
������� ��	
� ������ ����������� ��������	 �� ������� ��	
� ����� ���

�������������� �������

Daniel Vlasic � Hanspeter Pfister † Sergey Molinov ‡ Radek Grzeszczuk‡ Wojciech Matusik�

��������

We present new hardware-accelerated techniques for rendering sur-
face light fields with opacity hulls that allow for interactive visual-
ization of objects that have complex reflectance properties and elab-
orate geometrical details. The opacity hull is a shape enclosing the
object with view-dependent opacity parameterized onto that shape.
We call the combination of opacity hulls and surface light fields the
opacity light field. Opacity light fields are ideally suited for render-
ing of the visually complex objects and scenes obtained with 3D
photography. We show how to implement opacity light fields in
the framework of three surface light field rendering methods: view-
dependent texture mapping, unstructured lumigraph rendering, and
light field mapping. The modified algorithms can be effectively
supported on modern graphics hardware. Our results show that all
three implementations are able to achieve interactive or real-time
frame rates.

CR Categories: I.3.2 [Computer Graphics]: Picture/Image
Generation—Digitizing and Scanning, Viewing Algorithms;

Keywords: Image-based rendering, 3D photography.

� 	
��������

We are interested in interactive rendering of 3D objects that have
complex reflectance properties and elaborate geometrical details.
Good examples are trees, furry Teddy bears, feathers, or other mod-
els typically acquired using 3D photography [Matusik et al. 2002].
Our approach employs images to represent both view-dependent
appearance (using surface light fields) and view-dependent shape
(using opacity hulls). We call the resulting representation opac-
ity light fields: images of the object with texture and opacity are
mapped onto a coarse polygon mesh and rendered from arbitrary
viewpoints. Here we propose and describe three new algorithms for
rendering of opacity light fields that are able to faithfully reproduce
visually complex objects and that can be efficiently implemented
on modern graphics hardware.

�MIT, Cambridge, MA.
Email: [drdaniel,wojciech]@mit.edu

†MERL, Cambridge, MA.
Email: pfister@merl.com

‡Intel Labs, Santa Clara, CA.
Email: [sergey.molinov,radek.grzeszczuk]@intel.com

After a review of previous work we present a general overview
of our approach in Section 3. Then we describe how opacity light
fields can be applied to three popular light field rendering meth-
ods: view-dependent texture mapping (Section 4), unstructured lu-
migraph rendering (Section 5), and light field mapping (Section 6).
Section 7 presents results from our implementations using various
models acquired with 3D photography. In Section 8 we compare
the three approaches and give an outlook on future work.

� ������� ����

We are using an image-based rendering approach to visualize the
wide range of models than can be acquired with 3D photography.
Early image-based rendering methods [McMillan and Bishop 1995;
Chen and Williams 1993; Levoy and Hanrahan 1996; Gortler et al.
1996] require a large set of images to achieve high rendering qual-
ity. A more scalable approach is to parameterize the textures di-
rectly on the surface of the object. This approach enables more ac-
curate interpolation between the images and it has been employed
by view-dependent texture mapping (VDTM) [Debevec et al. 1996;
Pulli et al. 1997; Debevec et al. 1998], surface light field render-
ing [Miller et al. 1998; Wood et al. 2000; Nishino et al. 1999],
unstructured lumigraph rendering (ULR) [Buehler et al. 2001], and
light field mapping (LFM) [Chen et al. 2002]. We will describe
VDTM, ULR, and LFM in more detail in the remainder of this pa-
per.

Current surface light field approaches are limited by the com-
plexity of object’s geometry. A dense mesh requires many ver-
tices and leads to a decrease in rendering performance. The arti-
facts of using a coarse mesh are most noticeable at the silhouette of
the object. Sander et al. [2000] use silhouette clipping to improve
the visual appearance of coarse polygonal models. However, their
method might be impractical for complex silhouette geometry like
fur, trees, or feathers. Lengyel et al. [2001] use concentric, semi-
transparent textured shells to render hair and furry objects. To im-
prove the appearance of object silhouettes they use extra geometry
– called textured fins – on all edges of the object. Neither method
uses view-dependent textures and opacity from images.

To accurately render silhouettes of high complexity with only
simple geometry we are using opacity hulls [Matusik et al. 2002].
Opacity hulls use view-dependent alphas for every surface point on
the visual hull [Laurentini 1994] or any other geometry that is big-
ger or equal to the geometry of the real object. Matusik et al. [2002]
use opacity hulls with surface light fields (for objects under fixed
illumination) and surface reflectance fields (for objects under vary-
ing illumination). They demonstrate that opacity light fields are
very effective to render objects with arbitrarily complex shape and
materials from arbitrary viewpoints. However, their models are im-
practically large, on the order of 2-4 Gigabytes, and the point-based
rendering algorithm is not hardware accelerated. Their unoptimized
implementation takes about 30 seconds per frame. In this paper, we
use polygon rendering algorithms to efficiently render opacity light
fields on graphics hardware.

Polygon-based rendering of opacity light fields requires visibil-
ity ordering. For VDTM and ULR we use depth-sorting of primi-

tives using a BSP-partitioning of 3D space [Fuchs et al. 1980]. Un-
fortunately, depth-sorting of triangles is particularly hard in the case
of LFM, since it is a multi-pass algorithm and the triangles have to
rendered in the order in which they are stored in texture images.
Recently several algorithms have been proposed for computing vis-
ibility ordering with the aid of graphics hardware [Krishnan et al.
2001; Westermann and Ertl 1998; Everitt 2001]. These algorithms
avoid the hassle of building complicated data structures and are of-
ten simple to implement. We combine hardware-accelerated visi-
bility ordering with LFM into a novel, fully hardware-accelerated
algorithm for rendering of opacity light fields.

