
Scalable Column Concept Determination
for Web Tables Using Large Knowledge Bases

Dong Deng† Yu Jiang† Guoliang Li† Jian Li‡ Cong Yu#

†Department of Computer Science, Tsinghua University, Beijing, China.
‡Institute for Interdisciplinary Information Sciences,Tsinghua University, Beijing, China.

#Google Research, New York, USA
dd11@mails.thu.edu.cn, sunlight07@126.com, {liguoliang,lijian83}@tsinghua.edu.cn, congyu@google.com

ABSTRACT
Tabular data on the Web has become a rich source of struc-
tured data that is useful for ordinary users to explore. Due
to its potential, tables on the Web have recently attracted
a number of studies [6, 18] with the goals of understand-
ing the semantics of those Web tables and providing effec-
tive search and exploration mechanisms over them. An im-
portant part of table understanding and search is column
concept determination, i.e., identifying the most appropri-
ate concepts associated with the columns of the tables. The
problem becomes especially challenging with the availability
of increasingly rich knowledge bases that contain hundreds
of millions of entities [10, 31].
In this paper, we focus on an important instantiation

of the column concept determination problem, namely, the
concepts of a column are determined by fuzzy matching its
cell values to the entities within a large knowledge base. We
provide an efficient and scalable MapReduce-based solution
that is scalable to both the number of tables and the size
of the knowledge base and propose two novel techniques:
knowledge concept aggregation and knowledge entity par-
tition. We prove that both the problem of finding the op-
timal aggregation strategy and that of finding the optimal
partition strategy are NP-hard, and propose efficient heuris-
tic techniques by leveraging the hierarchy of the knowledge
base. Experimental results on real-world datasets show that
our method achieves high annotation quality and perfor-
mance, and scales well.

1. INTRODUCTION
The Web contains a vast amount of structured data in

the form of tables. According to a recent Google study [6],
there are a total of 14 billion raw HTML tables and, a-
mong those, 150 million relational data tables, easily making
them one of the richest structured data sources. As a result,
tables on the Web have received significant interests from
both industry [27, 34] and academia [18], with the focus on
understanding the semantics of the tables. More recently,

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘13, August 26­31, 2013, Riva del Garda, Italy
Copyright 2013 VLDB Endowment, ACM 000­0­00000­000­0/00/00.

those tabular data have begun to enrich users’ search ex-
perience [13, 35]. For example, Google’s Table Search∗ are
helping users browsing and finding structured data through
queries such as “asian country gdp.”

To leverageWeb tables for applications such as table search
and data integration, a number of tasks must be performed
on the tables to recover their semantics. Those tasks in-
clude, but are not limited to, annotating cell values (e.g.,
matching the cell’s textual content to an entity in a knowl-
edge base), discovering table subjects, and identifying table
schema. None of those tasks are easy because of the hetero-
geneous nature of data on the Web. Underneath all those
tasks, one of the core table understanding tasks is column
concept determination, i.e., given a column of cells within
a Web table, determining the most likely concept for the
column, where a concept is a type (or class) within a giv-
en knowledge base. For example, a better understanding
of the dominant concept(s) of a column can help constrain
cell-level annotations for cells within the column, leading to
better cell annotations.

Not surprisingly, due to its importance, column concep-
t determination is studied by both [18] and [27]. In [18],
column concepts are discovered as part of a graphical mod-
el that is employed to collectively learn three things at the
same time: column concepts, binary relationships between
multiple columns, and class labels on cells. Intuitively, this
approach achieves better quality, but is in general not very s-
calable due to the expensive learning model being employed.
In [27], column concepts are determined using a simpler
majority-rule mechanism of selecting the concept(s) that the
most cells in the column have been mapped to, but with a
much larger knowledge base that is derived from the Web.
There are several drawbacks of this approach. First, the
majority-rule mechanism can lead to mistakes because of
the presence of stop concepts, i.e., concepts such as “music”
that can often be mapped to many textual contents indis-
criminately. Second, only flat knowledge bases are consid-
ered, leaving the semantics of knowledge hierarchies under-
utilized. Third, only exact matching is used to map cell val-
ues to the knowledge base, and extending exact matching
to approximate matching is a non-trivial task that is made
more challenging by the ever increasing size of the available
knowledge bases [1, 10, 25, 31].

Similar to [27], we focus on the same important instan-
tiation of the column concept determination problem, i.e.,
identifying a column’s top k concepts based on matching
its content to a large knowledge base. However, instead

∗http://research.google.com/tables

1

http://research.google.com/tables

of restricting the matching to be exact and the ranking of
the concept to be majority-rule (which are what made the
previous approach scalable), we aim to provide a solution
that allows both fuzzy matching and ranking of the con-
cepts based on more general similarity functions, without
sacrificing scalability. This solution enables us to produce
column concepts that are as good as those produced by [18],
but in a much more scalable fashion.
More specifically, we identify top k similar concepts from

the knowledge base, where the similarity between a concept
and a column is quantified based on the matching between
the entities in the concept and the cell values of the colum-
n. Fuzzy matching is enabled between the cell values and
knowledge entities, such that “George Bush” and “George
W. Bush” can be matched. A more general set of similarity
functions can be adopted to allow more flexible ranking of
the candidate concepts than simple majority-rule. Both fea-
tures are accomplished without compromising the scalability
of the whole process.

Contributions: (1) We extend MapReduce-based similarity-
joins to support scalable column concept determination. (2)
We propose a knowledge concept aggregation based method
which aggregates knowledge concepts into groups. Compu-
tations can then be shared for concepts in the same group.
(3) We devise a knowledge entity partition based method
which partitions entities into different partitions. For each
column, only the necessary partitions are used to annotate
the column while large numbers of unnecessary partitions
are pruned. (4) We prove that both the problem of find-
ing the optimal aggregation strategy and that of finding
the optimal partition strategy are NP-hard. We utilize the
knowledge hierarchy to heuristically generate high-quality
groups and partitions. (5) Experimental results on real-
world datasets show that our method achieves high annota-
tion quantity and performance, and scales well.

Paper Structure: We formalize the problem in Section 2
and review related works in Section 3. A similarity-join
based framework is discussed in Section 4. We propose an
aggregation based method in Section 5 and a partition based
method in Section 6. Experimental results are reported in
Section 7. We conclude the paper in Section 8.

2. PRELIMINARIES

2.1 Problem Statement
Data Model: A knowledge base consists of many types (or
concepts). In the paper we use the terms “concepts” and
“types” interchangeably. Each type has a set of large num-
bers of entities (or instances). The knowledge base has a
hierarchy and can be modelled as a Directed Acyclic Graph.
Each node in the graph is a type or an entity. Each edge be-
tween two type nodes indicates the subtype relationship of
the two types. Each edge between a type node and an entity
node denotes the entity belongs to the type. For example,
Figure 1 shows a partial knowledge base, where the leaf-level
nodes are entities, e.g., “Forrest Gump”, and intermediate-
level nodes are types, e.g., “/film” and “/film/drama”.
Type “/film/drama” is a subtype of “/film”. “Forrest Gump”
and “Catch Me If You Can” are entities of type “/film/drama”.
We consider a table as consisting of a sequence of columns,

each of which has a set of cell values. For example, Table 1
illustrates a Web table with 4 columns.

Problem Formulation: Given a large set (tens or hun-
dreds of millions) of tables from the Web, and a comprehen-
sive knowledge base (with tens or hundreds of millions of
entities), for each column of all the tables, efficiently iden-
tify top-k types from the knowledge base that can be used
to describe the column based on a user provided similari-
ty function. More specifically, a column C can be described
by a type T if T shares significant similarity with C. Our
goal is to identify top-k types with the highest similarities
to label all the columns, with an emphasis on efficiency and
scalability. In the paper we focus on using the cell content
and extracting concepts from the content of the cells. For
example, the second column of the table in Table 1 should
be annotated with “/film”, while the third column should
be annotated with “/people/director”.

To better describe a column, the identified types and the
column should have large similarity. Based on this observa-
tion, we utilize similarity functions to quantify the similarity
between a type and a column.

2.2 Similarity Functions
Given a column C and a type T, we define their similarity

as the set similarity of C’s cell-value set, denoted by VC, and
T’s entity set, denoted by ET. Existing set similarity can
be broadly classified into two categories: exact matching
similarity and fuzzy matching similarity.

Exact-matching Similarity Functions: They define the
similarity based on the overlap of the two sets. We take the
following well-known set similarity functions as examples.

Overlap Similarity: Sim(C, T) = |VC ∩ ET|.

Jaccard Similarity: Sim(C, T) = |VC∩ET|
|VC|+|ET|−|VC∩ET| .

Cosine Similarity: Sim(C, T) = |VC∩ET|√
|VC||ET|

.

Dice Similarity: Sim(C, T) = 2|VC∩ET|
|VC|+|ET| .

Weighted Jaccard Similarity: Sim(C, T) =
∑

t∈VC∩ET
wt∑

t∈VC∪ET
wt

,

where wt is the weight of a cell value or an entity.

Fuzzy-matching Similarity Functions: Exact matching
similarity functions can be restricted as they cannot capture
fuzzy matching between cell values and entities. However
in many real-world applications, we need to accommodate
fuzzy matching [7]. For example, many Web tables con-
tain typing errors and an entity has different representations.
Furthermore, some columns may match multiple types, e.g.,
movie and director. Thus we need to enable fuzzy matching
between an entity and a cell value.

Before we introduce fuzzy-matching similarity functions,
we first define some notations. Let eSim(v, e) denote the
similarity between a cell value v and an entity e. We can
use existing similarity functions to quantify their similari-
ty, e.g., Jaccard, Cosine, and Edit Distance†. Given a type
T and a column C, a set of ⟨cell value, entity⟩ pairs, de-
noted by M = {(vi, ej)|vi ∈ VC, ej ∈ ET}, is a matching if
each vi and ej appears at most once in M. The maximum
matching Mmax is the matching with the maximum value∑

(vi,ej)∈Mmax
eSim(vi, ej). We can use existing algorithm-

s [29] to compute the maximum matching. We use VC∩̃ET
†
The edit distance between two elements is the minimum number of

edit operations (insertion, deletion, substitution) needed to transform
one element to another.

2

Table 1: Example table from the Web (http://celebrity.psyphil.com/actor/Tom-Hanks/filmography).
1994 Forrest Gump Robert Zemeckis Tom Hanks, Robin Wright, Sally Field, . . .
1998 Saving Private Ryan Steven Spielberg Tom Hanks, Tom Sizemore, Matt Damon, . . .
1999 The Green Mile Frank Darabont Tom Hanks, David Morse, Bonnie Hunt, . . .
1995 Toy Story John Lasseter Tom Hanks, Tim Allen, Wallace Shawn, . . .
2002 Catch Me If You Can Steven Spielberg Tom Hanks, Christopher Walken, Leonardo DiCaprio, . . .
2006 The Da Vinci Code Ron Howard Tom Hanks, Ian McKellen, Jean Reno, . . .

