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Abstract— This paper describes a robot in the form of a
self-folding sheet that is capable of origami-style autonomous
folding. We describe the hardware device we designed and
fabricated. The device is a sheet with a box-pleated pattern and
an integrated electronic substrate and actuators. The sheet is
programmed and controlled to achieve different shapes using
an idea called sticker programming. We describe the sticker
controller and its instantiation. We also describe the algorithms
for programming and controlling a given sheet to self-fold into
a desired shape. Finally we present experiments with a 4× 4
hardware device and an 8×8 hardware device.

I. INTRODUCTION

A self-folding sheet is a robotic sheet that autonomously
transforms its shape by folding into the users’ desired shapes.
Our vision is to develop the hardware and software technol-
ogy that will allow users to make shapes by starting with a
self-folding sheet and adding physical stickers to select and
trigger a control sequence guaranteed to achieve the desired
shape. We imagine sheets capable of folding as a variety of
objects, such as a table, an airplane, or a tent. Applications
include digital fabrication, on-demand construction of objects
in remote environments, on-demand creation of tools, etc. We
aim to automate the creation of origami objects.

We have developed a novel device called the self-folding
sheet (Fig. 1). This device is a sheet patterned using an n×
n box-pleated pattern (for n = 4 and n = 8). We associate
an SMA actuator with each edge of the sheet and embed
supporting electronics. The sheet can be viewed as a modular
robot system, where each tile in the system corresponds to a
module. The sheet can fold following planning algorithms,
such as those described in [3], to achieve a three-dimensional
shape. The planner provides the required sequence of origami
folds, which can be executed using the actuators embedded
on the sheet.

Making three-dimensional shapes by folding has several
advantages over achieving shape formation using modular
self-reconfiguring robot systems composed of individual
independent modules. Since the modules are connected at
all times, the self-folding sheet is less prone to the type
of connection and disconnection errors that occur in unit-
modular systems. The planning system can be computed
in a centralized fashion and executed in a highly parallel
fashion. The folding operation is relatively easy to control.
The challenge, however, is in fabricating a self-folding
sheet with embedded actuators and supporting electronics
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Fig. 1. Two self-folding sheets transform itself into programmed
objects. (a) Vertical Folding. (b) Diagonal Folding. (c) Space
Shuttle. (d) Hat.

that is capable of physically delivering self-folding actions,
especially with multiple folds on the same edge, and the
planning algorithm that will synthesize the covert folding
sequence.

In our prior work we described the self-folding concept
[13] and a centralized planner for multi-origami folding from
a single sheet [3]. In this paper we present the design and
fabrication of a method for specifying the desired shape to
be achieved by folding, out of the set of shapes supported
by the multi-origami planner and device. By adding physical
patches of material to the sheet at shape-dependent critical
places (computable by a planner), the the control for the de-
sired shape is triggered and actuates the folding of the shape.
We call this approach sticker control and programming. In
sticker programming, the control sequence is achieved by
adding stickers, which are small segments of conductive
materials, to key locations on the sheet. The addition of each
sticker completes a circuit that triggers the function of an
actuator. By adding/removing different stickers at different
locations, we select different control sequences for achieving
different desired shapes. Given a self-folding sheet and
desired shapes, we can compute automatically the number of
stickers and their placement on the sheet. We also describe
two self-folding devices we have built and used to test sticker
programming. We give experimented results collected using
a 4×4 self-folding sheet and an 8×8 self-folding sheet (Fig.
1).

Our contributions in this paper are (1) sticker control archi-
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Fig. 2. A 1× 1 self-folding sheet (left) is a basic unit of self-
folding sheets. A 4×4 self-folding sheet (middle), and with folding
actuators (right). The 4×4 sheet is composed of 16 (= 4×4) 1×1
self-folding sheets.

tecture, (2) algorithm for the synthesis of sticker placement
and (3) devices and experiments with two different self-
folding sheet robots.

A. Related Works

1) Self-Reconfigurable System and Algorithm: Most prior
research in the modular robots addresses the design of self-
reconfiguring systems [1], [15], [14] and related shape-
planning algorithms [4], [9], [12].

The self-folding robot is different than modular self-
reconfiguring robots in that the modules in a self-
reconfiguring system are disconnected, while the self-folding
sheet has a mesh of connected tiles, each tile serving the role
of a module.