In the remainder of this paper we show how to implement opac-
ity light fields on modern graphics hardware using modified ver-
sions of VDTM, ULR, and LFM. The resulting new methods have
some limitations for highly specular surfaces due to the relatively
small number of textures. Furthermore, because surface light fields
capture object appearance for fixed illumination, we are not able
to render the objects under varying lighting conditions. Neither of
these limitations restrict the usefulness of opacity light fields. They
are ideally suited for rendering of the visually complex objects and
scenes obtained with 3D photography, and they can efficiently be
implemented on modern graphics hardware.

� ��������

The input to our algorithms consists of a triangular mesh and a set
of rectified RGBA images captured from known camera locations.
The fundamental algorithm for all three rendering methods consists
of the following steps

Visible Views: For each mesh vertex v, find the set of visible
views. A vertex is considered visible if the triangle ring
around it is completely un-occluded.

Closest Views: For each mesh vertex v, find k visible views closest
to a given viewing direction d. In our implementation k � 3,
as described later.

Blending Weights: Compute the blending weights for the corre-
sponding closest views, where higher weights are assigned to
views closer to d.

Rendering: Render each triangle by blending images from the
closest views of its three vertices.

Our methods differ in realization of each stage, but share a number
of common techniques. Subsequent sections describe each of the
real-time opacity light field rendering methods in detail.

� ���������
��
� ������ �����

View-dependent texture mapping for image-based rendering was
introduced by Debevec et al. [1996], Pulli et al. [1997] and De-
bevec et al. [1998]. Our approach is closest to [Debevec et al.
1998], whose method achieves photorealism by blending pictures
of a real-life object as projective textures on the surface of a 3D
model. To find suitable textures to blend, they construct for each
polygon of the model a view map – a planar triangulation whose
vertices correspond to viewpoints of original pictures. To construct
it, one has to first project unit vectors towards visible views onto
the plane of the polygon, and then resample them to fit a predefined
regular triangulation. Specifically, each vertex of the triangulation
corresponds to the closest projected original view.

View maps are queried for a triangle that contains the projection
of a new desired view. Original pictures corresponding to vertices

of this triangle are blended with weights equal to barycentric coor-
dinates of the projected new view within the triangle. While this ap-
proach assures smooth transitions between views, it introduces re-
sampling errors. Furthermore, since blending is done per-polygon,
continuity across triangle edges is not preserved.

Chen et al. [2002] present an approach that preserves continu-
ity across triangles by blending the views on a per-vertex basis. At
each vertex, they construct a Delaunay triangulation of the visi-
ble views, which they resample into their own view map – a dense
(32� 32) uniform grid of views computed by blending the origi-
nal set of views. This approach efficiently renders complex objects
with controllable precision. However, light field approximation us-
ing matrix factorization makes the LFM approach sensitive to the
accuracy of the data and the model. Instead, our modified VDTM
method uses the latest graphics hardware to enable fast rendering
directly from the original views, keeping their sharpness and detail.

��� ������	
	������

Similarly to Debevec et al. [1998], we blend original views using
barycentric weights within a triangulation using local coordinate
frames for each vertex. However, we blend on a per-vertex basis,
as in Chen et al. [2002]. Finally, in contrast to both methods, we
do not resample original views: to find closest views and compute
corresponding blending weights, we query the original Delaunay
triangulations of visible views at each vertex v. In this process, nor-
malized viewing vectors of visible views are first projected onto the
tangential plane of v. They are subsequently triangulated with an ef-
ficient and robust 2D Delaunay triangulation algorithm [Shewchuk
1996] (see Figure 1).

N^

v

a) b)

C4
C5

C6

C3

C2
C2

C3 C5

C6

C4

C1

C1

Figure 1: Delaunay triangulation of visible views. (a) Viewing di-
rections of visible camera views (C1-C6) at vertex v are first pro-
jected onto the tangential plane of v. (b) Then a 2D Delaunay tri-
angulation of the projected views is constructed.

In this setting, closest original views for a novel viewing direc-
tion, d, are vertices of a Delaunay triangle that d projects into.
The blending weights are, consequently, equivalent to barycentric
weights of d within the triangle, as depicted in Figure 2a.

Sometimes, however, a desired view direction d does not fall
within any of the triangles. In such cases we extrapolate by blend-
ing between nearby views on the convex hull of the triangulation
(Figure 2b). Those views are found by intersecting convex hull
edges with the line connecting d and x, the centroid of the convex
hull. The views belonging to the intersecting edge are weighed rel-
ative to their distances to the intersection. Specifically, weights are
larger for views closer to the intersection. With this technique we
ensure continuity of the blending weights.

Finally, if a triangulation is impossible altogether (i.e., there
are less than three visible views), all available views are used and
weighted according to their distance to d. In our experience, pro-
vided that the mesh is smooth and original views densely sampled,
the later situation rarely occurs.

C2

C3 C5

C6

C4

C1

d
w1

w3
w4

(a) (b)

C2

C3 C5

C6

C4

C1

d w1

w2

x

Figure 2: Closest views and blending weights. (a) For a new view-
ing direction d, closest cameras are Delaunay vertices of the tri-
angle that d projects into (C1C3C4 in the figure). Corresponding
blending weights are the barycentric coordinates of d within the tri-
angle (w1�w3�w4). (b) If d falls outside the triangulation, blending
occurs between two nearby views on the convex hull of the triangu-
lation (C1 and C2 in the figure). x denotes the centroid of the convex
hull.

When computing planar triangulations, we are distorting the dis-
tances between views via projection, as well as ignoring views be-
low the tangential plane. Ideally, one should construct spherical
Delaunay triangulations to avoid these issues. That approach would
also eliminate the need for extrapolation.

Once we have computed per-vertex closest views and corre-
sponding blending weights, we can proceed to the final step of the
algorithm - rendering on a per-triangle basis. During rendering,
each triangle is textured with the set of closest views of its three
vertices. This set can contain up to nine textures, but usually has
less since nearby vertices often share closest views. Texture blend-
ing weights are combined in the following manner: a vertex keeps
the computed weights of its own closest views, and sets weights
corresponding to other vertices’ closest views to zero (see exam-
ple in Figure 3). This is identical to combining vertex light fields
with hat functions as described in [Chen et al. 2002]. Combining
weights in this manner guarantees continuity across triangle edges.

