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ABSTRACT
In this paper we examine the challenge of producing en-
sembles of regression models for large datasets. We gener-
ate numerous regression models by concurrently executing
multiple independent instances of a genetic programming
learner. Each instance may be configured with different pa-
rameters and a different subset of the training data. Sev-
eral strategies for fusing predictions from multiple regression
models are compared. To overcome the small memory size
of each instance, we challenge our framework to learn from
small subsets of training data and yet produce a prediction
of competitive quality after fusion. This decreases the run-
ning time of learning which produces models of good quality
in a timely fashion. Finally, we examine the quality of fused
predictions over the progress of the computation.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
Large scale data mining; Machine learning; Ensemble meth-
ods

1. INTRODUCTION
Growth in the sizes of both computing resources and datasets

have prompted us to scale machine learning using regression
supported by genetic programming (GP). On-demand com-
putational resources are now accessible in quantities several
orders of magnitude greater than have previously been avail-
able. Similarly, the increased availability and cost effective-
ness of data storage has allowed the collection of many large
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datasets for learning algorithms. GP symbolic regression
continues to mature as a technique, with the emergence of
products such as DataModeler [13] and Eureqa [27].

However, accompanying the emergence of on-demand com-
putation are the establishment of large training datasets.
This represents a challenge in the context of GP for two
reasons. First, the size of the training dataset may now
exceeding the capacity of main memory. And second, the
computational expense of the GP learner scales with the
quantity of training data, as each member’s fitness calcula-
tion depends on that member’s error on the data.

When exploited by a thoughtfully designed parallelization
framework together with efficient scalable decomposition of
the computation required for learning, large computational
resources can provide the strength to handle large sizes of
data. One such method decomposes the data into multiple
subsets and learns a large quantity of models via indepen-
dent learners. This allows the computation to execute on
many instances in parallel and is known as a data-parallel
approach [17]. Each model is used to make a prediction and
a meta-model is developed to fuse these predictions.

In this paper we present a framework which generates en-
sembles of regression models for large datasets by utilizing
large quantities of computational resources teamed with a
parallelization framework. We focus on regression through
tree-based GP, which generates non-linear symbolic expres-
sions. Our contributions and the challenges we address are:

• Ensemble Fusion Methods: We describe and evalu-
ate a suite of different fusion methods for developing an
ensemble which fuses multiple continuous-valued pre-
dictions. These range from simple averaging to build-
ing a meta model. Fusion approaches for both para-
metric and non-parametric regression approaches are
rare in contrast with a plethora of well-explored ap-
proaches for classification.

• Collaborative Solution Building: We demonstrate
how to address a large data problem through factor-
ing. We do so by creating subsets of explanatory vari-
ables or by dividing the dataset into smaller datasets,
thereby reducing the computational burden on each
learner. To improve speed and address memory limi-
tation, we reduce the data size at each instance by a



factor of 100 or even 1000. We explore whether fac-
toring generates weak learners which can be fused into
an ensemble which overcomes individuals’ weaknesses.
Additionally, we demonstrate how parameters of tree
based GP can be diversified to generate multiple mod-
els. Finally, we consider whether factoring contributes
ensemble members which improve fused accuracy.

• Cloud-Scale Ensemble Learning: We develop a
cloud scale regression ensemble learning system. Mod-
els are generated by multiple cloud-backed virtual ma-
chines each supporting an independent parameterized
GP learner. Under this scenario we create a fused
model (ensemble) on demand at different points in
time while the individual GP learners are evolving.
The stochasticity of GP and the varying computation
speed of virtual machines on the cloud induces variabil-
ity in the learning rate of each learner. We examine
how the performance of the fused models changes in
real time. Finally, we discuss treating the convergence
of the fusion methods’ performance as a stopping cri-
terion for GP.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses previous and related work. Sections 3 and 4
detail how we generate models and ensembles of models, re-
spectively. Section 5 describes the datasets and parameters
of our system used to run the experiments. Finally, Sec-
tion 6 presents the results of our experiments and Section 7
concludes with some thoughts for future work.