2) Origami Theory: Our theoretical model for the self-
folding sheet has a box-pleated pattern (Fig. 2). Demaine
and et al. [8] recently proved that an n×n box-pleated tiling
can fold into any polyhedral surface made up of O(n) unit
cubes on a cubic lattice. Further, [11] shows that any folded
state can be reached by a continuous folding motion without
the material penetrating itself.

3) Robotic Origami Folding: Prior work on robotic
origami folding considered the design of a robot that folds a
sheet into a 3D structure and its supporting algorithms, and
thus relies on external actuation for each folding operation.
Balkcom and Mason [7], [6], [5] have built a robot that
makes a sequence of simple folds—folds along a single line
at a time. The robot folds a restrictive class of origami
models. By contrast, our folds are generally more compli-
cated, involving several simultaneous creases. Many other
works considered robots for automatic folding of cartons
and packaging [16], [10]. In our work, the actuation of the
sheet is internal; the sheet itself is a self-folding robot that
transforms itself into the target object.

Nagpal [18], [17] developed and simulated algorithms for
folding origami from a sheet of identically programmed
autonomous units named “cells.” She described a language
for instructing the cells to assemble themselves into a global
shape. We achieve reconfiguration from a single connected
robot, which simplifies manufacturing.

II. TECHNICAL APPROACH

Given k desired 3D objects and a self-folding sheet robot,
our goal is to compute and program the control sequence
required to fold the 3D object from the sheet. The planning
algorithm has been described in [3]. Here we discuss how
to go from the theoretical plan to an executable sequence by
exploring a new programming and controlling method.

Self‐Folding Sheet

arch_s‐sheet

Body

Sticker Controller Actuators

Circuit Socket

Tile Joint

Signal 
Interface

Executable Sticker (Sticker Program)

Sticker 
Places

Fig. 3. Sticker control architecture of self-folding sheets

Fig. 4. (left) The fold angle at a crease is the supplement of the
dihedral angle. (right) A crease can be folded as either a mountain
fold or a valley fold. [3]

To facilitate programming, we design self-folding sheets
that support multiple target 3D shapes using the layered
sticker control architecture in Fig. 3. The bottom layer repre-
sents the box-pleated body of the self-folding sheet. The next
layer represents the electronic infrastructure and the actuation
system associated with each fold. The actuators are not con-
nected in this layer. The geometry of the electronic substrate
is shown in Fig. 5. The third layer is the programming layer.
It represents the sticker programming configuration. Physical
stickers are added to the sheet at computable locations, to
connect and trigger the action of an actuator (Fig. 15). The
stickers complete a circuit that triggers the folding execution
sequence to achieve the desired 3D shape. A sticker set can
be removed and replaced by a different sticker set to fold
a different 3D object. Section IV describes the algorithm
for automatically generating the sticker locations for a fixed
self-folding sheet and a desired object.

III. ARCHITECTURE FOR THE SELF-FOLDING SHEET

A self-folding sheet is a box-pleated 2-dimensional sheet
designed to transform itself into the desired shapes by folding
selected edges. Figure 2 shows the simplified structure of
the 4 × 4 self-folding sheet. The kinematic components
of the sheet include tiles, joints (hinges), and actuators.
The controlling components include a sticker controller and
sticker programs. The tiles locally rotate (fold) around their
joints. The dihedral angle is in the range 0◦ to ±180◦.

The fold angle is the supplement of the dihedral angle
between the two face meeting at the hinge (Fig. 4). The sign
of the fold angle determines the crease as either a mountain
fold or a valley fold (Fig. 4).

The edges of the sheet are actuated using SMA actuators
embedded in the sheet. When the actuators are added to the
sheet, they are not connected to the electronic substrate. The
connection is done selectively, according to the goal shape,
by adding stickers.

A. Model of Sticker Controller

The sticker controller is a module that contains the
electronic substrate required to fold the self-folding sheet
into users’ desired shapes, when the users provide sticker
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Fig. 5. 4×4 sticker controller (a) with no sticker (with no program)
and (b) with a sticker set (vertical folding program).
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Fig. 6. Model of 4×4 sticker controller.

programs to the controller. It provides the user with a
programming interface which is implemented using physical
materials.