Transparency information in our data imposes an ordering con-
straint for rendering opacity light fields on commodity graphics
hardware. To ensure correct alpha blending, triangles must be ren-
dered in back-to-front order. To accomplish this, we create a BSP
tree [Fuchs et al. 1980] of the mesh during preprocessing. We per-
form visibility, closest views, and weight computation on BSP tree
triangles, and traverse the tree while rendering. The actual ren-
dering amounts to blending up to nine textures per triangle, and is
carried out completely by the graphics hardware.

��� ����������

A naive implementation of the algorithm described above does not
achieve real-time performance. We are able to achieve much higher
frame rates through texture compression, reducing per-frame CPU
computation through caching and fast data structures, as well as by
exploiting modern graphics hardware capabilities.

Opacity light fields inherently encompass large datasets – on the
order of several Gigabytes, mostly comprised of textures. To max-
imize hardware rendering performance, it is imperative to fit all
textures in the on-card graphics memory. We are able to do this
by compression; namely, we crop each view to the exact bounding
box of the actual object, and resize the resulting image to approxi-
mately a quarter its size. As we will show in Section 7, we can fit
several Gigabytes of original camera images into the 128MB video
memory commonly available on current graphics hardware.

The computation of closest views and weights runs on the CPU,
and it is advantageous to speed it up as much as possible. Therefore,
Delaunay triangulations are pre-computed and stored along with
their connectivity information, enabling fast breadth-first search

during runtime. Under the assumption that a viewer will move the
virtual camera continuously around the model, the viewing direc-
tion d will mostly stay in the same Delaunay triangle or move to a
neighboring one, resulting in a short search path.

Rendering essentially blends camera views, which are, by defi-
nition, projective textures from the point of the corresponding cam-
eras. Although projective texture mapping runs efficiently on hard-
ware, and is utilized in [Debevec et al. 1998], caching the projective
texture coordinates can save a number of GPU cycles. Therefore,
we precompute per-vertex texture coordinates for all visible views
and store them within the mesh data.

During rendering, each triangle is textured with the set of clos-
est views of its three vertices. We have to define up to nine tex-
tures, nine blending weights, and nine pairs of texture coordinates
for each triangle vertex. Textures and coordinates are retrieved from
the set of closest views and the cached coordinate data, respectively.
Texture weights, on the other hand, are combined as shown in Fig-
ure 3. Since the same vertex corresponds to different sets of textures
in different triangles, data has to be presented to hardware as trian-
gle lists (not strips or fans). After preparation, textures, weights,
and coordinates are sent to the graphics card in the form of input
streams. Rendering proceeds using programmable vertex and pixel
shaders found on modern graphics processing units (GPUs).

Opacity information, as mentioned earlier, enforces back-to-
front ordering of rendered triangles, requiring construction of a
BSP tree. Although the tree can be created in a preprocess and the
computational overhead of its traversal is negligible, additional ver-
tices are created by splitting triangles during BSP tree construction.
They significantly decrease the rendering performance. To alleviate
the problem, many different BSP trees of the same mesh are con-
structed by random insertion of triangles, and only the smallest tree
is kept.

Alternatively, we could use the depth peeling algorithm de-
scribed in Section 6 for depth sorting of primitives. The computa-
tion of the blending weights could then only be done once, making
the algorithm much faster. However, current graphics hardware is
not capable of blending nine textures and computing depth layers
without significant degradation in performance. Consequently, we
use BSP trees for VDTM and ULR.

Opacity affects the rendering performance in another way – each
triangle must be rendered in a single pass. If there were more than
one pass per triangle, alpha blending could not be performed cor-
rectly. Since our algorithm blends up to nine different textures per
triangle, only the latest graphics hardware can run it in one pass.
We currently use ATI’s Radeon 9700 card under DirectX 9.0. To
run this algorithm on older graphics hardware requires several ren-
dering several passes. Each pass renders triangles into a separate
image buffer, and proceeds by merging them with the front buffer.
Obviously, this would be detrimental to performance.

! "
�������� #$� ���% &�
����

Unstructured lumigraph rendering [Buehler et al. 2001] can be used
in place of VDTM as alternative blending algorithm for opacity
light fields. The approach differs from the previously described
VDTM only in finding closest views and blending weights. Instead
of computing Delaunay triangulations, ULR uses a ranking func-
tion based on the angles between original views and desired view.
For each vertex v and some viewing direction d, the algorithm finds
the k nearest visible views by comparing the angles they subtend
with d (Figure 4).

Blending weights are computed according to the following for-

v0

v1 v2

(C0,w00), (C1,w01), (C2,w02)

(C0,w10), (C4,w14), (C5,w15) (C1,w21), (C3,w23), (C4,w24)

v0

v1 v2

(w00, w01, w02, 0, 0, 0)

(w10 , 0, 0, 0, w14, w15) (0, w21, 0, w23, w24, 0)

(C0, C1, C2, C3, C4, C5)

Vertex Closest Camera Views Blending Weights Triangle Closest Views Triangle Blending Weights
V0 C0�C1�C2 w00�w01�w02 w00�w01�w02�0�0�0
V1 C0�C4�C5 w10�w14�w15 C0�C1�C2�C3�C4�C5 w10�0�0�0�w14�w15
V2 C1�C3�C4 w21�w23�w24 0�w21�0�w23�w25�0

Figure 3: Vertex weight combining example. After computing per-vertex closest views and blending weights (shown on the left side of the
figure), we have to combine them for each triangle. The union of closest views of the three vertices defines the set of views for the triangle.
Before rendering, each vertex needs to have a weight associated with each of the views of the set. If that weight is not already computed, it is
set to zero (show on the right side).

v

d

C1

C3

C2

CN

θ2 θ1

θ3
θΝ

Figure 4: Unstructured lumigraph rendering. For vertex v and de-
sired view d, blend the closest visible views (Ci) according to the
angles θi.

mula:

ri �
1� pi

t

pi
�

1� pi
pk

pi
� wi �

ri

∑k�1
j�1 r j

(1)

0 � i � k� θi � θ j� �i � j

Here, ri represent relative weights of the closest k�1 views. Those
are normalized to sum up to one, resulting in actual weights wi. The
penalty term pi quantifies the angular difference between Ci and d:
It falls off as the angle between them decreases. Its presence in
the denominator of the whole expression enforces epipole consis-
tency. The penalty pk of the k-th closest view, which is not used for
blending, defines an adaptive threshold t. This technique enforces
smooth view transitions: As a view exits the closest view set, its
weight falls off to zero.