/

/film

/film/
drama

“Forrest
Gump”

“Catch Me If
You Can”

…
/film/
war

“Saving
Private Ryan”

“Schindl
er's List”

…

/film/t
hriller

“The Da

Vinci Code”
“The Dark

Knight Rises”

…

/awar
d

/award/no
minated

“Catch Me
If You Can”

/award/wi
nning

“Forrest
Gump”

/people

/people/dire
ctor

“Ron
Howard”

“John
Lasseter”

/...

Figure 1: Example knowledge base based on Wikipedia.

to denote the maximum matching, called fuzzy overlap of T
and C, and |VC∩̃ET| to denote its value.
We can extend exact-matching functions by replacing VC∩ET

with VC∩̃ET to define fuzzy-matching functions. Next we take
fuzzy Jaccard similarity as an example.

Fuzzy Jaccard Similarity: Sim(C, T) = |VC∩̃ET|
|VC|+|ET|−|VC∩̃ET|

.

For example, consider a column with two cell values {“Shark
Night 3D”, “Da Vinci Code”} and a type with two entities
{“Shark Night”, “The Da Vinci Code”}. Suppose we use the
Jaccard similarity. “Shark Night 3D” and “Shark Night” are
fuzzy matching with similarity 0.67. “Da Vinci Code” and
“The Da Vinci Code” are fuzzy matching with similarity 0.75.
Thus the fuzzy overlap size is 0.67+0.75=1.42 and the fuzzy
Jaccard similarity is 1.42

2+2−1.42
= 0.55.

Scalability Requirement: Since there are hundreds of
millions of columns and millions of entities, existing ma-
chine learning based methods [18, 27] are neither efficient
nor scalable for such large datasets and it calls for scalable
methods. To this end, we extend existing MapReduce-based
similarity-join methods and develop effective techniques to
support efficient and scalable column concept determina-
tion, while maintaining the annotation quality.

3. RELATED WORKS
MapReduce: We adopt the MapReduce framework to ad-
dress the scalability challenge. MapReduce [8] is a dominant
framework to support data-intensive parallel computation in
shared-nothing clusters. In MapReduce, data is represented
as ⟨key, value⟩ pairs and stored in a distributed file system
(DFS) across different cluster nodes. MapReduce contains
two core functions: Map and Reduce. The map phase loads
and processes different partitions of the input data in paral-
lel and outputs ⟨key, value⟩ pairs. The pairs are then hash-
partitioned, sorted by the key, and sent across the cluster
in a shuffle phase. The pairs that share the same key are
merged in a sorted order and sent to the same reduce node,
which then processes the pairs and writes new ⟨key, value⟩
pairs to files on the DFS.

Knowledge Bases: DBPedia [3] and Freebase [5] are simi-
lar projects that extract information from Wikipedia to cre-

ate an extensive structured knowledge base and supplement
those data with knowledge that are collaboratively created
by thousands of data-loving users. Freebase contained about
2 thousand types and 40 million entities. Probase [31] is a
universal, probabilistic taxonomy which is harnessed from
billions of Web pages using “isA” and “such as” patterns.
Probase includes more than 2.7 million types and 22 million
entities. Finally, Yago [25] is a large semantic knowledge
base which is derived from Wikipedia and WordNet, and it
contains 0.3 million types and 9 million entities.

Annotating Web Tables: Google’s WebTables project [6]
is the first to start exploring table data on the Web, which
has been followed up by a number of other studies [9, 18, 27,
34]. Google has since launched a Table Search project [35] at
http://research.google.com/tables, where external user-
s can explore the table data. More recently, Google has
also started exploring stitching similar tables on the same
page [19] to provide better utility from the table data.

At the core of managing Web table data is the annotation
problem, i.e., finding meanings for the cells and columns
in the table. Existing studies used machine learning tech-
niques to annotate tables [18] that are neither as scalable
nor as efficient as the approaches we present in this pa-
per. Other relevant studies (although those do not address
the column concept identification problem) include: Yak-
out et. al. [34] studied how to augment entities with at-
tribute values and discovering attributes using Web tables.
Pimplikar et. al. [21] studied how to answer table queries
based on column keywords. Quercini et. al. [22] utilized
search engines to discover and annotate entities in Web ta-
bles. Hignette [15] annotated tables with ontology concepts
based on relevance degrees. Wang et. al. [30] utilized the
interconnections of Probase to understand Web tables.

Extracting Table Data into RDF Data: There are
many studies on extracting table data into RDF data [12,
14]. Guo et. al. [12] used a schema mapping technique to ex-
tract and integrate data from tables into RDF. Han et. al. [14]
studied how to translate spreadsheet data into RDF. Assem
et. al. [26] studied how to annotate and covert quantitative
data tables into RDF. Different from these methods, our
work focuses on making fuzzy matching based annotation

3

http://research.google.com/tables

techniques more scalable and efficient. How to apply our
technique to the annotation techniques proposed by those
studies is a challenge that we intend to pursue in the future.

Similarity Join: There are many recent studies on sim-
ilarity join, which, given two sets of objects, find all sim-
ilar object pairs based on a given similarity function and
a threshold [32, 23, 33, 11, 2, 28]. Vernica et al. [28] and
Metwally et al. [20] proposed a MapReduce framework to
support similarity joins. However they required a similarity
threshold and their techniques cannot be extended to sup-
port our ranking problem. Kim et al. [17] studied parallel
algorithm for top-k similarity join with Euclidean distance
constraint using MapReduce while we focus on finding top-k
types for each column. These methods do not allow fuzzy
matching between entities and cell values.

4. SIMILARITY­JOIN FRAMEWORK
In this section, we extend MapReduce-based similarity

joins to support scalable column concept determination. We
first take the overlap similarity as an example in Section 4.1
and then extend it to support other functions in Section 4.2.

4.1 Framework for Overlap Similarity
If we use a type to annotate a column, the type should

share at least one common entity/cell value with the column.
Thus for each column, we first find the types that share com-
mon entities with the column and then rank these types to
return top-k types. To implement this idea in MapReduce,
we introduce a two-stage similarity-join based framework.
In the first stage, for each column, we identify the types
which share at least one common entity/cell value with the
column. In the second stage, we count the number of their
shared entities/cell values and retrieve top k types with the
largest similarity. Algorithm 1 illustrates the pseudo-code.

Stage 1: For each column, find the list of types that share
at least one entity/cell value with the column.

Map: ⟨C, {v1, v2, . . .}⟩ → ⟨vi, C⟩. ⟨T, {e1, e2, . . .}⟩ → ⟨ei, T⟩.
It takes as input a sequence of columns (each column in-

cludes a set of cell values) from Web tables and a set of
types (each type includes a set of entities) from a knowledge
base. For each column C, it outputs key-value pairs ⟨vi, C⟩
where vi is any cell value of C. For each type T, it outputs
key-value pairs ⟨ei, T⟩ where ei is any entity of T.

Reduce: ⟨vi = ei, list(C/T)⟩ → ⟨C, list(T)⟩.
It takes as input a set of key-value pairs ⟨vi = ei, list(C/T)⟩,

where vi = ei is a cell value/an entity, and list(C/T) is a list
of columns/types that contain the cell value/entity. The
Reducer separates list(C/T) into a list of columns, denoted
by list(C) and a list of types, denoted by list(T). (We use a
flag to differentiate C/T to be a column or a type.) For each
column C in list(C), it outputs a key-value pair ⟨C, list(T)⟩.
Combine: We can use Combine to do a local reduce. As it is
not a focus of this paper, we will not discuss the details.

Stage 2: Compute top-k types of every column.

Map: ⟨C, list(T)⟩ → ⟨C, list(T)⟩.
It takes as input key-value pairs ⟨C, list(T)⟩, where list(T)

is a list of types that share an entity/cell value with C. It
outputs the same key-value pairs as input.

Reduce: ⟨C, list(list(T))⟩ → ⟨C, topk(T)⟩.
It takes as input key-value pairs ⟨C, list(list(T))⟩, where

list(list(T)) is a list of lists of types that share common enti-

Algorithm 1: Similarity-Join Based Framework

// the first stage

1 Map(⟨C/T, {v1, v2, . . .}/{e1, e2, . . .}⟩)
2 foreach column ⟨C, {v1, v2, . . .}⟩ do output(⟨vi, C⟩);
3 foreach type ⟨T, {e1, e2, . . .}⟩ do output(⟨ei, T⟩);
4 Reduce (⟨vi = ei, list(C/T)⟩)
5 foreach C/T in list(C/T) do
6 if C/T is a type then add T to list(T);
7 else if C/T is a column then add C to list(C);

8 foreach C in list(C) do output(⟨C, list(T)⟩);
// the second stage

9 Map (⟨C, list(T)⟩)
10 output(⟨C, list(T)⟩);
11 Reduce (⟨C, list(list(T))⟩)
12 Initialize a hash map H ;
13 foreach T in list(list(T)) do
14 if T ∈ H then H(T) = H(T) + 1;
15 else H(T) = 1;

16 topk(T) = top-k types with largest H(T);
17 output(⟨C, topk(T)⟩);

ties/cell values with C. We use a hash based method to com-
pute the overlap similarity of C and a type T in list(list(T)).
We first initialize a hash table. Then for each type in list(list(T)),
if it is not in the hash table, we add it into the hash table
and set the occurrence number as 1; otherwise we increase
the number by 1. After scanning all types, the occurrence
number of a type is exactly the overlap similarity of the type
with the column. Based on the number, we rank the types
and add the top-k types with the largest overlap similarity
into topk(T). Finally it outputs key-value pairs ⟨C, topk(T)⟩.

Example 1. Figure 2 shows four columns and four types.
Figure 3 illustrates a running example that uses our frame-
work to label each column. In the first stage, the Map step
reads the column file and the type file. For each column
(type), it outputs ⟨cell value, column⟩(⟨entity, type⟩) pairs.
For C1, it outputs six key-value pairs ⟨v1, C1⟩, . . . , ⟨v6, C1⟩.
For T2, it outputs two key-value pairs ⟨e1, T2⟩, ⟨e2, T2⟩. In
the Reduce step, it reads the key-value pairs grouped by the
key(cell value or entity). Consider ⟨v1 = e1, {C1, C2, T1, T2}⟩.
T1, T2 share an entity e1 with C1, C2. It outputs ⟨C1, {T1, T2}⟩
and ⟨C2, {T1, T2}⟩. In the second stage, the Map step output-
s the same key-value pairs as the input. The Reduce step
computes top-k types for each column by counting the occur-
rence number of each type in the key-value pair. Consider
⟨C1, {{T1, T2}, {T1, T2}, {T1, T3}, {T1, T3}}⟩. T1 appears four
times, and T2 and T3 appear twice. Thus the top-1 type for
C1 is T1. Similarity the top-1 type for C2 (C3) is T2 (T3).
Notice that we cannot label C4 since it does not share any
entity with any type.