2. RELATED WORK
Collections of multiple models are called“ensembles”, whether

the models are trained on different subsamples of the data,
developed using different parameters of the same learner or
simply obtained by different learners pursuing the same pre-
diction task.

2.1 Ensembles in Machine Learning
Over the past two decades numerous researchers in the

machine learning community have pursued the idea of gen-
erating a great quantity of models for the same data [7,8,22,
25,26]. Similarly, the task of combining predictions from an
ensemble of models has attracted attention in recent years.
This follows from two observations: there is usually not a
single explanation for the data, and multiple models cover
the observation space in a more robust manner than a single
model can. Initially researchers focused on methods which
generated multiple models from the same data irrespective
of what kind of learner was being used. These methods re-
lied on repeated subset sampling methods with replacement,
e.g. bagging [4] and iterative sampling methods, e.g. boost-
ing [11]. Other examples include random forests [5] and
Adaboost. [12]. In this work, we focus on how the chang-
ing the parameters of the base learner can generate multiple
models.

2.2 GP-based Machine Learning Ensembles
When looking at ensembles built using GP, most of the

work has focused on classification [2,10,15,16,23,24]. In clas-
sification with GP, models are either built to output discrete
class labels or are constructed to yield a continuous number

which leads to a class label when converted into class proba-
bilities. Multiple class labels can be fused via majority vote
or a sophisticated criterion [19].

Conversely, there has been very little research on regres-
sion ensembles [14, 20, 29]. In regression, due to the un-
constrained nature of GP models one must perform multi-
ple tests which can guarantee models’ outputs are within
a reasonable range for any unseen data point before the
model is admitted into an ensemble. To build regression
ensembles, most current approaches use simple averaging
techniques (discussed in Section 4.2). Many examine meth-
ods for combining ensembles of parametric models. These
methods attempt to understand the differences in the mod-
els based on their parameters and/or produce a fused model
by fusing the parameters.

3. GENERATION OF MODELS
The availability of massive on-demand computational re-

sources via the cloud enables us to learn many models in
parallel. Bagging, boosting or simple parameter variation
are now feasible at an unprecedented scale. We use our dis-
tributed GP system, FlexGP, to run many instances of GP
in parallel in the cloud, thus generating many models [6].
Below we discuss the specifics of the local learner and the
factoring settings we used with FlexGP.

3.1 Local learner
Our local learner is based on tree based GP. We built a

simple GP system with subtree mutation, single point cross
over and tournament selection. We incorporated linear scal-
ing [18,31] to allow GP to learn the shape of the regression
function and implemented dynamic operator equalization to
control bloating [28]. More parameters of our local learner
are listed in Section 5.1.

3.2 Factoring
FlexGP has a probabilistic, user guided means of vary-

ing the parameters with which each GP learner executes. It
establishes a large scale set of factored learners in a decen-
tralized manner, thus working in parallel to learn a diverse
set of models.

We define the parameters of a GP learner running at in-
stance i as {L,O,Di

tr , F}. L is the operator set provided
to GP. O is the objective function used for fitness evalua-
tions in GP. Di

tr is the set of training cases presented to the
learner, as defined in Table 2. F is the set of data features
used for learning. Different options are available for these
parameters and are summarized in Table 1.

Table 1: GP parameters and their possible values
and definitions.

Parameter Value Definition

Operator Set (L)

W {+,−, /, ∗}
X {exp, ln}
Y {sqrt, x2, x3, x4}
Z {sin, cos}

Objective Function (O)
Norm Mean absolute error
Norm-2 Mean squared error
Norm-inf Max error

Training Cases (Di
tr) n Subset of Dgp, of size n

Feature Set (F ) m Subset of features, of size m



Despite the massive number compute resources available
to us in the cloud, it is still infeasible to exhaustively try ev-
ery combination of these factoring settings. Instead, FlexGP
assumes a distribution over each of these parameters to prob-
abilistically bias how each instance chooses a value for that
parameter when it starts the local GP. For example, one
learner could choose {W,Norm2, {d1...3000}, {x1, x2}} and
another might select {W ∪X,Norm2, {d1...3000}, {x1, x4}}.