The ULR approach is advantageous due to its simplicity and
flexibility. Unlike VDTM, weight computation does not depend
on the mesh, making ULR more general. Furthermore, although it
requires more per-frame computation than VDTM, it runs interac-
tively.

��� ���	��������� ����	�

The penalty function as described in [Buehler et al. 2001] can be
resolution sensitive. In our implementation, however, we ignore
resolution penalties since our original views have the same reso-
lution and similar distance to the object. As penalty we use the

following simple expression:

pi � 1� cos θi (2)

The relative weights then follow directly from Equation 1:

ri �
1� 1�cosθi

1�cosθk

1� cos θi
�

cosθi� cos θk

�1� cos θi��1� cos θk�
(3)

0 � i � k� cosθi � cosθ j� �i � j

Because of normalization, we can drop the constant �1� cosθk�
from the denominator of the expression, resulting in:

ri �
cosθi� cosθk

1� cos θi
(4)

The ULR algorithm begins by computing cosines (dot products)
of the angles between the desired view and each original visible
view at each vertex v. It finds k � 4 closest views and blends three
of them using Equations 1 and 4. If only three views are available,
the same equations can be used with k � 3. For vertices with less
than three visible views, we use all available views and the same
equations with a threshold of one (cosθk is set to zero). A disad-
vantage of the ULR approach compared to VDTM is that all cosines
have to be computed for each frame, slowing down the weight com-
putation.

Although Delaunay triangulations are no longer needed, visibil-
ity information is still useful – per-vertex visible views are com-
puted and stored during a preprocess. Note, however, that visibility
need not be used: for objects with relatively small occlusions (such
as our angel model), all camera views can be considered for blend-
ing at each vertex, resulting in a higher-quality rendering.

Other aspects of the algorithm – BSP tree construction and
traversal, resizing textures, caching texture coordinates, combin-
ing weights, hardware shaders, and rendering – are the same as for
VDTM.

' #� %� (��)� �����

Light field mapping assumes the light field function approximated
by a sum of a small number of products of lower-dimensional func-
tions

f �r�s�θ �φ��
K

∑
k�1

gk�r�s�hk�θ �φ�� (5)

Figure 5: The finite support of the hat functions Λv j around vertex
v j, j � 1�2�3. Λv j

�i
denotes the portion of Λv j that corresponds to

triangle �i. Functions Λv1 , Λv2 and Λv3 add up to one inside ∆i.

Rendering is done directly from this compact representation using
commodity graphics hardware. Since this approach allows each
surface point to have a unique surface reflectance property, it is
ideally suited for modeling and rendering objects scanned through
3D photography. Chen et al. [2002] show how surface light field
approximation combined with image compression algorithms can
lead to extremely high compression ratios, up to four orders of mag-
nitude.

One limitation of LFM is that it cannot effectively handle objects
with complex geometry. Since its representation uses textures both
at the triangles and at the vertices of the mesh, this method works
best for medium size surface primitives – using a dense mesh un-
necessarily increases the size of the textures, while using a coarse
mesh leads to artifacts at the silhouettes. We extend the original
LFM framework to modeling and rendering of opacity light fields
and refer to the new rendering routine as opacity light field map-
ping (OLFM). OLFM allows us to model objects with complex ge-
ometric details while retaining interactive rendering performance
and high compression ratios.

Extending the LFM framework to include opacity hulls requires
minor changes to the approximation algorithm, since opacity data
are processed the same way as color data, but fairly significant mod-
ifications to the rendering algorithm, since the transparency layer of
the opacity light field necessitates an ordering constraint. To retain
the interactive performance of LFM, we choose to use a hardware-
accelerated visibility ordering algorithm [Everitt 2001; Krishnan
et al. 2001]. The resulting algorithm is completely hardware-
accelerated, it can render complex opacity light fields at interactive
frame rates, and is easy to implement.

The next section explains the approximation of opacity light
fields that leads to compact representation suitable for our rendering
algorithm. The following section describes the rendering algorithm
itself.

���
���������� �� ������ ���� ��	 �

Approximation of opacity light fields achieves compact and accu-
rate representations by partitioning the light field data around every
vertex and building the approximations for each part independently.
We refer to the opacity light field unit corresponding to each vertex
as the vertex light field. Partitioning is computed by weighting the
opacity light field function

f v j �r�s�θ �φ� � Λv j �r�s� f �r�s�θ �φ� (6)

where Λv j is the barycentric weight of each point in the ring of
triangles relative to vertex v j . The top row of Figure 5 shows hat
functions Λv1 , Λv2 , Λv3 for three vertices v1, v2, v3 of triangle �i.
As shown at the bottom of Figure 5, these 3 functions add up to

Figure 6: Resampling of views. Projection of original views (left),
Delaunay triangulation of projected views (center), uniform grid of
views computed by blending the original set of views (right).

unity inside triangle �i. In the final step of partitioning we repa-
rameterize each vertex light field to the local reference frame of
that vertex. We use matrix factorization to construct the approxi-
mations. To this end, the vertex light field function is discretized
and rearranged into the matrix

Fv j �

�
��

f v j �r1�s1�θ1�φ1� � � � f v j �r1�s1�θN �φN �
...

