v.

GLPS'10 gives this guarantee!

=+

How to construct matrix so that specifying any s columns yields a

“good” measurement (sub)matrix?
9/14



Proof sketch: upper bound

Noise-tolerant sparse recovery: recover X from Ax + v such that
1% = xllp < (L+ ) min[Ix" = x[lp + €[],
where E[||Av||,] < |lv||, for every v.

GLPS'10 gives this guarantee!

=+

How to construct matrix so that specifying any s columns yields a

“good” measurement (sub)matrix? Independently generated columns!
9/14



Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

A

B(/)] wi| ) W, e

BV)Q il 7 I, w4 L I

10/14



Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

A

B(/)] wi| ) W, e

BV)Q il 7 I, w4 L I

e Code words wy, wy, ... only need to be distinct within each “block”

10/14



Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

A

B(/)] wi| ) W, e

BV)Q il 7 I, w4 L I

e Code words wy, wy, ... only need to be distinct within each “block”

e If h code words used, pick independently from O(h*®) code words
instead

10/14



Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

A
B(/)] wi| [l w74 e
BV)Q il 7 I, w4 L I
E(/)3 i I 3 e
e Code words wy, wy, ... only need to be distinct within each “block”
e If h code words used, pick independently from O(h*®) code words
instead

o If b blocks used, construct 2b blocks instead and, given S, pick b
“good” blocks to use

10/14



Proof sketch: upper bound (cont.)

Part of GLPS'10 measurement matrix that is not independent:

A
B(z)]

Code words wy, wo, . ..

If h code words used, pick independently from O(h%) code words

instead

If b blocks used, construct 2b blocks instead and, given S, pick b

“good” blocks to use

Result: about 6 times as many rows, but columns now independent!

™|

"l

only need to be distinct within each “block”

10/14



Proof sketch: lower bound

Based on proof in DIPW'10 of lower bound for sparse recovery

11/14



Proof sketch: lower bound

Based on proof in DIPW'10 of lower bound for sparse recovery

Augmented Indexing:

s © o o . ﬂ
2l 9
o T )

WA oW
=

Input: b = (by, b,, ..., b,) € {0,1} Input: i€[d], b1, by .. by
Output: b;

11/14



Proof sketch: lower bound

Based on proof in DIPW'10 of lower bound for sparse recovery

Augmented Indexing:

s © o o . ﬂ
€0 =8
o T )

WA oW
=

Input: b = (b, by, ..., b,) € {0,1}¢ Input: i€[d], b;,4, b;.y, - by
Output: b;

Known: requires Q(d) bits of communication

11/14



Proof sketch: lower bound (cont.)

C, c, C,

. . [ ) Y ! ! ——

Alice’s input: e
X, X, X g

{ J
Y

=nN1 2 a
\x—Dx1+Dx2+...+D Xq
Y

J

sent to Bob

12/14



Proof sketch: lower bound (cont.)

G
I—A—\
Bob needs to recover T
X
Cj+1 Ca

knowing T and

Xj+1 X a

13/14



Proof sketch: lower bound (cont.)

Cl CZ Cu

‘ 1 . 1 ‘ ‘ 1 ‘

Alice’s input: B
X, X, X

L J
Y

- DL 2
l><—D><1+D><2+.‘.+D“xCl
Y

3

)

sent to Bob
G
(—A—V
Bob needs to recover *
Xj
Cj+1 Ca
knowing H and |:|
X1 Xqo

14/14



Proof sketch: lower bound (cont.)

e From linearity Bob can

c c C ;
R R compute A(D'xq + - - - + D/x;)
Alice's nput:. ———
X1 % Xq

L J
Y

- DL 2
l><—D><1+D><2+.‘.+D“xCl
Y

3

)

sent to Bob
G
(—A—V
Bob needs to recover *
Xj
Cj+1 Ca
knowing H and |:|
X1 Xqo

14/14



Proof sketch: lower bound (cont.)

e From linearity Bob can

S compute A(Dxq + - - - + Dix;)
Alice’s input: ﬂ ° “Signal” D1X1 NI Dij
X, % Xq dominated by D’x; with

\ J . .
‘ support in jt block S;
l><:D1><1+D2><2+.‘.+D“xCl
J
1§

3

sent to Bob
G
(—A—V
Bob needs to recover *
Xj
Cj+1 Cu
knowing H and |:|
X1 Xqo

14/14



Proof sketch: lower bound (cont.)

e From linearity Bob can
‘ o o compute A(D*xq + - + DVx;)
Alce'sinput: ENTEEESSSSS— |, Signa" Dlx .-+ Dix;
X X, Xa, dominated by DVx; with
support in jt block S;

1§
X = DIx; + D2, + ... + DX,
: f / e Use support knowledge to

I:l recover approximate Xj
sent to Bob
G
(—A—V
Bob needs to recover *
%
Cj+1 Cu
knowing H and |:|
X1 Xqo

14/14



Proof sketch: lower bound (cont.)

Cl CZ Cu

r = Y = \ r = \

Alice’s input: B
X, X, X

\ J
Y

- DL 2
\x—Dx1+Dx2+.,.+D“xu‘

3

sent to Bob
G
(—A—V
Bob needs to recover *
Xj
Cj+1 Cu
knowing H and
X1 Xqo

=

From linearity Bob can
compute A(D'xq + - - - + D/x;)
“Signal” D'xq + -+ + Dix;
dominated by DVx; with
support in jt block S;

Use support knowledge to
recover approximate Xx;

Use error correction to recover
exact Xx;

14/14



Proof sketch: lower bound (cont.)

Cl CZ Cu

r = Y = \ r = \

Alice’s input: B
X, X, X

\ J
Y

- DL 2
\x—Dx1+Dx2+.,.+D“xu‘

3

sent to Bob
G
(—A—V
Bob needs to recover *
Xj
Cj+1 Cu
knowing H and |:|
X1 Xqo

From linearity Bob can
compute A(D'xq + - - - + D/x;)
“Signal” D'xq + -+ + Dix;
dominated by DVx; with
support in jt block S;

Use support knowledge to
recover approximate Xx;

Use error correction to recover
exact Xx;

Lower bound of Al implies
lower bound for SRPSK

14/14