4. COMBINING GP REGRESSION MODELS
As described in Section 2, most previous work which fo-

cuses on regression ensembles examines the fusion of para-
metric models. Since GP produces non-parametric models,
we must develop different methods. This requires us to rely
on predictions for analyzing the model performance. Each
GP learner produces an output ŷmj = fm(xj) for each input
data point xj , where m and other notational conventions are
defined in Table 2. An example of a GP model m is

f̂m(x) = log(x1) + x4x5 +
x6

ex9

We propose and define six methods for combining ensem-
bles of GP models for regression problems. These methods
fall into two distinct categories: selection methods, which
select a single model from the ensemble (4.1), and fusion
methods, which produce predictions by fusing the predic-
tions from a mixture of models in the ensemble (4.2). Prob-
abilistic methods of fusion are discussed in Section 4.3

Table 2: Problem Notation
Variable Notation Definition

Data

Dgp GP training data

Di
tr

Subset of Dgp used by
instance i for training

Di
val

Subset of Dgp used by
instance i for validation

Df Fusion training data
Dt Testing data

Data point xj xj= {xl|l = 1...γ}
Output variable zj zj ∈ R, for xj

Model m Model m

Prediction ŷmj = fm(xj)
Model m’s prediction,
non-linear in xj

Candidate models Ω Set of models for fusion
Predictions for xj yj yj= {ŷmj |∀m ∈ Ω }

Predictions of model
Y

m
D Y

m
D= {ŷmj |∀xj∈ D}

m, given D
Output estimate ẑj ensemble’s estimate of zj

4.1 Selection Methods
Average Model Prediction (AMP)
The simplest selection method is to pick a random model

from the ensemble. For each new query, this method would
select a model at random and use that to produce a pre-
diction. We measure the effectiveness of this method by
measuring the average performance of every model in the
ensemble on Dt.
Best A Priori Model (BAM)
As a slight improvement to AMP, we propose BAM: Best

A priori Model selection. For predicting the output of new
queries, we use the best model from the ensemble based on
its MSE on Di

val.

4.2 Fusion Methods
Fusion methods combine multiple models from the ensem-

ble for prediction. They vary in how they mix the models
and combine those models’ predictions.
Average Ensemble Prediction (AVE)

The simplest fusion method is to generate yj for a new
query xj and then report the average of those predictions.
That is, ẑj = 1

m

∑m
i=1 ŷij for each test point xj [20, 30].

Median Average Model (MAD)
A variant of AVE, MAD finds themedian prediction among

yj and a prediction for a new query is computed as the av-
erage of the prediction of this median model and those of its
two neighbors in the prediction space [31].
Adaptive Regression Mixing (ARM)

In Adaptive Regression by Mixing (ARM), each model m
is assigned a weight, Wm, which is used to compute ẑj via
a weighted average [33]. The weights are computed in the
following manner. Let r = |DF | and o = |Ω|. First the data

Df is randomly partitioned into two equally sized parts D(1)

and D(2). To identify the weights for each model, we assume
that the errors for each model are normally distributed. We
then use the variance in these errors to identify the weights
by executing the following steps:

Step 1: Evaluate σ2
m which is the maximum likelihood esti-

mate of the variance of the errors, em = {ŷmj−zj |xj , zj
∈ D(1)}. Compute the sum of squared errors on D(2),
βm =

∑r
j= r

2
+1(ŷmj−zj)

2.

Step 2: Estimate the weights using:

Wm =
(σm)−r/2exp(−σ−2

m βm/2)∑M
j=1(σj)−r/2exp(−σ−2

j βj/2)
(1)

Step 3: Redraw subsets D(1) and D(2) and repeat steps
1 and 2. Continue this process for a fixed number of
times1. Average the weights to get the final weights
for the models.