. . .
...

f v j �rM �sM �θ1�φ1� � � � f v j �rM�sM �θN �φN �

�
�� � (7)

where M is the total number of surface samples inside the triangle
ring and N is the total number of views for each surface sample. We
refer to matrix Fv j as the vertex light field matrix. Each column of
this matrix represents the appearance of the vertex ring under a dif-
ferent viewing direction. Rearranging the raw light field data into a
matrix involves two-step resampling. The first step normalizes the
size of each triangle ring view. The size of the normalized patch
is chosen to be equal to the size of the largest view. Resampling is
done using bilinear interpolation of the pixels in the original views.
The second step resamples the viewing directions as shown in Fig-
ure 6. Let vectors dv j

�i
be the viewing directions for the visible

views of a given triangle expressed in the reference frame of vertex
v j. We start by orthographically projecting these directions onto
the xy plane of the reference frame of vertex vj. The result of this
operation is a set of texture coordinates (Figure 6, left). Next we
perform the Delaunay triangulation of these coordinates (Figure 6,
middle) and compute the regular grid of views by blending the orig-
inal triangle views using the weighting factors obtained from the
triangulation (Figure 6, right).

Matrix factorization constructs approximate factorization of the
form

�Fv j �
K

∑
k�1

ukvT
k (8)

where uk is a vectorized representation of discrete surface map
g

vj

k �r�s� for the triangle ring of vertex vj and vk is a vectorized
representation of discrete view map h

vj

k �θ �φ� corresponding this
vertex.

Partitioning of light field data into vertex light fields ensures that
in the resulting approximation each triangle shares its view maps
with the neighboring triangles. This results in an approximation
that is continuous across triangles regardless of the number of ap-
proximation terms K. Note that each triangle light field can be ex-
pressed independently as a sum of its three vertex light fields using
the following equality

�f�i�r�s�θ �φ� �
3

∑
j�1

g
vj

�i
�r�s�hvj �θ �φ� (9)

where index j runs over the three vertices of triangle �i and
g

vj

�i
�r�s� denotes the portion the surface map corresponding to the

triangle �i.

Buffer A

Buffer B

layer 0 layer 1 layer 2 layer 3

Extracted

Layers

0 depth 1 0 depth 1 0 depth 1 0 depth 1 0 depth 1

Figure 7: Depth peeling. At each iteration, the algorithm extracts
a layer of the scene that has fragments with depth values more than
the values in Buffer A and less than the values in Buffer B. The
dashed lines indicate the portions of the scene that do not pass the
depth test of Buffer A and the bold lines indicate the portions of the
scene that pass both depth tests.

��� !�� ����

Rendering of opacity light fields requires visibility ordering. The
prevalent class of algorithms for visibility ordering today uses
depth-sorting of primitives using BSP-partitioning of 3D space
[Fuchs et al. 1980]. However, depth-sorting of triangles this way
is particularly hard in the case of LFM, since it is a multi-pass algo-
rithm and, to avoid excessive texture swapping and improve render-
ing efficiency, it employs tiling of the light field maps. This forces
rendering of triangles in the order in which they show up in the tiled
textures, making depth-sorting of the triangles impossible. (The al-
gorithm would constantly perform costly switching of textures.)

Recently several algorithms have been proposed for computing
visibility ordering with the aid of graphics hardware [Krishnan et al.
2001; Westermann and Ertl 1998]. These algorithms avoid the has-
sle of building complicated data structures, are often simpler to im-
plement and offer more efficient solutions. We describe here a vari-
ant of the algorithm called depth peeling [Everitt 2001]. A similar
fragment-level depth sorting algorithm is introduced in [Diefenbach
1996]. Subsequently, we describe the opacity light field mapping
algorithm, a fully hardware-accelerated algorithm for rendering of
opacity light fields using a combination of depth peeling and LFM.

Depth peeling works by extracting layers of primitives that do
not relate to each other in the visibility order, starting with the layer
that is closest to the camera. The algorithm uses two depth buffers,
as shown in Figure 7. Buffer A, shown in the top row, indicates how
much of the scene has been peeled away for each fragment, i.e., how
much of the scene has the depth smaller than the depth in Buffer A.
The depth-test function for Buffer A is set to ZTEST GREATER.
Buffer B, shown in the middle row, performs depth buffering of the
portion of the scene that passes the depth test of Buffer A using the
depth-test function set to ZTEST LESS. This means that at each
iteration of the algorithm, a layer of the scene gets extracted that
has fragments with the depth more than the depth in Buffer A and
less than the depth in Buffer B. These layers of the scene get saved
in textures for later alpha-blending. The alpha-blending is done in
back-to-front order, opposite to the order of peeling the layers.

Note that no depth comparison with Buffer A is done in the first
pass of depth peeling, as indicated in the figure by a missing rect-
angle in the left most column. The algorithm stops when it reaches
a layer that contains no visible primitives or that has the same set
of visible primitives as the previous layer. After each iteration of
the algorithm, the content of Buffer B is moved to Buffer A. In the
figure, the dashed lines indicate those portions of the scene that do
not pass the depth test of Buffer A and the bold lines indicate those
portions of the scene that pass both depth tests. The bold lines
represent the portion of the scene that corresponds to the extracted
layer. The extracted layers are shown separately in the bottom row.

There are many possible ways of implementing depth peeling

and the choice largely depends on the type of hardware available. In
our case, Buffer A is implemented using a combination of shadow
mapping and alpha testing. We set the orientation and the resolution
of the shadow map to be identical to that of the camera. Buffer B is
the regular z-buffer. The results of the shadow map comparison are
written to the alpha channel of the fragments and used to perform
the alpha test. Only those fragments that pass the alpha test get
written to the framebuffer.

Since both LFM and depth peeling have been designed with
hardware-acceleration in mind, it is rather simple to combine them
into a fully hardware-accelerated algorithm for rendering of opacity
light fields that maintains the crucial properties of its components:
interactivity and ease-of-use. For a scene with depth complexity
L, the algorithm requires L iterations. Each iteration starts with a
rendering pass that performs the depth peeling of the current depth
layer. Subsequently, the iteration continues with LFM rendering of
the current layer of the opacity light field. This is accomplished by
setting the depth-test function of the z-buffer to ZTEST EQUAL.
The result of each opacity light field rendering is stored in an RGBA
texture Ti, 1 � i � L. Once all L layers are processed, the textures
Ti are alpha-blended together using the framebuffer in back-to-front
order. See Appendix A for pseudo-code for the opacity light field
mapping algorithm.