4.2 Extension to Other Functions
Exact-matching Similarity Functions: Different from
the overlap similarity, besides |VC∩ET|, other exact-matching
functions, e.g., weighted Jaccard, also rely on |VC|, |ET|, and
the weight of each entity/cell value. To support these func-
tions, we add these parameters into the key-value pairs, and
in the Reduce step of the second stage, we compute the sim-

4

Column C1
v1 Forrest Gump

v2 Catch Me If You Can

v3 Saving Private Ryan

v4 Schindler’s List

v5 Shark Night 3D

v6 Da Vinci Code

v7 The Terminal

v8 Full Metal Jacket

Column C2
v1 Forrest Gump

v2 Catch Me If You Can

v7 The Terminal

Column C3
v3 Saving Private Ryan

v4 Schindler’s List

v8 Full Metal Jacket

Column C4
v5 Shark Night 3D

v6 Da Vinci Code

Type T1 (/film)

e1 Forrest Gump

e2 Catch Me If You Can

e3 Saving Private Ryan

e4 Schindler’s List

e5 Shark Night

e6 The Da Vinci Code

e7 The Green Mile

e8 Heartbreak Ridge

Type T2 (/film/drama)

e1 Forrest Gump

e2 Catch Me If You Can

e7 The Green Mile

Type T3 (/film/war)

e3 Saving Private Ryan

e4 Schindler’s List

e8 Heartbreak Ridge

Type T4 (/film/thriller)

e5 Shark Night

e6 The Da Vinci Code

Figure 2: Example columns and types.

Column

C1 v1 v2 v3 ...v8

C2 v1 v2 v7

C3 v3 v4 v8

C4 v5 v6

Type

T1 e1 e2 e3 ...e8

T2 e1 e2 e7

T3 e3 e4 e8

T4 e5 e6

M
a

p

Key Value

v1 C1

v2 C1

… …

v3 C3

v4 C3

… …

e1 T1

e2 T1

… …

e3 T3

e4 T3

… …

G
ro

u
p

 b
y

 k
e

y

Key Value

v1 C1

v1 T1

… …

v2 C1

v2 T1

… …

v3 C3

v3 T3

… …

v4 C3

v4 T3

… …

R
e

d
u

ce

Key Value

C1

C3

C3

T1 T2

C1

C2

C2

C1

C1

G
ro

u
p

 b
y

 k
e

y

… …

… …

… …

… …

Key Value

C1

C3

C3

C1

C2

C2

C1

C1

… …

… …

… …

… …

Key Value

C1

C3

C2

C1

C2

C3

…

…

…

KeyValue

C1 T1

T3

C2 T2

C3

…

…

…

… … … …

Stage 1 Stage 2

M
a

p
M

a
p

M
a

p

R
e

d
u

ce
R

e
d

u
ce

R
e

d
u

ce

M
a

p
M

a
p

M
a

p
M

a
p

R
e

d
u

ce
R

e
d

u
ce

R
e

d
u

ce
R

e
d

u
ce

T1 T2

T1 T2

T1 T2

T1 T3

T1 T3

T1 T3

T1 T3

T1 T2

T1 T3

T1 T3

T1 T3

T1 T3

T1 T2

T1 T2

T1 T2

T1 T2

T1 T2

T1 T2

T1 T2

T1 T3

T1 T3

Figure 3: Running example of our framework (v1 = e1, v2 =
e2, v3 = e3, v4 = e4. v5 ∼ e5, v6 ∼ e6 (∼: similar)).

ilarity based on these parameters. Thus we can extend this
framework to support other exact-matching functions.

Fuzzy-matching Similarity Functions: To support fuzzy-
matching functions, we slightly modify the framework. For
each cell value (or entity), we generate its signatures. A
cell value and an entity is similar only if they share at least
one common signature. There are many signature strategies,
e.g., q-gram [11] and prefix signature [28]. We can use any of
them in our method. Next we modify the basic framework to
support fuzzy-matching functions based on the signatures.
Stage 1: For each column, find the list of types that share
at least one common signature with the column.

Map: ⟨C, {v1, . . .}⟩→⟨sig, ⟨C, vi⟩⟩. ⟨T, {e1, . . .}⟩→⟨sig, ⟨T, ej⟩⟩.
For each column C, for each cell value vi, it computes

the signatures and for each signature sig, generates key-
value pairs, ⟨sig, ⟨C, vi⟩⟩. For each type T, for each entity
ej , it computes the signatures and for each signature sig,
generates key-value pairs ⟨sig, ⟨T, ej⟩⟩.
Reduce: ⟨sig, list(⟨C, vi⟩/⟨T, ej⟩)⟩ → ⟨C, list(⟨T, vi, ej⟩)⟩.
It separates the list into the column list and the type list.

For each column, for each type, if the column has a cell value
that shares a common signature with an entity of the type,
it adds the type into a type list list(⟨T, vi, ej⟩). Finally it
outputs key-value pairs ⟨C, list(⟨T, vi, ej⟩)⟩.
Stage 2: Compute top-k types of every column.

Map: ⟨C, list(⟨T, vi, ej⟩)⟩ → ⟨C, list(⟨T, vi, ej⟩)⟩.
It outputs the same key-value pairs as the input.

Reduce: ⟨C, list(list(⟨T, vi, ej⟩))⟩ → ⟨C, topk(T)⟩.
For each column, it gets a list of lists of types. Then

it computes the fuzzy-matching similarity using existing al-
gorithms [29]. Based on the fuzzy-matching similarity, we
rank the types and identify the top-k types with the largest
fuzzy-matching similarity to annotate the column.

Example 2. Consider column C4 and type T4. Suppose
the signatures of v5=“Shark Night 3D” and e5=“Shark Night”
are sig1=“Shark”. The signatures of v6=“Da Vinci Code”
and e6=“The Da Vinci Code” are sig2={“Vinci”}. In the
Map step of the first stage, we generate pairs ⟨sig1, ⟨C4, v5⟩⟩
and ⟨sig2, ⟨C4, v6⟩⟩ for C4 and ⟨sig1, ⟨T4, v5⟩⟩ and ⟨sig2, ⟨T4, v6⟩⟩
for T4. In the Reduce step, we generate ⟨C4, ⟨T4, v5, e5⟩⟩ and

⟨C4, ⟨T4, v6, e6⟩⟩. In the Reduce step of the second stage, we
compute the fuzzy similarity. The top-1 type of C4 is T4.
Thus the fuzzy matching functions can annotate C4 by toler-
ating inconsistencies between entities and cell values.

4.3 Observations
Optimization Goal: To improve the performance, our op-
timization goal is to reduce the number of key-value pairs.
Although we can use the prefix-filtering technique [28], it
has the following problems. First, it depends on a given
threshold and cannot support our top-k problem. Second,
it involves other expensive overhead[28], e.g., pre-defining a
global order and selecting high-quality prefixes based on the
global order. To address these problems, we propose effec-
tive pruning technique based on the following observations.

Observation 1: We can aggregate the types into different
groups. For each entity, to generate the key-value pairs, we
use a group to replace the types in the group. Since each
group contains multiple types, this method can reduce the
number of key-value pairs. In addition, a group may be used
by multiple entities, and we can share the computations for
the types in the same group. We will discuss how to utilize
groups to label columns in Section 5.

Observation 2: We can partition the cell values into dif-
ferent partitions. For each column, we utilize the partitions
to generate its key-value pairs. Since each partition contains
multiple cell values, this method can reduce the number of
key-value pairs. Moreover, if the cell values of a column fall
into one partition, we can utilize the partition to directly an-
notate the column and prune other unnecessary partitions.
We will discuss the details in Section 6.

In the following sections, we focus on improving the effi-
ciency and scalability. For simplicity, we take overlap sim-
ilarity as an example, and our techniques can be easily ap-
plied to other similarity functions.

5. KNOWLEDGE TYPE AGGREGATION
For each entity, we want to reduce the number of key-

value pairs produced for the entity. Let L(e) denote the list
of types that contain entity e. We aggregate types in L(e)
and generate several disjoint groups G1(e), G2(e), . . ., Gl(e).
Instead of producing key-value pairs ⟨e, T⟩ for every type T ∈

5

L(e), we generate key-value pairs ⟨e,Gi(e)⟩ for every group
Gi(e) for 1 ≤ i ≤ l. That is we use group Gi(e) to replace
(multiple) types in the group. Obviously this method can
reduce the number of key-value pairs and can improve the
performance. There are several research challenges in this
type aggregation based method. The first one is how to
utilize the groups to compute top-k types for each column.
We formally introduce an aggregation framework to address
this issue in Section 5.1. The second challenge is to quantify
different aggregation strategies. We propose a cost based
model to analyze the group quality in Section 5.2. The third
one is to efficiently generate high-quality groups. We devise
efficient algorithms to address this challenge in Section 5.3.

5.1 Aggregation Framework
Given a knowledge base, for each entity e, we aggregate

the types in its inverted list L(e) and partition them into l
disjoint groups G1(e), G2(e), . . ., Gl(e), such that

(1) Subset: Gi(e) is a subset of L(e) for 1 ≤ i ≤ l ;

(2) Completeness: ∪1≤i≤lGi(e) = L(e); and
(3) Disjoint: Gi(e) ∩ Gj(e) = ϕ for i ̸= j.

Let GT = {G1, G2, . . ., Gg } denote the set of distinct
groups for all entities. Let HG

T denote a hash table from
the distinct groups to lists of types, i.e., each group Gi is
associated with a list of types contained in Gi, HG

T (Gi).
For example, consider the types and entities in Figure 2.

L(e1) = {T1, T2}. L(e2) = {T1, T2}. L(e3) = {T1, T3}.
L(e4) = {T1, T3}. L(e5) = {T1, T4}. L(e6) = {T1, T4}.
L(e7) = {T1, T2}. L(e8) = {T1, T3}. The basic frame-
work will generate 16 key-value pairs. Suppose we aggregate
them into three groups, G1 = {T1, T2},G2 = {T1, T3},G3 =
{T1, T4}. We generate 8 key-value pairs ⟨e1,G1⟩, ⟨e2,G1⟩,
⟨e3,G2⟩, ⟨e4,G2⟩, ⟨e5,G3⟩, ⟨e6,G3⟩, ⟨e7,G1⟩, and ⟨e8,G2⟩.
Suppose we can get the groups of each entity, i.e., ⟨e, {G1(e),

G2(e),. . . ,Gl(e)}. We will discuss how to generate the high-
quality groups in Section 5.3. Next we discuss how to use
the groups to compute top-k types of each column. We stil-
l employ a two-stage MapReduce framework. Algorithm 2
illustrates the pseudo-code.

Stage 1: For each column, find the list of types that share
at least one entity/cell value with the column.

Map: ⟨C, {v1, v2, . . .}⟩→⟨vi, C⟩. ⟨e, {G1(e), . . . ,Gl(e)}⟩→⟨e,Gi(e)⟩.
The input and output for the columns are the same as

those of the basic framework. For the types, the input is a
set of key-value pairs ⟨e, {G1(e),G2(e),. . . ,Gl(e)}⟩. For each
entity, it outputs key-value pairs ⟨e,Gi(e)⟩ for 1 ≤ i ≤ l.