Given a test point xj , predict ẑj as the weighted average
of model predictions: ẑj =

∑o
m=1 Wmŷmj .

Transformation for large r: For large values of r, the
calculation of the weights as given by equation 1 encounters
an underflow error. To avoid this problem we equivalently
compute the weights using equations 2 and 3.

Am = −
r

2
log(σm) + log(

−σm
−2βm

2
) (2)

Wm = exp(Am − log(
M∑
q=1

Aq)) (3)

4.3 Probabilistic Fusion Methods
In meta-model based approaches, given the training data

Df , the joint probability density function fY,Z(y, z) is built
for {yj ,zj |∀xj ,zj ∈ Df}. fY,Z(y, z) is then used to predict
ẑj for a new input xjby first computing yjvia the GP gen-
erated models and then evaluating the conditional density
function for fZ|Y (ẑj |yj). An advantage of this approach is
the availability of uncertainty information. In our current

1An intelligent stopping criteria could be used as well.



contribution, we focus on a non-parametric version of the
probabilistic model which does not need any training.
Our model is a non-parametric multivariate kernel density

(KDE) estimator, using a gaussian kernel [9, 32]. Let n =
|Df | and o = |Ω|. The multivariate kernel density function
is given by

fY,Z(w, v) =
1

n

n∑
j=1

o∏
m=1

Kh(wm − ŷmj)Kh(v − zj)

where Kh(x) =
1
h
φ( x

h
), φ(x) is the standard normal density

function and h is the bandwidth. To compute ẑk for a test
point xk, we first compute yk and then find the expected
value of the conditional density function fZ|Y (z|yk):

ẑj = E(Z|Y = yk)

=

∫
Z

zfZ|Y (z|yk)dz =

∫
Z

z
fZ,Y (z,yk)

fY (yk)
dz

=

∑n
j=1

∏o
m=1 Kh(ŷmk − ŷmj)

∫
Z
zKh(z − zj)dz∑n

j=1

∏o
m=1 Kh(ŷmk − ŷmj)

∫
Z
Kh(z − zj)dz

=

∑n
j=1 zj

∏o
m=1 Kh(ŷmk − ŷmj)∑n

j=1

∏o
m=1 Kh(ŷmk − ŷmj)

4.4 Advantages and limitations
Each of the fusion approaches we presented above has cer-

tain advantages and limitations. AVE is the simplest of all
but could bias the estimation because many correlated mod-
els producing similar outputs for a training point. It could
also be affected by outliers. MAD, though robust to out-
liers, ignores a lot more information embedded in more than
a few models. Both of these techniques do not differenti-
ate between different models based on their performance on
the training data and consider the models themselves to be
independent.
ARM presents a unique way of identifying the weights for

each model however it can become computationally inten-
sive. In our experiment we resample (according to step 3)
100 times to estimate the weights. The approach is also
sensitive to the amount of data presented for training the
weights. Once the weights are identified, real time execu-
tion of the deployed model is extremely efficient.
ARM, AVE and MAD require an outlier detection algo-

rithm to remove any outliers before fusion. The outlier de-
tection algorithm has to be run in real time. In our ap-
proach we estimate the minimum and maximum values for
the output variable z = (zmin, zmax) and any model produc-
ing predictions that are outside these5C bounds are removed
before fusion. For ARM, the weights are renormalized after
removing the weights that correspond to the outlier models.
On the other hand, KDE is non-parametric and so is not

sensitive to outliers. However the method has two weak-
nesses. First, the method requires the user to set the band-
width parameter for the kernel. The performance of the al-
gorithm is sensitive to this parameter and setting this value
might require training. In this contribution we choose a
bandwidth parameter heuristically. Second, the method re-
quires us to carry the data to deployment scenario, and as
the predictions are made in real time, this data is queried
to make the calculations. This makes predicting outputs for
new input computationally expensive.

5. EXPERIMENTAL SETUP
To demonstrate the efficacy of GP regression ensembles

we experimented with 2 datasets, summarized in Table 3.
In the first dataset, a number of settings in a power plant
are used to predict the NOx emissions [3]. These settings
(features) are continuous-valued and are known to have a
non-linear relation with the NOx emissions. We abbreviate
this problem as NOx.