�����������	
� ������

The opacity light field mapping algorithm described above requires
K�1 rendering passes to render each depth layer – one pass to per-
form depth peeling of each layer and K passes to perform the LFM
rendering. In our implementation, the depth peeling step has to be
done in a separate rendering pass from the LFM step, since both
these steps use the alpha channel of the framebuffer – depth peeling
uses it to store the results of the alpha test performed on the shadow
map and LFM rendering uses it to accumulate the transparency val-
ues computed during multiple rendering passes required to evaluate
the opacity light field approximation.

Since ATI’s Radeon 9700 has up to 32 texture lookups per ren-
dering pass, it is safe to assume that the LFM rendering of each
layer of opacity light field can be implemented in a single rendering
pass.1 Additionally, since the depth peeling algorithm is sensitive
to the resolution of the depth buffer, the floating point pixel pipeline
supported in the new graphics hardware would greatly improve the
accuracy of the algorithm.

* &��)��

To compare the quality and performance of the three algorithms
we use four models that have been acquired with the image-based
3D photography system by Matusik et al. [2002]. For each model,
the images were acquired with six high-resolution digital cameras
from 72�6 viewpoints around the object. At each viewpoint, alpha
mattes were captured using background monitors and high-quality
multi-background matting techniques. The texture images were ac-
quired from the same viewpoints under controlled, fixed illumina-
tion.

A triangular mesh of each object is computed using a volumetric
technique [Curless and Levoy 1996] from three orthographic lay-
ered depth images (LDIs) of the visual hull of the object. The LDIs
are computed using the method described in [Matusik et al. 2000].
Figure 10 shows the object meshes in column one, and actual pho-
tographs of the objects in column two. The companion animations
show each model rendered with the various approaches discussed
in this paper.

1Light field mapping of a 3-term light field approximation requires 17
texture lookups from 6 distinct texture sources.

Triangle # BSP Tree AuxiliaryModels
Count Triangles Data

Angel 8,053 8,742 64 MB
Bear 8,068 9,847 73 MB
Bonsai Tree 7,852 8,884 70 MB
Teapot 2,955 3,958 26 MB

Table 1: Size of the models used in our experiments. Auxiliary data
includes cached texture coordinates, Delaunay triangulations, and
visibility information. All models use 100 MB texture data after
compression.

"�� #�$% �� &�!

Table 1 shows the number of original triangles, the number of tri-
angles in the BSP tree, and the size of the auxiliary data that is
cached to accelerate rendering performance for VDTM and ULR.
The original texture size for all images is 2.37 GB for all models.
The simple compression scheme described in Section 4 reduces this
to 110 MB for a compression ratio of 23:1. Hardware texture com-
pression could further reduce this size by a factor of six with a slight
reduction in image quality.

Figure 10 shows opacity light fields rendered with VDTM (col-
umn three) and ULR (column four) using the meshes shown in
column one. The models were rendered from novel viewpoints
that were not part of the original capturing process. Note that
both VDTM and ULR follow epipole consistency (renderings from
viewpoints that were used to capture the data correspond exactly to
the original photographs.)

Both VDTM and ULR were implemented using DirectX 9.0 beta
2 on the ATI Radeon 9700 graphics card. As mentioned in Sec-
tion 4, this is currently the only card that can render nine textures
in one pass. Figure 8 shows the rendering performance of both
algorithms for the four models. The frame rates are virtually iden-

0

3

6

9

12

15

18

21

Angel Teddy bear Bonsai tree

F
P

S

Teapot

VDTM ULRVDTM ULR VDTM ULR VDTM ULR

24

8.8
7.7 8.2

7.2
8.7

7.9

19.0

16.7

Figure 8: Rendering performance of VDTM and ULR using the ATI
Radeon 9700 graphics card on a 2GHz Pentium 4 PC displayed at
1024�768 resolution with objects occupying approximately 1/3 of
the window.

tical, with a slight speed advantage for VDTM. This is due to the
fact that ULR requires to take all visible views into account. The
breadth-first search used in VDTM usually does not require con-
sidering many views during smooth motion. A fair amount of time
is spent on the CPU for the computation of blending weights. For
VDTM the breakdown is 25% CPU versus 75% GPU time, and
for ULR it is 37% CPU versus 63% GPU time. These ratios are
fairly consistent across all models. Not moving the objects avoids
the computation of blending weights and increases the rendering
performance to more than 30 frames per second for both methods.

0

20

40

60

80

100

120

140

160

180

Angel Teddy bear Bonsai tree

F
P
S

Teapot

1 layer 2 layers 3 layers1 layer 2 layers 3 layers 1 layer 2 layers 3 layers 1 layer 2 layers 3 layers

1-term PCA

2-term PCA

3-term PCA

Figure 9: Rendering performance of opacity light field mapping us-
ing Nvidia GeForce4 Ti 4600 graphics card on a 2GHz Pentium
4 PC displayed at 1024� 768 window with objects occupying ap-
proximately 1/3 of the window.

"�� ������ ���� ��	 %�����

We have computed the 3-term PCA approximation of opacity light
fields for the four objects shown in Table 1. We have experimented
with different levels of tessellation of the meshes. The teapot,
which has a very simple geometry, only requires about 3,000 tri-
angles. For the other models with complex geometry, we computed
the approximations using two resolutions of the same mesh: one
resolution had approximately 8,000 triangles, the other one had ap-
proximately 15,000 triangles. We noticed that the finer tessella-
tion was reproducing the objects better, probably because it leads
to smaller surface patches that can be easier approximated using
matrix factorization algorithms. Coarser tessellation results in in-
creased blurriness of the models. Column 3 of Figure 10 shows
opacity light fields with the 3-term PCA approximation using the
higher tessellation meshes. The screen shots were captured from
the same camera location that was used to capture the photographs
in column 1.