Reduce: ⟨v = e, list(C/G)⟩ → ⟨C, list(G)⟩.
Different from the basic framework, for each column, it

outputs key-value pairs ⟨C, list(G)⟩, where G is a group which
has a type sharing a common entity with C.

Stage 2: Compute top-k types of every column.

Map: ⟨C, list(G)⟩ → ⟨C, list(G)⟩.
Similarly it outputs key-value pairs ⟨C, list(G)⟩.

Reduce: ⟨C, list(list(G))⟩ → ⟨C, topk(T)⟩.
For each column C, it gets a list of lists of groups. We still

use a hash based method to compute the overlap similarity
of C and a type T ∈ G ∈ list(list(G)). We first initialize a
hash table. Then for each group G in list(list(G)), we get
the list of types in the group, i.e., HG

T (G). For each type
in HG

T (G), we compute its occurrence number similar as the
basic framework. Finally we identify top-k types with the

Algorithm 2: Aggregation-based Algorithm

// the first stage

1 Map(⟨C/e, {v1, v2, . . .}/{G1(e),G2(e), . . .}⟩)
2 foreach column ⟨C, {v1, v2, . . .}⟩ do output(⟨vi, C⟩);
3 foreach entity ⟨e, {G1(e),G2(e), . . .}⟩ do

output(⟨e,Gi(e)⟩);
4 Reduce (⟨v = e, list(C/G)⟩)
5 foreach C/T in list(C/G) do
6 if C/T is a group then add G to list(G);
7 else if C/T is a column then add C to list(C);

8 foreach C in list(C) do output(⟨C, list(G)⟩);
// the second stage

9 Map (⟨C, list(G)⟩)
10 output(⟨C, list(G)⟩);
11 ReduceSetup ()
12 Each reducer loads side data HG

T from DFSx;

13 Reduce (⟨C, list(list(G))⟩)
14 Initialize a hash map H;
15 foreach G in list(list(G)) do
16 foreach T in HG

T (G) do
17 if T ∈ H then H(T) = H(T) + 1;
18 else H(T) = 1;

19 topk(T) = top-k types with largest H(T);
20 output(⟨C, topk(T)⟩);

largest overlap similarity and add them into topk(T).

ReduceSetup: To get HG
T in each reducer, we take HG

T as the
side data which is distributed to each node of the cluster.

The aggregation based method can correctly identify the
top-k types for each column as formalized in Theorem 1.

Theorem 1. The aggregation based method satisfies cor-
rectness – it can correctly find top-k types for each column.

Proof Sketch. The aggregation based method aggre-
gates the types that contain an entity e (i.e., L(e)) into
several disjoint groups G1(e), G2(e), . . ., Gl(e). For each
type T and column C, the basic method counts their over-
lap based on ⟨e ∈ T, T⟩ and ⟨c ∈ C, C⟩. The aggregation
method counts their overlap based on ⟨e,Gi(e)⟩ and ⟨c, C⟩.
As ∪1≤i≤lGi(e) = L(e), and Gi(e) ∩ Gj(e) = ϕ for i ̸= j,
the two counted overlap numbers are the same. Thus the
aggregation based method satisfies correctness.

Example 3. Consider three groups G1 = {T1, T2},G2 =
{T1, T3},G3 = {T1, T4}. Figure 4 shows how to use the ag-
gregation based method to label each column. In the Map

step of the first stage, for each entity, we generate ⟨entity,
group⟩ pairs. For e1, we generate one pair ⟨e1,G1⟩. The
basic framework generates 16 key-value pairs for the knowl-
edge base while the aggregation based method only generates
8 pairs. In the Reduce step, we find the groups of types
that share common entities with columns. For C1, we get
G1,G2,G3. In the Reduce step of the second stage, we utilize
the side data HG

T to compute overlap between each type and
column. For example, consider ⟨C1, {{G1}, {G1}, {G2}, {G2}}⟩.
Based on G1 = {T1, T2},G2 = {T1, T3}, we have the overlap
of T1 with C1 is 4, and the overlap of T2 (T3) with column
C1 is 2 (2). Thus the top-1 type of column C1 is T1.

6

Column

C1 v1 v2 v3 ...v8

C2 v1 v2 v7

C3 v3 v4 v8

C4 v5 v6

Type

e1 G1

e2 G1

e3 G2

e4 G2

M
a

p

Key Value

v1 C1

v2 C1

… …

v3 C3

v4 C3

… …

e1 G1

e2 G1

… …

e3 G2

e4 G2

… …

G
ro

u
p

 b
y

 k
e

y

Key Value

v1 C1

v1 G1

… …

v2 C1

v2 G1

… …

v3 C3

v3 G2

… …

v4 C3

v4 G2

… …

R
e

d
u

ce

Key Value

C1

C3

C3

G1

C1

C2

C2

C1

C1

G
ro

u
p

 b
y

 k
e

y

… …

… …

… …

… …

Key Value

C1

C3

C3

C1

C2

C2

C1

C1

… …

… …

… …

… …

Key Value

C1

C3

C2

C1

C2

C3

…

…

…

KeyValue

C1 T1

T3

C2 T2

C3

…

…

…

… … … …

Stage 1 Stage 2

M
a

p
M

a
p

M
a

p

R
e

d
u

ce
R

e
d

u
ce

R
e

d
u

ce

M
a

p
M

a
p

M
a

p
M

a
p

R
e

d
u

ce
R

e
d

u
ce

R
e

d
u

ce
R

e
d

u
ce

G1

G1

G1

G2

G2

G2

G2

G1

G2

G2

G2

G2

G1

G1

G1

G1

G1

G1

G1

G2

G2

Use side data: G1={T1,T2}, G2={T1,T3}Groups: G1={T1,T2}, G2={T1,T3}, G3={T1,T4}.

e5 G3

e6 G3

e7 G1

e8 G2

Figure 4: Knowledge type aggregation based method.

Column

C1 v1 v2 v3 ...v8

C2 v1 v2 v7

C3 v3 v4 v8

C4 v5 v6

Type

T1 e1 e2 e3 ...e8

T2 e1 e2 e7

T3 e3 e4 e8

T4 e5 e6

M
a

p

Key Value

p1 C1

p2 C1

… …

p2 C3

p2 C3

… …

p1 T1

p2 T1

… …

p2 T3

p2 T3

… …

G
ro

u
p

 b
y

 k
e

y

Key Value

p1 C1

p1 T1

… …

p2 C1

p2 T1

… …

… …

… …

R
e

d
u

ce

Key Value

C1 T1 T2

C1

C2

C3

G
ro

u
p

 b
y

 k
e

y
… …

… …

… …

… …

Key Value

C1

C1

… …

… …

… …

… …

Key Value

C1

C1

…

…

…

KeyValue

C1 T1

…

…

…

… … … …

Stage 1 Stage 2

M
a

p
M

a
p

M
a

p

R
e

d
u

ce
R

e
d

u
ce

R
e

d
u

ce

M
a

p
M

a
p

M
a

p
M

a
p

R
e

d
u

ce
R

e
d

u
ce

R
e

d
u

ce
R

e
d

u
ce

T1 T2

T1 T3

T1 T3

T1 T2

T1 T3

T1 T2

T1 T3

Get top-k types of C2 , C3 , and terminate them

… …

… …

Partitions: P1={e1,e2,e7}, P2={e3,e4,e8}, P3={e5,e6}.

Figure 5: Knowledge entity partition based method.

Discussion: The aggregation method can reduce the num-
ber of key-value pairs for knowledge bases at the expense of
distributing the side data. Notice that distributing side data
is more efficient than sending key-value pairs. This is be-
cause MapReduce has large overhead to generate the pairs,
e.g., communication between job tracker and task tracker.
The aggregation method includes two parts: (1) using the

groups to generate the key-value pairs for each entity; and
(2) distributing the groups HG

T to each node of the cluster.
Our optimal objective is to select a good aggregation strat-
egy to achieve the highest performance by trading-off them.
Here we show two extreme aggregation strategies.

Case 1: For entity e, each type in L(e) is taken as a group.
This strategy still produces large numbers of key-value pairs.
However it does not need to distribute the side data.

Case 2: For entity e, the whole list L(e) is taken as a
group. This method produces only one key-value pair for
the entity. Thus it can minimize the number of key-value
pairs. However it generates large numbers of distinct groups
and the side data is very large.

The two strategies cannot balance the number of key-value
pairs and the size of side data. To address this issue, we
propose a cost model to quantify an aggregation strategy
and utilize the cost model to select high-quality groups in
the following sections.

5.2 Aggregation Cost Model
The basic framework generates ⟨e, T⟩ key-value pairs. The

aggregation based method reduces the number of key-value
pairs by aggregating ⟨e, T⟩ pairs on types as follows. For
each entity e, it generates a set of distinct groups, G1(e),
G2(e), . . ., Gl(e). Let G1,G2, · · · ,G|G| denote the union of
groups of all entities. Let Ei denote the set of entities whose
groups include Gi. That is Ei = {e|∃ j,Gi = Gj(e)}. The
aggregation based method distributes groups G1,G2, · · · , G|G|
as the side data. For each entity e ∈ Ei, it generates key-
value pairs ⟨e,Gi⟩. Suppose the cost of processing a key-
value pair in MapReduce is α and the cost of distributing a
group Gi in the side data is β|Gi| where |Gi| is the number
of types in Gi. Thus the total cost of the aggregation based
method is ∑

i

(
α|Ei|+ β|Gi|

)
, (1)

and the total cost of the basic framework is∑
i

(
α|Ei| × |Gi|

)
. (2)

To select the optimal aggregation strategy for achieving
the highest performance, we need to minimize Equation 1.

It is unlike to find the optimal aggregation strategy in poly-
nomial time, as shown in Theorem 2.

Theorem 2. The problem of finding the optimal aggre-
gation strategy is NP-hard.

Proof. We prove the Theorem by a reduction from the
3-CNF-SAT problem. See Appendix for more details.

Given Side-Data Budget: Usually each node has a mem-
ory budget B for the side data. Our goal is to fully utilize
the budge B to accommodate aggregated groups so as to
maximize the performance.

5.3 Aggregation Algorithms
Since the problem of finding the optimal aggregation s-

trategy is NP-hard, we need to devise approximation algo-
rithms. Consider any group Gi. Based on Equations 1 and
2, the aggregation based method can reduce the cost by

α|Ei| × |Gi| − (α|Ei|+ β|Gi|).

Based on this observation, we devise a greedy algorithm.
For each entity e, we enumerate all possible partition of
L(e) into disjoint groups. (Since the number of types that
contain an entity is small, the number of possible partitions
is not large.) We union all possible groups for all entities
and generate a possible group set. Then we enumerate each
possible group Gi in the set and select the group with the
largest benefit α|Ei| × |Gi| − (α|Ei|+β|Gi|). Then we remove
the group and repeat the above step until the selected groups
cover all entity-type pairs. If given a space budget B, we
terminate generating groups if the size of aggregated groups
is larger than B.