Figure 5(a) shows the 4× 4 self-folding sheet including
a sticker controller with no sticker. Figure 5(b) shows the
sticker controller after we input the program for vertical
folding to achieve the shape in Fig. 1(a). Figure 6 shows
a model for the sticker controller. The sticker controller is
composed of a signal interface, a circuit, (actuator) sockets,
and sticker controller units (sticker places) [2].

B. Sticker Controller Unit

The sticker controller unit is a group of sticker places for
each 1× 1 sticker controller (Fig. 5, 6). The unit has sticker
places, input ports, and output ports. The sticker places are
locations within the controller substrate for the program. The
input ports are connected to the circuit. The output ports
are connected to three actuator sockets on left, diagonal,
and bottom edges. When the input ports of the unit receive
energy, the unit passes the signal to the selected outputs.

A sticker controller unit is named by the n-i-o sticker
controller unit, where:
• n is the number of output port groups,
• i is the number of input ports, and
• o is the number of output ports for each output port

group.

/st_prog/1‐3_com_unit_2

Ia Input Port

Oxa Output Port
Sxa Sticker Place 0 Sticker Place 

with no sticker 1 Sticker Place 
with a sticker
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Fig. 7. (a)(b)(c) represent the same 3-1-1 sticker controller unit
with no sticker. (d)(e)(f) represent the same 3-1-1 sticker controller
unit with a sticker set. We draw two sticker controller units in
three different diagrams. The model diagrams(a)(d) show detailed
information of the sticker controller unit. The same information
can be abstracted to a set of actuator codes displayed by the code
diagrams(b)(e). It is also depicted as a graphical image in the sticker
diagrams(c)(f). model_1x1_2x2_4x4_st_co_in_alg

c) 4x4 Sticker Controller

Actuator on left edge 
of self‐folding sheet unit

Sticker controller unit Actuator on diagonal edge 
of self‐folding sheet unit

Actuator on bottom edge 
of self‐folding sheet unit
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Fig. 8. Simplified model for the 1× 1, 2× 2 and 4× 4 sticker
controllers. 1× 1 self-folding sheet is composed of one sticker
controller unit and three actuator sockets on left, diagonal, and
bottom edges (a). A 2× 2 self-folding sheet is composed of four
1×1 sticker controllers (b). A 4×4 self-folding sheet is composed
of four 2×2 sticker controllers (c).

Figure 7 shows the 3-1-1 sticker controller unit. Each 1×1
self-folding sheet module has three actuators: left, diagonal,
and bottom actuators, as shown in Figure 8 (c). We select the
outputs by adding conductive material to the selected sticker
places. Figure 7 shows two 3-1-1 sticker controller units with
no sticker and with a sticker set. In Figure 7 (d), when input
port Ia gets energy, O1a and O2a receive the energy; O1a and
O2a are connected to S1a and S2a. This causes the actuators
connected to O1a and O2a to be activated. The input voltage
of Ia and the output voltage of O1a and O2a are the same.

IV. STICKER PROGRAMMING ALGORITHM

Given a self-folding sheet and k target shapes, the sticker
programming algorithm generates a sticker program; a
sticker program is composed of a sticker place design and
a sticker command script. The sticker design contains the
places and the shapes of the stickers. The sticker script con-
tains the k sequences of the triggering signals to transform
the programmed self-folding sheet into the k shapes.
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Fig. 9. (left) Input target shapes for the 8×8 sheet. (right) Origami
plan from origami planner.

The sticker programming algorithm is composed of three
components: an origami planner, a sticker compiler, and a
sticker linker.

A. Origami Planner

Given multiple 3D target shapes, the origami planner
generates an optimized origami plan. For each shape, the
planner determines the sequence of folds required to achieve
the shape. Details about the origami planner are presented in
[3]. Figure 9 shows an example of an origami plan for space
shuttle and hat shapes. According to Shape Information,
Group 1 ∪ 2 folds the space shuttle and Group 1 ∪ 3 folds
the hat.

B. Sticker Compiler

Given the group information of an origami plan and an
actuator model for the self-folding sheet, the sticker compiler
generates an executable sticker object and a sticker command
script. The actuator model is a function f (A)→ B, where A

Sticker Compiler
1) Given the group information of an origami plan and an

actuator model of a fixed self-folding sheet, convert each
actuation angle to its corresponding actuator codes.