Table 3: Summary of dataset statistics.
Dataset |Dgp| |Df | |Dt | Total |xj | Range of z
NOx 4,017 310 900 5,227 18 [0.270 0.654]
MSD 398,924 67204 49436 515564 90 [1922 2011]

Our second problem comes from the music information

retrieval (MIR) community where a dataset of one million
song tracks has been created to push the focus towards solv-
ing large scale MIR problems [1]. We set out to study the
year prediction problem, where the task is to predict the re-
lease year of a song, given a set of track features. Of the
million tracks in the dataset, roughly half have year data.
We abbreviate this problem as MSD.

5.1 GP and FlexGP settings
Our experiments use a GP based learner described in Sec-

tion 6. We use the same GP configuration as described by
Koza with select differences [21]. The learner is set with
a population of size 1000. The mutation rate is 0.1, the
crossover rate is 0.6, and the max depth is set to 12 for the
NOx experiments and is set to 8 in the MSD experiments.
The tournament selection size is 7 and we used ramped-half-
and-half as the algorithm for tree growth. The learners were
allowed to run until stopped in the NOx experiments, but
were terminated after 20 generations in the MSD experi-
ments. Our method for advancing to the next generation is
Silva’s dynamic equalization with a bin width of 5 [28]. We
ran multiple experiments with each dataset, each time with
different amounts of training data or GP learner settings.
Table 4 presents the settings for different runs.

Table 4: Settings of different experiments

Dataset Exp.
|Di

tr|

|Dgp|
# Nodes Parameter Factored

NOx

1 67% 150 None
2 67% 150 F
3 67% 150 D
4 67% 150 D & L
5 67% 150 D & O

MSD
1 10% 75 ALL
2 1% 150 ALL
3 0.1% 150 ALL

For every experiment, except MSD1, we use 150 virtual
machines, each with a single core and 2GB of RAM. In
MSD1, each node required 3.4 GB of memory to load Dtr

gp

into Java. Thus each node ran a virtual machine with two
cores and 4GB of RAM, which forced us to halve the number
of virtual machines used (we are core-limited).

Due to the variance in starting times across our nodes,
each node runs for a different number of generations (up
to a total of 20 generations in the MSD experiments). We
collect the best model for each generation from each node.
On average, we obtain about 30 models (20 models in the



Table 5: MSE and PGMSE on the NOx experiments for all fusion methods. Note that the MSE value for
AMP on NOx1 is used for the baseline in PGmse calculations in all NOx experiments.

AMP BAM AVE MAD ARM KDE

NOx1
MSE 1.97E-3 1.37E-3 1.42E-3 1.65E-3 1.30E-3 6.63E-4
PGMSE 0.0% 30.4% 28.0% 16.4% 34.2% 66.4%

NOx2
MSE 2.35E-3 1.33E-3 1.54E-3 1.92E-3 1.29E-3 5.60E-4
PGMSE -19.2% 32.4% 22.2% 2.8% 34.6% 71.6%

NOx3
MSE 2.10E-3 1.38E-3 1.41E-3 1.43E-3 1.31E-3 6.40E-4
PGMSE -6.4% 30.0% 28.6% 27.5% 33.5% 67.6%

NOx4
MSE 1.66E-3 1.51E-3 1.26E-3 1.27E-3 1.22E-3 6.82E-4
PGMSE 15.8% 23.7% 36.0% 35.5% 38.2% 65.5%

NOx5
MSE 2.15E-3 1.30E-3 1.44E-3 1.54E-3 1.29E-3 6.53E-4
PGMSE -9.0% 33.9% 26.8% 21.7% 34.6% 66.9%

MSD experiments) from each node giving us approximately
5000 models in the NOx experiments and around 2000-3000
models for the MSD experiments.