However there may be large numbers of possible groups,
and it is expensive to enumerate all of them. To alleviate
this problem, we utilize the knowledge structure to generate
the groups as follows. We first pick a type T with no subtype.
Let Gi denote the set of types that have a directed path to T

(including itself). Obviously any type in Gi will take T as its
subtype or has a descendant which takes T as a subtype. Let
E denote the entity set of T. We take Gi as a group. Then we
remove the type T from the knowledge base and remove the
entities in E from the entity sets of types in Gi. We repeat
the above steps until there is no type left (or the size of
aggregated types is larger than the budget). Iteratively we
can generate all groups. Notice that we need to build key-
value pairs ⟨e, {G1(e),G2(e), . . . ,Gl(e)}⟩ for the MapReduce
input file and pairs ⟨Gi,HG

T (Gi)⟩ for the side data. We only
need to slightly change our algorithm. For each pair ⟨E,Gi⟩,
we generate pair ⟨Gi,HG

T (Gi)⟩. For each entity e in E, if there
exists a pair with key e, we add Gi into its value; otherwise
we generate a new pair ⟨e,Gi⟩. Iteratively we can construct
the two files (MapReduce input and side data).

7

For example, consider the four types in Figure 2. Types
T2, T3, T4 are subtypes of type T1. Thus we can aggregate T2
with T1 and generate a group {T1, T2} which will be inserted
into the side data HG

T . As T2 contains {e1, e2, e7}, entities
e1, e2, e7 will use the group {T1, T2} and we will add the
group into the MapReduce file.
Notice that we can utilize type hierarchies to improve per-

formance and scalability. We can extract hierarchies from
existing knowledge bases. For example, we can use “includ-
ed types” ‡ to extract type hierarchy from Freebase. We can
also identify the subtype relationships by comparing the en-
tity sets of different types. (For example, if the entity set
of a type contains that of another type, the latter type will
be a subtype of the former one.) Notice that our techniques
do not dependent on type hierarchies and our methods still
work if there is no type hierarchy.

6. KNOWLEDGE ENTITY PARTITION
If we can send similar ⟨column, type⟩ pairs into the same

reducer and dissimilar ⟨column, type⟩ pairs into different re-
ducers, we can significantly improve the performance since
we can prune large numbers of dissimilar ⟨column, type⟩
pairs. To this end, we propose a partition based method.
We partition cell values of all columns into p partitions
P1, P2, . . . , Pp. If all the cell values in a column fall in the
same partition, e.g., Pi, we only use this partition to an-
notate the column and prune other unnecessary partitions.
This method not only prunes many unnecessary partitions,
but also reduces the number of key-value pairs since Pi may
contain multiple cell values.
There are several research challenges. The first one is

how to utilize the partitions to annotate each column. We
will discuss a partition framework in Section 6.1. The sec-
ond challenge is how to effectively partition the cell values.
We study how to select a good partition strategy in Sec-
tion 6.2. The third challenge is how to efficiently identify
the corresponding partitions for each column and type, and
we propose a bloom-filter based method in Section 6.3.

6.1 Partition Framework
Let V denote the set of distinct cell values in all columns.

We partition V into p partitions P1, P2, . . . , Pp such that (1)
Pi is a subset of V, (2)∪1≤i≤pPi = V, and (3) Pi∩Pj = ϕ. We
discuss how to do effective partition in Section 6.2. Here we
focus on using the partitions to label each column. We still
employ a two stage MapReduce framework and Algorithm 3
shows the pseudo-code. We take the basic framework as an
example and our techniques can be easily integrated into the
aggregation based method.

Stage 1: For each column, find the list of types that share
at least one entity/cell value with the column.

Map: ⟨C, {v1, v2, . . .}⟩ → ⟨Pi, [C, Pi ∩VC, cnt = |VC|− |Pi ∩VC]⟩.
⟨T, {e1, e2, . . .}⟩ → ⟨Pi, [T, Pi ∩ ET]⟩.

For each column C, it identifies the partitions that contain
cell values in the column. Since there are large numbers of
cell values that cannot be loaded into memory, it is not s-
traightforward to identify the partitions and we will discuss
efficient techniques in Section 6.3. Suppose we get k parti-
tions P1, P2, . . . , Pk. Notice that if a cell value in Pi is not an
entity in the knowledge base, we do not need to distribute
the cell value. In other words, we only distribute the cell

‡http://wiki.freebase.com/wiki/Included_Type

Algorithm 3: Partition-based Algorithm

// the first stage

1 Map(⟨C/T, {v1, v2, . . .}/{e1, e2, . . .}⟩)
2 foreach ⟨C, {v1, v2, . . .}⟩ do
3 {P1, P2, . . . , Pk} = PartitionIdentification(C);
4 output(⟨Pi, C⟩);
5 foreach ⟨T : {e1, e2, . . .}⟩ do
6 {P1, P2, . . . , Pj} = PartitionIdentification(T);
7 output(⟨Pi, T⟩);

8 Reduce (⟨Pi, list(C/T)⟩)
9 foreach C/T in list(C/T) do

10 if C/T is a type then add T to list(T);
11 else if C/T is a column then add C to list(C);

12 foreach C in list(C) do
13 τ=k largest overlap of types in list(T) with C;
14 list(T)=types with overlap ≥ τ−cnt;
15 if cnt = 0 then return list(T);
16 else output(⟨C, list(T)⟩);

// the second stage is the same as that of the

basic framework

values in C that also appear in knowledge types. For sim-
plicity, we use VTC to denote the set of such cell values. Thus
we generate the following key-value pairs

⟨Pi, [C, Pi ∩ V
T
C, cnt = |VTC| − |Pi ∩ V

T
C]⟩

for 1 ≤ i ≤ k, where cnt is the number of entities that are in
the column but not in the partition. Obviously if cnt = 0,
all the cell values appear in partition Pi. In the Reduce

step, we can use this partition to directly label the column,
because all of types that share entities with the column must
fall in this partition.

Similarly, for each type T, it identifies the partitions that
contain entities in the type. Suppose we get j partitions
P1, P2, . . . , Pj . We generate the following key-value pairs

⟨Pi, [T, Pi ∩ ET]⟩

for 1 ≤ i ≤ j, where ET is the entity set of type T.

Reduce: ⟨Pi, list(C/T)⟩ → ⟨C, list(T)⟩.
For each partition, we get a list of columns and types. We

first extract the list of columns and the list of types. Then
for each column C, we scan the type list and for each type
T, we compute (Pi ∩ VTC)∩ (Pi ∩ ET), which is the overlap sim-
ilarity of C and T in the partition. Let τ denote the k-th
largest overlap similarly among all types with column C. S-
ince column C contains at most other cnt entities besides the
partition, each type T at most includes other cnt cell values
of C. Thus we can prune the types with the overlap smaller
than τ−cnt. In other words, we generate a list of types,
list(T), where each type has no smaller than τ−cnt overlap
with the column, and output key-value pairs ⟨C, list(T)⟩. E-
specially, if cnt = 0, column C contains no other cell value
and all types having overlap with C are also in this partition,
thus we can directly use the partition in this reducer to label
the column and do not need to output the pair.

Stage 2: Compute top-k types of every column. It is the
same as that of the basic framework.

Example 4. Suppose we partition the entities into three

8

http://wiki.freebase.com/wiki/Included_Type

partitions P1 = {e1, e2, e7}, P2 = {e3, e4, e8}, P3 = {e5, e6}.
Figure 5 illustrates a running example of using the partition-
based method to label the columns. In the Map step of the first
stage, it generates ⟨partition, entity⟩ and ⟨partition, column⟩
pairs. For T1, it generates three pairs ⟨P1, T1⟩, ⟨P2, T1⟩, ⟨P3, T1⟩.
The basic framework generates 16 pairs for the knowledge
base while the partition based method only generates 6 pairs.
For column C2, it generates one pair ⟨P1, C2⟩. As all cell
values fall in partition P1, we can use this partition to label
the column in the Reduce step. Similarly all cell values in C3
fall in partition P2. The basic framework generates 16 pairs
for the columns while the partition method only generates 4
pairs (v5, v6, v7, v8 do not appear in the knowledge base). In
the Reduce step, in the reducer of P1, we can directly label C2
and do not need to output the key-value pairs since all types
having overlap with C2 are also in this partition. Similarly
we can directly label C3 and early terminate the two columns.

Notice that the partition based method is orthogonal to
the aggregation based method and the two methods can be
used simultaneously.

6.2 Partition Algorithm
Since different partition strategies will affect the pruning

power (whether we can prune unnecessary partitions) and
the number of key-value pairs, it is very important to select
a high-quality partition strategy. To address this issue, we
first study how to evaluate a partition strategy.
To evaluate a partition strategy, we model the columns

as a graph and transform the graph partition problem to
our partition problem as follows. For ease of presentation,
we first assume each column has at most two cell values.
In the graph, the vertices are cell values. There is an edge
between two vertices if there is a column which contains
the cell values of the two vertices. The edge weight is the
number of columns that contain the two cell values. If we
want to partition the cell values into p partitions, we aim
to partition the graph into p subgraphs. Notice that in a
graph partition strategy, if we cut an edge with weight w,
w columns w.r.t. the edge will be affected. Thus cutting an
edge with weight w will increase w key-value pairs. It also
reduces the probability to use a single partition to label a
column. Thus we want to find a partition with minimum
cut weight, i.e., the sum of the weights of cut edges. Thus
we can transform the problem of graph partition problem to
our finding optimal partition strategy problem.
We can extend this method to support the case that each

column can have more than two cell values. The only differ-
ence is that the weight of cutting an edge is dependent on
those edges that have been cut. We can also utilize the graph
partition method to evaluate a partition strategy. Howev-
er note that the Web tables are not given and we cannot
partition the cell values off-line. To address this problem,
we use the entities in the knowledge base to facilitate the
partition. The main reason is that if a cell value does not
appear in the knowledge base, we cannot utilize it to do an-
notation. Thus we can utilize the entities to construct the
graph. In addition, given an edge of two entities, we cannot
efficiently get its weight, i.e., the real number of columns
that contain the two entities. Alternatively, we can use the
number of types that contain the two entities to approxi-
mate the edge weight. Thus we can build a graph based on
the knowledge base. We extend existing graph-partitioning
algorithms (e.g., [16]) to partition the weighted graph, with

the goal of (1) minimizing the weight of cut edges and (2)
making each partition nearly have the same weight.

Figure 6 shows the graph constructed from the knowledge
base in Figure 2. Each vertex represents a distinct entity.
The weight of an edge is the number of types that contain the
two entities on the edge. The weight of edges between two
dotted ellipses denotes the weights of all the edges between
vertices in the two ellipses. If p = 3, the three partitions
should be P1 = {e1, e2, e7}, P2 = {e3, e4, e8}, P3 = {e5, e6}.

e1

e2 e7

e3

e4 e8

e5 e6

2

2

2222

2 1

1 1

Figure 6: Partitioning entities.