Note that OLFM – in contrast to VDTM and ULR – never uses
the input images for rendering, instead it renders directly from the
compressed data stored in the form of light field maps. OLFM
might not produce as good an approximation to the input images
as the other two methods. However, it guarantees consistent quality
of the approximation for novel views, and it is faster, and it uses
much less texture memory.

Unlike VDTM and ULR, OLFM offers progressive support. Fig-
ure 11 illustrates the progressive improvement in the rendering
quality of OLFM as we increase the number of terms that approx-
imate the opacity light fields. The biggest difference occurs when
we add the first and the second approximation terms.

Since the depth complexity of our models is not very high, when
using depth peeling, no more than three layers were ever required.
Figure 9 shows the rendering performance of opacity light field
mapping for different number of depth layers for the 3-term PCA
approximation of the angel model. OLFM retains the interactive
rendering frame rate and high compression ratios of the original
LFM algorithm.

Table 2 shows the compression results obtained for the 3-term
PCA approximation of opacity light fields for the models. We rou-
tinely get three orders of magnitude of compression. This is slightly
less than for LFM, since opacity light fields are slightly more sen-
sitive to compression and we use larger number of triangles. The
resolution of the view maps used here was 16�16 for the first three
models and 32� 32 for the teapot. Currently, our software does
not support higher view map resolution for meshes with that many
triangles. There is very little visual degradation when compressing
textures using hardware texture compression.

+ ,�
�)���
 �
� (��� ����

We showed how to implement opacity light fields in the framework
of three surface light field rendering methods: VDTM, ULR, and
OLFM. The resulting algorithms are easy to implement and are
fully hardware-accelerated. We found that they offer an interest-
ing set of solutions in the quality-performance spectrum.

VDTM and ULR provide very high image quality at interactive
speeds. We found that both algorithms compare favorably to the
point rendering method described in [Matusik et al. 2002]. Point
rendering achieves higher image quality by using many more ver-
tices (0.5 to 1.5 million) compared to the relatively coarse triangle
meshes. On the other hand, VDTM and ULR are two orders of
magnitude faster and are hardware accelerated.

OLFM offers very good compression and performance. The
models, when fully compressed, are of the order of several
Megabytes. We can render them directly from the compressed rep-
resentation at higher frame rates than VDTM and ULR. However,
OLFM is sensitive to inaccuracies in geometry and calibration of
data. When the geometry becomes very imprecise, the rendering of
the object looks blurry. However, we believe this problem can be
solved using relief textures as the means of getting a better shape
approximation. We believe this would lead to an improved quality
of the models with complex geometry.

Opacity light fields offer a trade-off between the amount of de-
tailed geometry and the amount of view-dependent opacity. A very
dense mesh that fits the object perfectly does not require any opac-
ity information. However, storing and rendering of huge meshes is
inefficient, and detailed geometry of real-life objects is very hard to
get. We find that using coarse polygon meshes in combination with
accurate opacity information is a very good solution in this tradeoff.

In the future, we would like to investigate interactive rendering
of opacity reflectance fields – the combination of opacity hulls and
surface reflectance fields [Matusik et al. 2002]. Opacity reflectance
fields can render complex objects under varying illumination.

- ���
��)�� $�
��

MERL would like to thank the following people for their help
and support: Remo Ziegler, Addy Ngan, Seth Teller, and Leonard
McMillan. We especially thank Michael Doggett, Joe Chien, and
Jeff Royle from ATI for providing us with the latest graphics hard-
ware and DirectX 9.0 drivers. Intel would like to thank Wei-Chao
Chen, Jean-Yves Bouguet, Karl Hillesland, and Clinton Taylor for
their help in this project.

&�.���
���

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., AND COHEN, M. 2001.
Unstructured lumigraph rendering. In Computer Graphics, SIGGRAPH 2001 Pro-
ceedings, 425–432.

CHEN, S. E., AND WILLIAMS, L. 1993. View interpolation for image synthesis. In
Computer Graphics, SIGGRAPH 93 Proceedings, 279–288.

CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H., AND GRZESZCZUK, R. 2002. Light
Field Mapping: Efficient Representation and Hardware Rendering of Surface Light
Fields. ACM Transactions on Graphics 21, 3 (July), 447–456. ISSN 0730-0301
(Proceedings of ACM SIGGRAPH 2002).

CURLESS, B., AND LEVOY, M. 1996. A Volumetric Method for Building Complex
Models from Range Images. In Proceedings of SIGGRAPH 96, ACM SIGGRAPH
/ Addison Wesley, New Orleans, Louisiana, Computer Graphics Proceedings, An-
nual Conference Series, 303–312. ISBN 0-201-94800-1.

DEBEVEC, P., TAYLOR, C., AND MALIK, J. 1996. Modeling and rendering ar-
chitecture from photographs: A hybrid geometry- and image-based approach. In
Computer Graphics, SIGGRAPH 96 Proceedings, 11–20.

DEBEVEC, P., YU, Y., AND BORSHUKOV, G. 1998. Efficient view-dependent image-
based rendering with projective texture-mapping. In Proceedings of the 9th Euro-
graphics Workshop on Rendering, 105–116.

DIEFENBACH, P. 1996. Pipeline Rendering: Interaction and Realism Through
Hardware-Based Multi-Pass Rendering. PhD thesis, Department of Computer Sci-
ence, University of Pennsylvania.

EVERITT, C. 2001. Interactive Order-Independent Transparency. Nvidia’s Developer
Website.

FUCHS, H., KEDEM, Z. M., AND NAYLOR, B. F. 1980. On Visible Surface Genera-
tion by a Priori Tree Structures. In Computer Graphics (Proceedings of SIGGRAPH
80), vol. 14, 124–133.

GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. 1996. The lumi-
graph. In Computer Graphics, SIGGRAPH 96 Proceedings, 43–54.

KRISHNAN, S., SILVA, C., AND WEI, B. 2001. A Hardware-Assisted Visibility-
Ordering Algorithm With Applications to Volume Rendering. Data Visualization
2001, 233–242.