2) Combine the actuator codes of all groups of each edge.
3) Construct an executable sticker object by collecting the

combined actuator codes on the edges (Fig. 11).
4) Construct a sticker command script by converting the folding

sequence of each shape (the shape information of the origami
plan (i.e. Fig. 9)) into a sequence of commends (i.e. Fig. 13).

5) Output the executable sticker object and the sticker com-
mand script.

Fig. 10. Algorithmic overview of sticker compiler.

Constructing Executable Sticker Object (Step 3)
• Given the converted actuator codes of each edge (From step 2).
• Let ac(i, j)−(k,l) be a converted actuator code on an edge e =

(v(i, j),v(k,l)), where v is a vertex. ac(i, j)−(k,l)← f ( fold angle of e).
• Let SO = {soui, j | i, j ≤ n} be an executable sticker object.
• Let soui, j be a executable sticker object unit of SO.
• For each column i and row j:

1) If i = odd and j = odd,
soui, j ← (ac(i, j)−(i, j+1),ac(i, j)−(i+1, j+1),ac(i, j+1)−(i+1, j+1)).

2) If i = even and j = odd,
soui, j ← (ac(i, j)−(i+1, j),ac(i+1, j)−(i, j+1),ac(i, j)−(i, j+1)).

3) If i = odd and j = even,
soui, j← (ac(i, j+1)−(i+1, j+1),ac(i+1, j)−(i, j+1),ac(i+1, j)−(i+1, j+1)).

4) If i = even and j = even,
soui, j ← (ac(i+1, j)−(i+, j+1),ac(i, j)−(i+1, j+1),ac(i, j+1)−(i+1, j)).

Fig. 11. Details of sticker compiler step 3.

Sticker Linker

1) For each alphabet (bit) of a given executable sticker object,
a) Construct the id of the alphabet.
b) Given a sticker place set, find a sticker place of id.
c) Copy the polygon p to the sticker place design.

2) Output the sticker place design.
Fig. 12. Algorithmic overview of sticker linker.

st_prog/result_st_prog_s‐shuttle_hat

a) Sticker Place Design 

Sticker Place for 
Enabling Actuator

Sticker Place for 
Disabling Actuator

{ (Shape 1 (Space Shuttle), (110) ),
(Shape 2 (Hat),                   (101) ) }

b) Sticker Command Script

Fig. 13. Result of sticker programming algorithm for the 8× 8
sheet. The space shuttle and the hat are input target shapes (Fig. 9
(left)). The sticker compiler and the sticker linker generate (a). The
sticker compiler generates (b). After we input (a) to the the 8×8
sheet, signal (110) of (b) transforms the sheet into the space shuttle
and signal (101) of (b) transforms the sheet into the hat.

is a fold angle and B is a binary signal (actuator code) for the
fold angle A. Figure 10 shows the five step process overview.

1) Generating the Executable Sticker Object: The first
step (Step 1 in Figure 10) is to convert all angles from the
planner to their corresponding actuator codes (Sec. III-B).

The second step is to combine all actuator codes of each
edge into the combined actuator codes for the sheet.

The third step is to construct an executable sticker object
by collecting the combined actuator codes of the edges. The
details of the step are in Figure 11.

2) Generating Sticker Command Script: In the fourth
step, the sticker compiler converts shape information of an
origami plan into a sticker command script by replacing the
group names to binary codes, which are signals for the signal
interface (Fig. 13 (b)).

C. Sticker Linker

Given an executable sticker object and a sticker place set,
the sticker linker generates a sticker place design. Figure 12
shows an overview of the sticker linker algorithm.

Each alphabet (each bit of the actuator code) of an
executable sticker object is represented by id, where id =
(a socket-id sid, a position l, an alphabet a) and sid =
{Al(i, j),Ad(i, j),Ab(i, j)}. For example, Al(3,4), a sid, represents
the left actuator on column 3 and row 4 of the self-folding
sheet. A sticker place set is a finite set of sticker places
(id, p) (id and polygon pairs). The polygon is graphical
information of a patch of the sticker; a polygon p is
(c,(p1, p2, p3, ..., pk)), where c is a color and pi is a co-
ordinate (x,y) of a point.