6.3 Partition Identification
In this section, we discuss how to identify partitions for

each type and column. For each type, during the graph
partitioning phase, we keep the partitions for each type and
generate the key-value pair ⟨T, {P1, P2, . . .}⟩. Thus in the Map
step of the first stage, we directly load the pairs to generate
the key-value pairs ⟨Pi, T⟩.

Since each column is not given, we need to online iden-
tify the partitions that contain a cell value in the column.
A straightforward method is to use a hash based method.
However the number of entities is rather large, and we can-
not load the hash table into memory. To address this issue,
we use a bloom filter based method. The bloom filter [4] is a
probabilistic method to efficiently check whether an element
is in a set using multiple hash functions.

For each partition, we use a bloom filter to represent the
entities in the partition. To identify the partitions of each
column, for each cell value, we enumerate the p partitions.
For each partition, we check whether the cell value is in the
partition. If the cell value is not in the partition based on
the bloom filter, we can ignore the partition; otherwise the
partition is added into the partition list of the column, with
a false-positive probability. Iteratively we can identify all
the partitions. The false positives introduced by the bloom
filter will not affect the correctness as stated in Theorem 3.

Theorem 3. The partition based method satisfies correct-
ness – it can correctly find top-k types for each column.

Proof Sketch. The partition based method partitions
the types into P1, P2, . . . , Pp. If a cell value is the same as
an entity, they must be in a same partition. Thus if a type
T and a column C share a common entity/cell value, they
must share a common partition. Although the bloom filter
may involve false positives, we compute their overlap based
on (Pi ∩ VTC) ∩ (Pi ∩ ET). If a cell value is a false positive of
partition Pi, it will not be in Pi ∩ ET. Thus the partition
based method satisfies correctness.

However this method needs to enumerate p bloom filters
of every partition and for each partition, it has to compute

9

t hash values using the t hash functions, which is expensive.
To alleviate this problem, we utilize a bloom filter hierar-
chy [24] to improve the performance. We build a binary tree
structure where each leaf node is a bloom filter. The parent
of two leaf nodes is the bloom filter build upon entities in the
two partitions. Obviously the root is the bloom filter for all
entities. Then given a cell value, we identify the partitions
in an up-down manner from the root. If the cell value is not
in the root bloom filter, we terminate; otherwise we check
its two children. Iteratively, we can identify all partitions.
This method only needs to enumerate log2 p bloom filters.

7. EXPERIMENTS
The goals of our experiments are to (1) evaluate the effec-

tiveness of our column concept identification approach that
utilizes knowledge bases fuzzily to label Web tables; and (2)
validate the performance and scalability of our methods.

Datasets: Table 2 summarizes our datasets. For Web ta-
bles, we used (1) WWT§, whose tables were manually extract-
ed from Wikipedia and annotated with ground-true entities
and types, and (2) WEX¶, whose tables were extracted from
Wikipedia by a Freebase Wikipedia Extraction project. For
knowledge bases, we used (1) Freebase∥, a collaboratively
created knowledge based that is manually built by data-
loving users, and (2) Yago∗∗, a large semantic knowledge
base which is derived from Wikipedia, WordNet and GeoN-
ames. Both knowledge bases are publicly well-known.

Table 2: Web Tables and Knowledge Bases
Dataset Size (MB) # Tables # Columns # Cell Values

WWT 7.3 6318 27,695 459,641
WEX 423 242,062 1,179,125 19,922,138

Dataset Size (MB) # Types # Entities
Freebase 1200 1721 43,648,334

Yago 157 292,861 9,003,751

Settings: We implemented our algorithms in Hadoop. All
experiments except scaleup ones were run on a 20-node Dell
cluster, each with two Intel(R) Xeon(R) E5420 2.5GHZ pro-
cessors with eight cores, 16GB RAM, and 1TB disk. Thus
the cluster consists of 160 cores, 320GB memory and 20T-
B disk. Each node is installed with 64-bit Ubuntu Server
10.04, Java 1.6, and Hadoop 1.0.3. We set B as 1GB. α and
β can be set by evaluating the cost of distributing key-value
pairs and side data based on experimental evaluation. In
our experiments, we set β as 1 and α as the ratio of the
number of entities to the number of distinct entities.
Due to space constraints, in the experiments we only showed

the results on the overlap similarity, Jaccard similarity, Fuzzy
Jaccard similarity. We obtained similar results for other sim-
ilarity functions, e.g., Cosine and Dice.

7.1 Annotation Quality
In this section, we evaluate the annotation quality of our

similarity-join based framework. We compared with the ma-
chine learning based method [18], GraphicalModel. We used
the well-known metrics, precision, recall, and F-measure, to
evaluate the annotation quality. Let cno denote the number
of columns that have been manually annotated with ground

§
http://www.it.iitb.ac.in/~sunita/wwt/

¶
http://wiki.freebase.com/wiki/WEX

∥
http://www.freebase.com

∗∗
http://www.mpi-inf.mpg.de/yago-naga/yago/

truth, ano denote the number of annotated columns of an
algorithm, and at denote the number of truly annotated
columns (If the ground truth of a column is in the top-k
types annotated by an algorithm, the column is taken as
truly annotated.). The precision is p = at

ano
, the recall is

r = at
cno

, and the F-measure is 2·p·r
p+r

.
We first compared the quantity by varying k on the WWT

and Freebase datasets. Figure 7 shows the result quality.
We have the following observations. First, our similarity
join based method, especially using Jaccard similarity and
fuzzy Jaccard similarity, nearly achieved the same quality as
the machine learning based method GraphicalModel. Sec-
ond, for precision, our method using fuzzy Jaccard similarity
outperformed GraphicalModel. This is because for each col-
umn, GraphicalModel will identify top-k types which may
be wrongly annotated while our method will not annotate
the columns if it cannot find relevant types. In terms of re-
call, GraphicalModel outperformed our similarity join based
method since it can always identify top-k types for each col-
umn. Third, our method using fuzzy Jaccard similarity was
better than that using Jaccard similarity, which in turn out-
performed that using the overlap similarity. The is because
fuzzy Jaccard similarity can tolerate inconsistences between
cell values and entities, and Jaccard similarity utilized the
type and column sizes to annotate a column which can re-
move the stop types, e.g., music. For example, fuzzy Jaccard
similarity outperformed Jaccard similarity about 5%, which
was better than overlap similarity about 5%. Fourth, a larg-
er k will increase the annotation quality, because it returned
more types to annotate a column.

We then evaluated the quality on different datasets by fix-
ing k = 3. Figure 8 shows the results. We have the following
observations. First, on different Web tables and knowledge
bases, our similarity join based method still achieved the
same high quality as GraphicalModel. Second, the annota-
tion quality using Yago is better than that using Freebase,
because Yago contains larger numbers of types than Freebase.

7.2 Performance and Scalability
To evaluate the performance of our algorithms on large

datasets, we increased WEX by 5, 10, 15, 20, 25 times as
follows. Suppose we want to increase a dataset by n times.
For each column with m cell values, we randomly selected
m − 1,m − 2, . . . ,m − n cell values and took them as new
columns. (If a column had smaller than n cell values, we
randomly selected n groups of m − 1 cell values and took
them as new columns.) We use WEX ×n to represent the
increase factor. For example, WEX ×10 represents the WEX

dataset increased 10 times. Notice that WEX ×25 contains
about 30 million columns and 500 million cell values.

7.2.1 Running Time
We compare the annotation performance of our four meth-

ods: the basic similarity-join framework (Basic), the knowl-
edge type aggregation based method (Aggregation), the
knowledge entity partition based method (Partition), and
the hybrid method which uses these two optimization tech-
niques (Hybrid). Notice that GraphicalModel is rather inef-
ficient. For example, it took an hour to annotate 100 tables
using Freebase. Thus we did not compare with it in terms
of running time. We compared the performance by varying
the dataset sizes. Since overlap similarity and Jaccard sim-
ilarity nearly achieved the same performance, we only used

10

http://www.it.iitb.ac.in/~sunita/wwt/
http://wiki.freebase.com/wiki/WEX
http://www.freebase.com
http://www.mpi-inf.mpg.de/yago-naga/yago/

 0.5

 0.6

 0.7

 0.8

 0.9

 1
Q

ua
lit

y

k=1 k=3 k=5

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(a) Precision.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Q
ua

lit
y

k=1 k=3 k=5

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(b) Recall.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Q
ua

lit
y

k=1 k=3 k=5

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(c) F-measure.

Figure 7: Evaluating annotation quality by varying k on WWT and Freebase datasets.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Q
ua

lit
y

 Precision Recall F-measure

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(a) WWT + Freebase

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Q
ua

lit
y

 Precision Recall F-measure

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(b) WEX + Freebase

 0.7

 0.8

 0.9

 1

Q
ua

lit
y

 Precision Recall F-measure

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(c) WWT + Yago

 0.7

 0.8

 0.9

 1

Q
ua

lit
y

 Precision Recall F-measure

Overlap
Jaccard

Fuzzy Jaccard
Graphical Model

(d) WEX + Yago

Figure 8: Evaluating annotation quality on different datasets (k = 3).

 0

 3

 6

 9

 12

 5 10 15 20 25

R
un

in
g

T
im

e(
m

in
)

Dataset Size(* the original)

Basic
Aggregate

Partition
Hybrid

(a) Jaccard

 0

 10

 20

 30

 40

 50

 5 10 15 20 25

R
un

in
g

T
im

e(
m

in
)

Dataset Size(* the original)

Basic
Aggregate

Partition
Hybrid

(b) Fuzzy Jaccard

Figure 9: Evaluating running time by varying
dataset sizes on WEX + Freebase (k = 3).

the Jaccard and fuzzy Jaccard similarity. We used WEX and
Freebase datasets and set k = 3. Figure 9 shows the result-
s. In this figure, for each algorithm, the bottom bar denotes
the time of the first stage in the algorithm and the top bar
denotes the time of the second stage.
We can see that the Hybrid method achieved the highest

performance and the Basic method got the worst perfor-
mance. The knowledge type aggregation based method im-
proved the performance as it can reduce the number of key-
values pairs by aggregating the types. The knowledge entity
partition based method also improved the performance, be-
cause it cannot only prune large numbers of unnecessary
partitions but also reduce the number of key-value pairs.
For example, on WEX ×25 dataset, Basic took about 9 min-
utes, Aggregation improved the time to 5 minutes, and
Partition took about 4 minutes. Hybrid further improved
the time to 3.5 minutes. The experimental results show the
superiority of our proposed techniques.

7.2.2 Speedup
We evaluated our algorithms by fixing the datasset size

and varying the number of nodes in the cluster. We used WEX

×10 and Freebase datasets. Figure 10 shows the running
time by varying the number of nodes from 4 to 20. We
can see that with the increase of the number of nodes, the
performance of our method improved. For instance, using

 0

 2

 4

 6

 8

 10

 4 8 12 16 20

R
un

ni
ng

 T
im

e(
m

in
)

Number of nodes

Basic
Aggregate

Partition
Hybrid

(a) Jaccard

 0

 10

 20

 30

 40

 50

 4 8 12 16 20

R
un

ni
ng

 T
im

e(
m

in
)

Number of nodes

Basic
Aggregate

Partition
Hybrid

(b) Fuzzy Jaccard

Figure 10: Evaluating running time by varying num-
ber of nodes on WEX ×10 + Freebase (k = 3).