LAURENTINI, A. 1994. The visual hull concept for silhouette-based image under-
standing. PAMI 16, 2 (February), 150–162.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001. Real-time fur
over arbitrary surfaces. In Symposium on Interactive 3D Graphics, 227–232.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In Computer Graphics,
SIGGRAPH 96 Proceedings, 31–42.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S., AND MCMILLAN, L.
2000. Image-based visual hulls. In Computer Graphics, SIGGRAPH 2000 Pro-
ceedings, 369–374.

MATUSIK, W., PFISTER, H., NGAN, A., BEARDSLEY, P., ZIEGLER, R., AND

MCMILLAN, L. 2002. Image-based 3d photography using opacity hulls. ACM
Transaction on Graphics 21, 3 (July), 427–437. ISSN 0730-0301 (Proceedings of
ACM SIGGRAPH 2002).

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic modeling: An image-based ren-
dering system. In Computer Graphics, SIGGRAPH 95 Proceedings, 39–46.

MILLER, G., RUBIN, S., AND PONCELEON, D. 1998. Lazy decompression of sur-
face light fields for precomputed global illumination. In Proceedings of the 9th
Eurographics Workshop on Rendering, 281–292.

NISHINO, K., SATO, Y., AND IKEUCHI, K. 1999. Eigen-texture method: Appear-
ance compression based on 3d model. In Proc. of Computer Vision and Pattern
Recognition, 618–624.

PULLI, K., COHEN, M., DUCHAMP, T., HOPPE, H., SHAPIRO, L., AND STUETZLE,
W. 1997. View-based rendering: Visualizing real objects from scanned range and
color data. In Eurographics Rendering Workshop 1997, 23–34.

SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J. 2000. Silhouette
clipping. In Computer Graphics, SIGGRAPH 2000 Proceedings, 327–334.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2d quality mesh generator and
delaunay triangulator. In First Workshop on Applied Computational Geometry,
124–133.

WESTERMANN, R., AND ERTL, T. 1998. Efficiently Using Graphics Hardware in Vol-
ume Rendering Applications. In Proceedings of SIGGRAPH 98, ACM SIGGRAPH
/ Addison Wesley, Orlando, Florida, Computer Graphics Proceedings, Annual Con-
ference Series, 169–178. ISBN 0-89791-999-8.

WOOD, D., AZUMA, D., ALDINGER, K., CURLESS, B., DUCHAMP, T., SALESIN,
D., AND STUETZLE, W. 2000. Surface light fields for 3d photography. In Com-
puter Graphics, SIGGRAPH 2000 Proceedings, 287–296.

� ����
���/ ������,���

�� %� '� #�$% !�� ����
	������

VDTM(desired view direction d)
if d �� old view then

ComputeWeights(d)
old view = d
for each mesh triangle t do

combine closest views and weights from t’s vertices
end for

end if
for each mesh triangle t in back-to-front order do

set the textures
set texture coordinates and weights as shader streams
render t using programmable graphics hardware

end for

ComputeWeights(d)
for each mesh vertex v do

project d onto the Delaunay triangulation of v
render t using programmable graphics hardware

end for

�� %� '� &�! !�� ����
	������

ULR(desired view direction d)
this method is identical to the VDTM method

ComputeWeights(d)
for each mesh vertex v do

compute d dot Ci, i.e., cosθi for every visible view Ci

pick views with largest cosθi as closest views
compute their blending weights according to equations 1 and 4

end for

�(������ ���� ��	 %�����

This is the pseudo-code for the opacity light field mapping algorithm. Note that L is
the number of depth layers of the scene.
�Render layers front to back�
for i� 1� � � � �L do

Set depth test of z-buffer to ZTEST LESS
if i==1 then

renderGeometry()
else

computeLayer()
end if
shadow map� z-buffer
Clear z-buffer
Set depth test of z-buffer to ZTEST EQUAL
LFMRender() to texture Ti

end for
Clear frame buffer
�Composite layers back to front�
for i� L� � � � �1 do

Alpha blend Ti with framebuffer
end for

The renderGeometry() function simply creates a depth buffer by rendering the geom-
etry. Color writes may be turned off. The function computeLayer() is the same as
renderGeometry(), but uses the shadow buffer to eliminate fragments from previous
layers. A fragment is killed by setting its alpha to zero and setting the alpha test to pass
on GREATER THAN ZERO. The fragment shader for computeLayer() follows.

for every pixel do
�Begin shadow map test�
if fragment depth greater than shadow map depth then

res� 1
else

res� 0
end if
�End shadow map test�
alpha� res

end for

Triangle Raw Light Light Field Maps Compression of Light Field MapsModels
Count Field Data (3-term) VQ DXT3 VQ+DXT3

Angel 13,651 3.3GB 63.0 MB (52:1) 10.5 MB (314:1) 15.7 MB (210:1) 2.6 MB (1256:1)
Teddy Bear 16,136 6.4GB 108.0 MB (59:1) 18.0 MB (356:1) 27.0 MB (237:1) 4.5 MB (1424:1)
Bonsai Tree 15,496 6.3GB 98.0 MB (64:1) 16.3 MB (387:1) 24.5 MB (257:1) 4.1 MB (1548:1)
Teapot 2,999 5.4GB 34.6 MB (156:1) 4.3 MB (1256:1) 8.6 MB (628:1) 1.1 MB (5024:1)

Table 2: The size and compression ratio of opacity light field data obtained through the light field map approximation and additional
compression of the surface light field maps.

Mesh Photograph OLFM (3-term PCA + DXT3) VDTM ULR

Mesh Photograph OLFM (3-term PCA) VDTM ULR

Mesh Photograph OLFM (3-term PCA) VDTM ULR

Figure 10: Comparison between three methods of rendering opacity light fields.

Mesh Diffuse Texture 1-term PCA 2-term PCA 3-term PCA

Figure 11: Improvement in rendering quality for opacity light field mapping with increased number of approximation terms.