The sticker linker generates a sticker place design by
copying polygons ps. For each id of the given executable
sticker object, the linker finds (id, p) of the sticker place
design.
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TABLE I
OVERVIEW OF 4×4 AND 8×8 SELF-FOLDING SHEETS

4×4 sheet 8×8 sheet
Crease Pattern 4×4 Box-Pleated 8×8 Box-Pleated

Size 96mm×96mm 192mm×192mm
# of Edges 40 176

# of Actuators 40 36
Max. Power 360 W 360 W

Current Setting 1.5 A 5.0 A
Ave. Folding Time 21.6 s 5.0 s
Sticker Controller Sticker Controller Socket Controller

Reprogram Very Easy Easy
Body LP Body LP Body

Actuator Y-type Actuator Y-type Actuator
Programming By Sticker By Sticker

Programming Programming
Algorithm Algorithmst_prog/8x8_body

(b) Tile

(a)Alignment 
Bolt / Nut

(c) Joint

(d)Alignment 
Mark

Fig. 14. Lamination tile and paper joint body (LP Body)

Figure 13 shows output of sticker programming algorithm
for the space shuttle and hat shapes; the input target shapes
are shown in Figure 9 (left).

V. PHYSICAL SELF-FOLDING DEVICES

We have built several 4×4 and 8×8 self-folding sheets;
Table I shows the overview of the target sheets. The 4× 4
sheet was used to evaluate the low-level self-folding control
using straight-line folding and diagonal folding as target
shapes. The 8×8 sheet was used to evaluate the self-folding
of two complex shapes: a space shuttle and a hat.

A. The Body

The mechanical structure of the self-folding sheets is
composed of tiles and joints with the box-pleated crease
pattern (Fig. 14). Both devices are built from Lamination
tile and paper joint body (LP body).

The body is made of paper sandwiched between lamina-
tion film, and micro bolts and nuts (Scale Hardware, 0.5mm).
We use paper to form joints and the lamination sheet as tiles.
We cut each material with the Versalaser Cutting System.
To attach the three layers, we stack them and put it into a
laminator. To align the layers, we used the micro bolts and
nuts (Fig. 14).

B. Actuators

Both self-folding sheets use the Y-shape SMA actuators
(Fig. 15), which are developed by modifying Z-type actuators
in [19].

When current passes to the actuators, the actuators are
heated and they transform into the annealed shape. This
motion generates the folding force.

C. Sticker Controller for 4×4 Self-Folding Sheet

The sticker controller is composed of a circuit, sockets,
sticker places, and a signal interface (Fig. 5).

1) The Circuit: The circuit (a) is a network that passes
the energy for control. All parts of the sticker controller are
on the serial circuit (Fig. 17(right)). The ends (+ and -) of
the serial circuit are marked on the figure. The circuit is a
symmetric pattern composed of right triangles (Fig. 17). The
circuit is scalable with the circuit scaling algorithm depicted
in Figure 16.

Copper tape is the material used for the circuit. The copper
tape is also used for the socket, and the sticker place. We
cut copper tape with DPSS Laser Micromachining System
(Custom Build, at the Micro Robotics Lab, Harvard Univ.).

2) The Socket: The sockets connect the circuit and the
actuators (Fig 5). Tail knot sockets are used for the sheet
controller (Fig. 15).

We used the 0.5 mm micro bolts and nuts to attach an
actuator. When we attach the actuator, we make a knot on
the bolt for better electronic connection.

3) The Sticker Place: The executable sticker for the
sticker controller of the 4×4 sheet is composed of 2mm×
5.6mm of copper tape. When placing a sticker at a place for
enabling the actuator (Fig. 15), current passes and activates
the actuator. When placing a sticker at a place for disabling
the actuator (Fig. 15), current does not pass to the actuator.

Each edge has a sticker place. The sticker place has enable
and disable actuator areas (Fig. 15). We can add or remove
stickers in different combinations. Each set of actuators is
triggered by a fixed set of stickers. By replacing the stickers,
we can reprogram the sticker controller.

4) The Signal Interface: The sticker controller receives
runtime signals through a signal interface (Sec. IV). Because

4x4_s‐sheet_s‐place

Enabling Actuator

Disabling Actuator

Fig. 15. Y-type actuator and sticker place of 4×4 self-folding sheet.