 1

 2

 3

 4

 5

 4 8 12 16 20

S
pe

ed
up

Number of nodes

Basic
Aggregate

Partition
Hybrid

Ideal

(a) Jaccard

 1

 2

 3

 4

 5

 4 8 12 16 20

S
pe

ed
up

Number of nodes

Basic
Aggregate

Partition
Hybrid

Ideal

(b) Fuzzy Jaccard

Figure 11: Speedup on WEX ×10 + Freebase (k = 3).

Jaccard similarity, Hybrid took 4.5 minutes on 4 nodes and
improved the time to less than 2 minutes for 20 nodes.

We also evaluated the speedup of our algorithms, i.e., the
ratio of the performance improvement compared with that
of the minimum number of nodes. For example, for 20 n-
odes, the speedup is the ratio between the running time on
the 4 nodes and that on 20 nodes. We also plot the ideal
speedup curve. For example, if the nodes are doubled, the
ideal speedup should be 2. Figure 11 shows the results. We
can see that our methods achieved good speedup.

7.2.3 Scaleup
To evaluate the scaleup of our methods, we increased both

the dataset sizes and the number of nodes in the cluster. We
used our best algorithm, Hybrid, which used both knowledge

11

 0

 1

 2

 3

 4

 5

 6

 4 8 12 16 20

R
un

in
g

T
im

e(
m

in
)

Number of nodes and dataset size(1.25x)

Hybrid
Ideal

(a) Jaccard

 0

 10

 20

 30

 40

 50

 4 8 12 16 20

R
un

in
g

T
im

e(
m

in
)

Number of nodes and dataset size(1.25x)

Hybrid
Ideal

(b) Fuzzy Jaccard

Figure 12: Scaleup by increasing the dataset sizes
and the number of nodes on WEX + Freebase (k = 3).

 0

 1

 2

 3

 4

 5

 4 8 12 16 20

R
un

in
g

T
im

e(
m

in
)

Number of nodes and dataset size(1.25x)

Hybrid
Ideal

(a) Jaccard

 0

 3

 6

 9

 12

 4 8 12 16 20

R
un

in
g

T
im

e(
m

in
)

Number of nodes and dataset size(1.25x)

Hybrid
Ideal

(b) Fuzzy Jaccard

Figure 13: Scaleup by increasing the dataset sizes
and the number of nodes on WEX + Yago (k = 3).

type aggregation and entity partition techniques. We also
added the ideal scaleup curve which should be a constant.
Figures 12 and 13 show the running time on the Freebase

and Yago datasets respectively, with increasing the number
of nodes from 4 to 20 and dataset sizes from 5 to 25. We
can see that our method scaled up very well for both Jaccard
similarity and fuzzy Jaccard similarity, and nearly reached
the ideal scaleup. This is attributed to our partition based
method which can prune unnecessary partitions and reduce
the number of key-value pairs.

8. CONCLUSION
We studied the column concept determination problem for

Web tables using knowledge bases. We enabled fuzzy match-
ing between the cell content and knowledge entities. We
proposed a knowledge type aggregation based method which
aggregated the types into groups and shared the groups for
different entities to reduce the number of key-value pairs.
We proved that the problem of finding the optimal aggrega-
tion strategy is NP-hard. We utilized the knowledge hierar-
chy to effectively aggregate types. We proposed a knowledge
entity partition based method which partitioned the entities
into different partitions. For each column, we identified its
partitions and used the types falling in these partitions to
annotate the column. We proposed a graph partition based
algorithm to generate high-quality partitions. Experimen-
tal results on real datasets show that our algorithm achieved
high annotation quality and performance and scaled well.

9. REFERENCES
[1] S. Abiteboul, E. Antoine, and J. Stoyanovich. Viewing the web

as a distributed knowledge base. In ICDE, 2012.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. G. Ives. Dbpedia: A nucleus for a web of open data. In
ISWC/ASWC, pages 722–735, 2007.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[5] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD, 2008.

[6] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on the web.
PVLDB, 1(1):538–549, 2008.

[7] S. Chaudhuri, others Robust and efficient fuzzy match for
online data cleaning. In SIGMOD, 2003.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[9] H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvesting
relational tables from lists on the web. PVLDB,
2(1):1078–1089, 2009.

[10] Google. Introducing knowledge graph.
http://insidesearch.blogspot.com/2012/05/introducing-
knowledge-graph-things-not.html.

[11] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[12] X. Guo, Y. Chen, J. Chen, and X. Du. ITEM: Extract and
integrate entities from tabular data to RDF knowledge base. In
APWeb, 2011.

[13] R. Gupta and S. Sarawagi. Answering table augmentation
queries from unstructured lists on the web. PVLDB,
2(1):289–300, 2009.

[14] L. Han, T. Finin, C. S. Parr, J. Sachs, and A. Joshi. Rdf123:
From spreadsheets to rdf. In ISWC, 2008.

[15] G. Hignette, P. Buche, J. Dibie-Barthélemy, and
O. Haemmerlé. Fuzzy annotation of web data tables driven by
a domain ontology. In ESWC, 2009.

[16] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. In DAC, 1999.

[17] Y. Kim and K. Shim. Parallel top-k similarity join algorithms
using mapreduce. In ICDE, 2012.

[18] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
searching web tables using entities, types and relationships.
PVLDB, 3(1):1338–1347, 2010.

[19] X. Ling, A. Halevy, F. Wu, and C. Yu. Synthesizing union
tables from the web. In IJCAI, 2013.

[20] A. Metwally and C. Faloutsos. V-smart-join: A scalable
mapreduce framework for all-pair similarity joins of multisets
and vectors. PVLDB, 5(8):704–715, 2012.

[21] R. Pimplikar and S. Sarawagi. Answering table queries on the
web using column keywords. PVLDB, 5(10):908–919, 2012.

[22] G. Quercini and C. Reynaud. Entity discovery and annotation
in tables. In EDBT, 2013.

[23] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[24] K. Shanmugasundaram, H. Brönnimann, and N. D. Memon.
Payload attribution via hierarchical bloom filters. In CCS,
2004.

[25] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

[26] M. van Assem, others Converting and annotating quantitative
data tables. In ISWC, 2010.

[27] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of tables on
the web. PVLDB, 4(9):528–538, 2011.

[28] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD, 2010.

[29] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for
fuzzy token matching based string similarity join. In ICDE,
2011.

[30] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu. Understanding
tables on the web. In ER, 2012.

[31] W. Wu, others Probase: a probabilistic taxonomy for text
understanding. In SIGMOD, 2012.

[32] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm
for similarity joins with edit distance constraints. PVLDB,
1(1):933–944, 2008.

[33] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In WWW, 2008.

[34] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: entity augmentation and attribute discovery by
holistic matching with web tables. In SIGMOD, 2012.

[35] C. Yu. Towards a high quality and web-scalable table search
engine. In KEYS, 2012.

12

Appendix
We formally show that the problem of finding the optimal
aggregation strategy is NP-hard, even when α = β = 1. The
corresponding decision problem can be defined as below.

Definition 1. (The decision problem) Given a set of en-
tities H where each entity associated with a set of types, and
a positive threshold t, the decision problem ⟨H, t⟩ returns
true if and only if there exists an aggregation strategy that
aggregates the set of types of each entity into several groups
such that ∑

distinct group G

(|E|+ |G|) ≤ t

where G is a distinct group and E is the set of entities in
group G.

For example, in Figure 14(a), let e1 = {T1, T2, T3, T4, T5, T8},
e2 = {T2, T3, T6, T8}, e3 = {T4, T5, T7, T8}, and t = 16. The
decision problem ⟨H = {e1, e2, e3}, t⟩ should return yes s-
ince the aggregation strategy e1 = {⟨T2, T3, T8⟩⟨T1, T4, T5⟩},
e2 = {⟨T2, T3, T8⟩⟨T6⟩} and e3 = {⟨T4, T5, T7, T8⟩} incurs a
cost of 16.
We reduce the 3-CNF-SAT problem to the decision prob-

lem. A 3-CNF formula ϕ consists of variables x1, x2, . . . xn

and clauses C1, C2, . . . Ck. Each clause contains exactly three
literals. A literal lm(1 ≤ m ≤ 3) is either a variable itself xi

or its negation xi. The 3-CNF-SAT problem asks whether
there exists an truth assignment of the variables such that
the formula ϕ is satisfied. Before proving the decision prob-
lem is NP-complete, we first discuss variable gadget X g and
clause gadget Cg, which will be important in our reduction.
Variable Gadgets: For each variable x in the 3-CNF for-
mula, we construct a variable gadget X g which contains
three entities e1 = {T1, T2, T3, T4, T5, T8}, e2 = {T2, T3, T6, T8}
and e3 = {T4, T5, T7, T8}. T6 and T7 are two special nodes
we call tips. We label tip T6 with the variable x and tip T7

with x. See Figure 14(a) for an illustration. By enumerating
all possible aggregation strategies of the variable gadget X g,
we can show that it has the following nice property:

Property 1. The minimum aggregation cost of variable
gadget X g is 16 and for each aggregation strategy with cost
16, there must exist one and only one group which contains
one tip, T6 or T7.

For a minimum cost aggregation strategy for a particular
variable gadget X g, we let Gx denote the group that con-
tains exactly one tip. The following definitions of SV1 and
SV2 will be useful in later discussions. Intuitively, SV1 corre-
sponds to assigning the variable True while SV2 corresponds
to assigning the variable False.

SV1 : We denote as SV1 the aggregation strategy
e1 = {⟨T2, T3, T8⟩⟨T1, T4, T5⟩}, e2 = {⟨T2, T3, T8⟩⟨T6⟩},
e3 = {⟨T4, T5, T7, T8⟩}. The cost is 16 and Gx = ⟨T6⟩.

SV2 : We denote as SV2 the aggregation strategy
e1 = {⟨T1, T2, T3⟩⟨T4, T5, T8⟩}, e2 = {⟨T2, T3, T8, T6⟩},
e3 = {⟨T4, T5, T8⟩⟨T7⟩}. Its cost is 16 and Gx = ⟨T7⟩.

Clause Gadgets: For each clause C = (l1 ∧ l2 ∧ l3), we
have a clause gadget Cg which contains seven entities e4 =
{T9, T10, T11}, e5 = {T11, T13, T14}, e6 = {T10, T12, T13},
e7 = {T10, T11, T13}, e8 = {T10, Tl1}, e9 = {T11, Tl2} and
e10 = {T13, Tl3} where Tl1 ̸= Tl2 ̸= Tl3 . See Figure 14(b).