4x4_circuit_4

Input:
i x i (2x2) circuit

Output:
2i x 2i (4 x 4) circuit

Step 1:
Copy the circuit

Step 2:
Connect 
the circuits

Fig. 16. The circuit scaling algorithm

4x4_circuit_2

+
‐

+
‐+

‐

4x4_circuit_1

+
‐

Fig. 17. The circuits for 1×1, 2×2, and 4×4 self-folding sheets
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(a)

4x4_vertical_sim_exp
00:00 00:10

00:20 00:25

(b)

4x4_diagonal_sim_exp
00:00 00:10

00:20 00:34

Fig. 18. Snapshots from programming and controlling 4×4 self-
folding sheet for diagonal folding (a) and vertical folding (b).
the sticker controller of the 4×4 sheet controls one actuator
group, we have one input (one + and one ground) interface.

5) The Executable Sticker: The executable sticker for
this controller is composed of the 2mm×5.6mm patches of
copper tape material. We manually placed the stickers on the
device, according to the sticker place design that the sticker
programming algorithm generates (Sec. IV).

VI. EXPERIMENT WITH THE 4×4 SELF-FOLDING SHEET

The 4 × 4 self-folding sheet runs two basic motions:
vertical and diagonal folding (Fig. 18). The sheet contains
3-1-1 sticker controller units. A sticker program for the sheet
normally contains one shape.

We implemented and evaluated the following four steps:
(1) we generated two sticker place designs for the vertical
shape and diagonal shape; (2) we placed and executed the
executable sticker for the vertical folding; (3) we removed the
executable sticker; (4) we placed and executed the executable
sticker for the diagonal folding.

A. Sticker Programming for Vertical and Diagonal Folding

We generated two sticker place designs for the two basic
shapes with the sticker programming algorithm (Sec. IV).
Table II shows the planning times on hardware.

TABLE II
ORIGAMI PLANNING TIME FOR VERTICAL AND DIAGONAL

FOLDING
Analysis Time for Vertical 3.6s (3600ms)
Building Time for Vertical 17ms
Analysis Time for Diagonal 4.2s (4200ms)
Building Time for Diagonal 16ms

CPU Intel Core 2 Quad 2.83GHz (Q9550)
Storage 3 GB RAM, Seagate 750GB 300MBps 7200rpm HDD
Graphics NVIDIA Quadro FX 1700

B. Results

The 4×4 sheet has 40 actuators and 40 edges. 42.5% of
the actuators were used for each of the two shapes (Table
III).

TABLE III
ACTUATORS (AC.) OF 4×4 SHEET

Folding Total Total Folding Ac. Total Ac.
Ac. Ac. Edges / Total Ac. / Total Edges

Vertical 12 40 40 30.0% 100.0%
Diagonal 10 40 40 25.0% 100.0%

Total 11 40 40 42.5% 100.0%

First, we executed the vertical folding program on the 4×4
self-folding sheet 14 times. Second, we removed the program
and reprogrammed the sheet diagonal folding program on the
sheet. Then we executed the diagonal folding 13 times. The
4×4 sheet achieved the vertical and diagonal folding reliably
(Fig. 18). The 4×4 self-folding sheet runs with current set
at 1.5A. The average folding time of both shapes is 21.6s
(Table IV).

TABLE IV
FOLDING TIME OF 4×4 SHEET
# of Runs Current Setting Ave. Folding Time

Vertical 14 1.5 A 21.0 s ±26.7%
Diagonal 13 1.5 A 22.4 s ±17.9%

Total 27 1.5 A 21.6 s ±22.5%

We measured the folding angle for several snapshots and
found that the basic folding motion is 134.0◦±12.1% (Table
V). Our target folding angle for the basic folding motion was
180.0◦. We achieved 74.5% of the target angle.

TABLE V
FOLDING ANGLE AND FOLDING ACHIEVEMENT OF 4×4 SHEET

Ave. Folding Target Folding Achievement
Angles Angles (Folding Angle

/ Target Angle)
Vertical 141.6◦±7.9% 180.0◦ 78.7%

Diagonal 126.4◦±16.3% 180.0◦ 70.2%
Total 134.0◦±12.1% 180.0◦ 74.5%

While we folded the 4×4 sheet 27 times, the experiment
failed to meet the goal three times (Table VI). Most of
failures were due to broken or weak connections between the
socket and the actuator (SMA is hard to solder.) We made
the electronic connection not only with solder but also with
conductive bolts and nuts. However, while the sheet folded
several times, the electronic connection was weak. Once the
connection was loose, the socket was hard to recover. In this
case, we fixed the system by disabling the broken actuators.
The average number of disabled actuators was 1.04 (Table
VII). The sheet achieved its goal shapes reliably despite the
number of the disabled actuators.

Most of the results of the two basic shapes on the 4× 4
sheet are similar. However, the resistance was 19.1 Ω for
vertical folding while the resistance was 28.9 Ω for diagonal
folding. The resistance of the sheet increased 1.5 times
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TABLE VI
FAILURE OF 4×4 SHEET

# of Runs # of Failure Ave. Failure
Vertical 14 1 (of 14 runs) 0.7 (of 10 runs)

Diagonal 13 2 (of 13 runs) 1.5 (of 10 runs)
Total 27 3 (of 27 runs) 1.1 (of 10 runs)

TABLE VII
DISABLED ACTUATORS (AC.) OF 4×4 SHEET

Ave. # of Folding Disabled Ac. Disabled Ac.
Disabled Ac. Ac. / Folding Ac. / Total Ac.

Vertical 0.77 12 6.4 % 1.9 %
Diagonal 1.36 10 13.6 % 3.4 %

Total 1.04 11 9.7 % 2.6 %

TABLE VIII
RESISTANCE OF 4×4 SHEET

Ave. Resistance
Vertical 19.1 Ω

Diagonal 28.9 Ω

Total 23.6 Ω

after we reprogrammed the sheet. (Table VIII). Because
the number of folding actuators is almost same in the two
experiments, we can say the connectivity decreases after
reprogramming the sheet.

VII. EXPERIMENT WITH THE 8×8 SELF-FOLDING SHEET

We designed the 8×8 sheet to test self-folding planning
for more complex shapes. We selected a space shuttle-like
shape and a hat-like shap1e (Fig. 19). The sheet contains 3-
3-1 sticker controller units. A sticker program for the sheet
normally contains two shapes.

(a)

8x8_s‐shuttle_sim_exp
00:00 00:02

00:0600:04

(b)

8x8_hat_sim_exp
00:00

00:03

00:01

00:02

Fig. 19. Snapshots from programming and controlling 8×8 self-
folding sheet for space shuttle (a) and hat (b).

st_prog/8x8_empty_s‐sheet

(a) Circuit

(b) Socket
(c) Tile/ Cover
(e) Joint

(f) Signal Interface

Fig. 20. 8 × 8 Self-folding sheet after opening the coverlay
(electrical insulating film) of the sockets for programming with
actuators (before inserting actuators). The area of the coverlay for
the socket has a cut line, we can easily take out that area. An
actuator will be inserted in the socket (b).

st_prog/result_st_prog_s‐shuttle_hat_opti

Sticker Place 
for Enabling 
Actuator

Sticker Place 
for Disabling 
Actuator

Sticker Place Design 
(Optimized for 8x8 Socket Controller)

Fig. 21. Sticker place design optimized for the socket controller
of the 8×8 sheet. Input target shapes are the space shuttle and the
hat (Fig. 9 (left)). Fig. 13 (b) shows the sticker command script
for this design. Fig. 13 (a) shows the sticker place design before
optimizing.

We implemented and evaluated the following five steps:
(1) we generated a sticker place design for the space shuttle
and hat shapes; (2) we optimized the sticker place design
for the socket type sticker controller; (3) we placed the
executable sticker for the two shapes; (4) we executed
the executable sticker for the space shuttle shape; (5) we
executed the executable sticker for the hat shape.

The 8×8 sheet includes a socket controller (Table I, Fig.
20) that is a type of sticker controllers having hybrid-socket
sticker places. Instead of adding or removing the stickers,
we input the program to the sheet by inserting or ejecting
the actuators.

A. Sticker Programming for Folding of Space Shuttle and
Hat Shapes

TABLE IX
MULTIPLE ORIGAMI PLANNING TIME

Analysis Time for Space Shuttle 5.3s (5300ms)
Building Time for Space Shuttle 19ms
Analysis Time for Hat 4.9s (4900ms)
Building Time for Hat 17ms
Building Time for Multiple Origami Plan 25ms
Total Time 10.0s (10261ms)

We generated the sticker place design for the two shapes
with the sticker programming algorithm (Sec. IV). The
origami planner automatically planned the folding of the
two target shapes. (Fig. 9) Using the compiling and linking
algorithms, We manually computed the sticker place design
and the sticker command script (Fig. 13). Then, we manually
optimized the sticker place design for the socket controller
(Fig. 21). Table IX shows the planning times.
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B. Results