We call Tl1 , Tl2 and Tl3 the tips of the clause gadget and they
corresponds to literals l1, l2 and l3 in clause C respectively.
In the final construction, each tip of the clause gadgets will
be identified with the corresponding tip of the variable gad-
get. This introduces some subtlety in counting the aggre-
gation cost as follows: there may exist a group GC which
contains exactly one tip (Tl1 , Tl2 or Tl3) in the clause gad-
get. To avoid double counting the cost of |GC | = 1 in both
variable gadget and clause gadget, we do not count it in the
clause gadget, but instead treat it as an additional cost c.
We let c = 0 if (1) GC exists in both the clause gadget and
some variable gadget or (2) No group contain exactly one tip
††; Otherwise the additional cost c = 1. After enumerating
all possible aggregation strategies, we observe the following
nice property of a clause gadget:

Property 2. The minimum aggregation cost of clause
gadget Cg is 24 and for each aggregation strategies with cost
24, there must exist a group which only contains one of Tl1 ,
Tl2 and Tl3 .

We denote the group in clause gadget Cg that only con-
tains one of Tl1 , Tl2 and Tl3 as GC . As before, the following
notations will be useful.

SL1 : We denote as SL1 the strategy e4 = {⟨T9, T11⟩⟨T10⟩},
e5 = {⟨T11, T13⟩⟨T14⟩}, e6 = {⟨T10⟩⟨T12, T13⟩}, e7 =
{⟨T11, T13⟩⟨T10⟩}, e8 = {⟨T10⟩⟨Tl1⟩}, e9 = {⟨T11, Tl2⟩}
and e10 = {⟨T13, Tl3⟩}. Its cost is 24 and GC = ⟨Tl1⟩.

SL2 : We denote as SL2 the strategy e4 = {⟨T9, T10⟩⟨T11⟩},
e5 = {⟨T11⟩⟨T13, T14⟩}, e6 = {⟨T10, T13⟩⟨T12⟩}, e7 =
{⟨T10, T13⟩⟨T11⟩}, e8 = {⟨T10, Tl1⟩}, e9 = {⟨T11⟩⟨Tl2⟩}
and e10 = {⟨T13, Tl3⟩}. Its cost is 24 and GC = ⟨Tl2⟩.

SL3 : We denote as SL3 the strategy e4 = {⟨T9⟩⟨T10, T11⟩},
e5 = {⟨T11, T14⟩⟨T13⟩}, e6 = {⟨T13⟩⟨T12, T10⟩}, e7 =
{⟨T10, T11⟩⟨T13⟩}, e8 = {⟨T10, Tl1⟩}, e9 = {⟨T11, Tl2⟩}
and e10 = {⟨T13⟩⟨Tl3⟩}. Its cost is 24 and GC = ⟨Tl3⟩.

We can reduce the well-known NP-complete problem 3-
CNF-SAT to our decision problem in polynomial time. For
ease of understanding, we first give an example to show the
reduction from 3-CNF formula to our decision problem in
Figure 15. The formula in 3-CNF is ϕ = C1

∧
C2 where

C1 = (x1

∨
x2

∨
x4) and C2 = (x2

∨
x3

∨
x4). The entity

set H = X g
1 ∪X g

2 ∪X g
3 ∪X g

4 ∪ Cg
1 ∪ Cg

2 as show in Figure 15.
The set of types associated with each entity is shown in the
figure. The variables x1, x2, x3, and x4 map to the variable
gadgets X g

1 , X
g
2 , X

g
3 , X

g
4 respectively and the clauses C1 and

C2 map to the clause gadgets Cg
1 and Cg

2 respectively. The
literal in the clause gadget is exactly the matching literal in
the variable gadget as show in the figure. For example T 1

7

is exactly T 1
l1
. Here t = 16n + 24k = 16 ∗ 4 + 24 ∗ 2 = 112

where n is the number of distinct variable in ϕ and k is the
number of clause in ϕ. A satisfied assignment of ϕ is x1 = 0,
x2 = 0, x3 = 0 and x4 = 0. The corresponding aggregation
strategy is that we aggregate X g

1 , X
g
2 , X

g
3 and X g

4 by SV2

and aggregate Cg
1 and Cg

2 by SL1 .
Next we formally prove Theorem 4.

Theorem 4. The decision problem in Definition 1 is NP-
Complete.
†† In the first case, the cost of |GC | is counted in the variable
gadget. In the second case, there is no such GC . So the
additional cost is also 0.

13

��
��
�� ��

��
�� ����

��

�� ��

��� ���
�

(a) Variable gadget X g

��
��� ���

������ ���
��

����

��

��

���

��

����

����

��� �������

���
(b) Clause gadget Cg

Figure 14: Variable and Clause Gadgets. Each vertex represents a distinct type and each hyperedge represents
an entity.

��
��
�� ��

��
�� ����

��

�� ��

�	
��
 ���

������ ���
��

����

��

��

�� �� ��

��

��

��

�

X�

�

� �

�

��

�

�� � �� � ���
�� � ��

�	
�

��

�

���

���

���

���
C�

X� X�

X�
C�

Figure 15: An example of reducing 3-CNF to finding aggregation strategy problem.

Proof. First, given any aggregation strategy, we can eas-
ily check whether the cost is no larger than t in polynomial
time.
Next we prove the decision problem is NPC by a reduction

from the 3-CNF-SAT problem. In particular, given any in-
stance ϕ of a 3-CNF-SAT problem, we construct an instance
of our decision problem ⟨H, t⟩ such that the 3-CNF formula
ϕ is satisfiable if and only if there exists an aggregation strat-
egy of H with cost no larger that t. In the reduction we let
t = 16n+24k where n and k are respectively the numbers of
variables and clauses in ϕ. The construct of H is as follows
(an example can be found in Figure 15). For each variable xi

in ϕ, we create a variable gadget X g
i which consists of three

entities ei1 = {T i
1 , T

i
2 , T

i
3 , T

i
4 , T

i
5 , T

i
8}, ei2 = {T i

2 , T
i
3 , T

i
6 , T

i
8}

and ei3 = {T i
4 , T

i
5 , T

i
7 , T

i
8}. Recall that the tip T i

6 is la-
beled with the literal xi and tip T i

7 is labeled with literal
xi. For each clause Cj in ϕ, we create a clause gadget Cg

j

which consists of seven entities ej4 = {T j
9 , T

j
10, T

j
11}, ej5 =

{T j
11, T

j
13, T

j
14}, ej6 = {T j

10, T
j
12, T

j
13}, ej7 = {T j

10, T
j
11, T

j
13},

ej8 = {T j
10, T

j
l1
}, ej9 = {T j

11, T
j
l2
} and ej10 = {T j

13, T
j
l3
}. Recall

that the tips T j
l1
, T j

l2
and T j

l3
are labeled with the three lit-

erals of clause Cj . The variable gadgets and clause gadgets
are connected as follows. We identify together each tip in Cg

j

with the tip in the variable gadget that has the same label
(i.e., they corresponds to the same literal). This finishes the
construction of H.

14

The reduction creates 3 entities and 8 types for each vari-
able xi and 7 entities and 6 types for each clause Cj . We
can perform the reduction algorithm which totally creates
3n+ 7k entities and 8n+ 6k types in polynomial time as it
produces each entity or type in the constant time.
We next show that the 3-CNF formula ϕ is satisfiable if

and only if there exists an aggregation strategy for H with
cost no larger than t = 16n+ 24k.
First, suppose there is a truth assignment that satisfies ϕ.

We prove there must exist an aggregation strategy with cost
no larger than t = 16n+24k as follows. For each 1 ≤ i ≤ n,
if xi = True, we aggregate variable gadget X g

i using aggrega-
tion strategy SV1 with cost 16 and Gi

x = ⟨T i
6⟩. If xi = False,

we aggregate variable gadget X g
i using aggregation strategy

SV2 with cost 16 and Gi
x = ⟨T i

7⟩. By using this aggregation
strategy to aggregate every variable gadget X g

i (1 ≤ i ≤ n),
the total cost is 16n. For each 1 ≤ j ≤ k, as ϕ is satis-
fied, Cj contains at least one literal lm(1 ≤ m ≤ 3) whose
value is True. Suppose lm is the first literal in Cj whose
value is evaluated to be True in the truth assignment. We
aggregate clause gadget Cg

j using aggregation strategy SLm

with cost 24 and Gj
C = ⟨T j

lm
⟩. Moreover, we can see that

the group Gj
C also exists in the aggregation strategy chosen

for variable gadget X g
i since lm is True (more specifically,

Gj
C = Gi

x). Hence, the additional cost cj = 0 (the cost of

|Gj
C | has been already counted in the variable clause). Using

this strategy, the total cost to aggregate all Cg
j is 24k and

the additional cost is 0. Based on the discussion above, the
overall cost to aggregate entity set H is 16n+ 24k.
Next suppose that there is an aggregation strategy of H

with cost no larger than 16n + 24k. We prove there must
exist an assignment that satisfies ϕ. For any variable gadget
X g

i (1 ≤ i ≤ n), the minimum aggregation cost is 16. Thus
the minimum cost to aggregate all variable gadgets is 16n.
For any clause gadget Cg

j (1 ≤ j ≤ k), the minimum aggre-
gation cost is 24. Thus the minimum cost to aggregate all
clause gadgets is 24k. Thus to achieve an aggregation cost
of H no larger than 16n+24k, we need to apply the aggrega-
tion strategy with minimum cost to all the variable gadgets
and clause gadgets and all the additional costs cj(1 ≤ j ≤ k)
should be 0. According to Property 1 and Property 2, there
must exist a group Gi

x in each variable gadget X g
i which only

contains one of the two tips labeled with xi and xi and there
must exist a group Gj

C in each clause gadgets Cg
j which only

contains one of the three tips labeled with the literals. To
make all the additional cost cj = 0, each group Gj

C should
also exist in its corresponding variable gadgets X g

i which is

exactly Gi
x. We set xi = True if Gi

x = Gj
C contains only the

tip labeled with xi. Otherwise we set xi = False if Gi
x = Gj

C

contains only the tip labeled with xi. By this assignment,
any clause Cj(1 ≤ j ≤ k) is satisfied as Cj contains a literal
xi when xi = True (as Gj

C contains the tip labeled with xi)

and contains literal xi when xi = False (as Gj
C contains the

tip labeled with xi). Note that this assignment will not set
xi = 1 and xi = 0 simultaneously. This is because based on
Property 1, any aggregation of a variable gadget of cost 16
contains exactly one singleton group which contain exactly
one tip. Thus the Theorem 4 is proved.

15

	Introduction
	Preliminaries
	Problem Statement
	Similarity Functions

	Related Works
	Similarity-Join Framework
	Framework for Overlap Similarity
	Extension to Other Functions
	Observations

	Knowledge Type Aggregation
	Aggregation Framework
	Aggregation Cost Model
	Aggregation Algorithms

	Knowledge Entity Partition
	Partition Framework
	Partition Algorithm
	Partition Identification

	Experiments
	Annotation Quality
	Performance and Scalability
	Running Time
	Speedup
	Scaleup

	Conclusion
	References