The socket controller controlled the 8× 8 sheet with the
relatively small number of actuators (only 20.5% of edges
have the actuators) (Tables X, I). We populated only the 36
edges relevant to our self-folding target shapes out of the 176
edges of the 8×8 sheet with actuators, while we populated
the 40 edges of the 4×4 sheet with 40 actuators. The 8×8
self-folding sheet has 18.2% less actuators then 4× 4 self-
folding sheet, while the 8×8 sheets has 4.4 times more edges
than the edges of the 4× 4 sheet (Tables III, I). 61.1% of
the actuators are used, when the 8×8 sheet transformed into
the both shapes (Table X).

TABLE X
ACTUATORS (AC.) OF 8×8 SHEET
Folding Total Total Folding Ac. Total Ac.

Ac. Ac. Edges / Total Ac. / Total Edges
S. Shuttle 20 36 176 55.6% 20.5%

Hat 24 36 176 66.7% 20.5%
Total 22 36 176 61.1% 20.5%

We executed the space shuttle shape folding on the 8×8
device 14 times. Then, we executed the folding of hat shape
12 times. The 8×8 sheet achieved the space shuttle and hat
shapes reliably with the optimized number of actuators (Fig.
19). The 8×8 self-folding sheet ran with current set at 5.0A.
The average folding time was 5.0s (Table XI).

TABLE XI
FOLDING TIME OF 8×8 SHEET

# of Runs Current Setting Ave. Folding Time
Space Shuttle 14 5.0 A 5.9 s ±16.9%

Hat 12 5.0 A 4.5 s ±23.4%
Total 26 5.0 A 5.0 s ±19.9%

While we folded the 8× 8 sheet 26 times with the two
complex shapes, the experiment failed five times (Table XII).
Like the 4×4 sheet, most of the failures were due to broken
or weak connections between a socket and an actuator. We
resolved these failures by disabling the broken actuators.

TABLE XII
FAILURE OF 8×8 SHEET
# of Runs # of Failure Ave. Failure

Space Shuttle 14 3 (of 14 runs) 2.1 (of 10 runs)
Hat 12 2 (of 12 runs) 1.6 (of 10 runs)

Total 26 5 (of 26 runs) 1.9 (of 10 runs)

The average number of disabled actuators (for fix) was
0.81. It is 3.7 % of the folding actuators and 2.2 % of the
total actuators (Table XIII). The sheet achieved their shapes
reliably with this number of the disabled actuators.

TABLE XIII
DISABLED ACTUATORS (AC.) OF 8×8 SHEET

Ave. # of Folding Disabled Ac. Disabled Ac.
Disabled Ac. Ac. / Folding Ac. / Total Ac.

S. Shuttle 0.82 20 4.1 % 2.3 %
Hat 0.80 24 3.3 % 2.2 %

Total 0.81 22 3.7 % 2.2 %

We enabled the actuator group 1 and 2 for the space
shuttle-like shape. The resistance for the space shuttle shape
was 17.4kΩ. We enabled the actuator group 1 and 3 for
the hat-like shape. The resistance for the hat shape was
80.15Ω. While we executed the space shuttle shape, the
average resistance of the group 3 was 1.71MΩ. However,
because we did not use the group 3 for the space shuttle
shape, there was no problem to achieve the shape.

TABLE XIV
RESISTANCE OF 8×8 SHEET

Ave. Resistance Ave. Resistance of
Group1, Group2, Group3 Folding Groups

Space Shuttle 44.8Ω, 34.8kΩ, 1.71MΩ 17.4kΩ

(Group1 + Group2) / 2
Hat 109.3Ω, 14.7kΩ, 51.0Ω 80.15Ω

(Group1 + Group3) / 2

VIII. CONCLUSIONS

We developed two different hardware devices and con-
ducted experiments with the sticker placement and self-
folding control algorithms, which can be used as an au-
tomatic programming method for robots with printer-like
programming machines. We achieved four target shapes
reliably. Finally, we collected and analyzed self-folding data
during these experiments. The devices were programmed
using the concept of sticker programming and the sticker
placement algorithm introduced in this work. The results in
this paper enable a path from theoretical origami folding
algorithms to experimental self-folding sheet robots capable
of simple autonomous 3D shape formation.
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