5.2 Data splits
We divide each dataset into three parts: for training GP

models (Dgp), for training the fusion model (Df ) and for
testing (Dt). WithinDgp, each node selects a random subset
for training the GP models (Di

tr) and reserves the rest for
validation (Di

val). Tables 3 and 4 report the size of these
splits for both datasets.
For MSD data, the MIR commmunity has established a

standardized train/test split to facilitate comparisons across
different approaches [1]. This split ensures that no artist
is present in both subsets. In this paper, we further split
the provided MIR training dataset to produce Dgp and Df .
When constructing this split and when each node splits Dgp

into Di
tr and Di

val, we continue to ensure that no artists
appear in more than one subset.

6. RESULTS AND DISCUSSION
To measure the performance of our fusion strategies, we

compute their MSE on Dt. To aid in comparing the per-
formance of these strategies, we need to construct a com-
parative performance measurement. To do this, we estab-
lish the performance of a single method on a single ex-
periment within each problem as a baseline performance
value, baselineMSE , which all other methods are measured
against. Given the performance of a method in an experi-
ment, methodMSE , we compute its performance gain as

PGMSE =
baselineMSE −methodMSE

baselineMSE

This number is positive if we achieved a better performance
and negative otherwise.
For the NOx experiments, we set our basline as the per-

formance of AMP in the NOx1 experiment. Because we
executed NOx1 without any factorings, we ran an identi-
cal learner with the same data in parallel at each instance.
This corresponds to what a standard run of classic GP would
yield. Which is a good baseline for the NOx experiments,
where we are concerned with how factoring affects fusion
performance.
Our focus with the MSD experiments is the effects of the

size of Di
tr (see Section 6.3) on ensemble performance. To

provide a similar measure of performance gain for the MSD

experiments, we set the baseline to be the MSE of AMP
on Dt for the MSD1 experiment. This baseline effectively
highlights the impact of decreasing training set size on fusion
performance.

Table 6: MSE and PGMSE on the MSD experiments
for all fusion methods, except KDE. The MSE value
for AMP from MSD1 is used as the baseline for the
computation of each PGMSE

AMP BAM AVE MAD ARM

MSD1
MSE 122.7 105.2 111.6 111.7 103.9
PGMSE 0.0% 14.3% 9.0% 9.0% 15.4%

MSD2
MSE 117.3 106.5 112.6 113.4 104.7
PGMSE 4.4% 13.2% 8.2% 7.6% 14.7%

MSD3
MSE 123.6 111.4 109.7 114.4 107.8
PGMSE -0.7% 9.2% 10.6% 6.8% 12.1%

We present the results of implementing the fusion strate-
gies from Section 4 to the NOx and MSD problems in Ta-
bles 5 and 6, respectively. There are no results for KDE
in Table 6 because we could not compute KDE due to the
MSD dataset size.

In Figure 1, we have computed the PGMSE for each model
considered for fusion in each experiment from Table 4 and
plotted the resulting distribution as a box plot. For each
box, the central line is the median of the distribution and
the edges mark the 25th and 75th percentiles. The whiskers
extend to the most extreme points which are not considered
as outliers, and all outliers are marked by an ‘x’. The circles
indicate the highest performance gain achieved by any fusion
strategy for each experiment.

We spend the next several paragraphs investigating a va-
riety of questions. First, we examine the performance im-
provements which could be achieved by generating and fus-
ing an ensemble of models. We also examine the efficacy of
various problem factorizations. Next, we consider the per-
formance of fusion with a relatively small sample of training
data at each instance. This allows the minimization of both
the overall GP training time and the memory requirements
of each individual learner. Finally, we examine the perfor-
mance of our system’s predictions in real-time, and we detail
the behavior and characteristics of several fusion strategies
when considered in this setting.



(a) NOx (b) MSD

Figure 1: The quartile distribution of PGMSE of models used for fusion in each experiment. The circles
represent the best PGMSE from fusion. Left Results for NOx experiments; KDE was the best fusion method.
Right Results for MSD experiments; ARM was the best fusion method.

6.1 Performance of Fusion Strategies
For the NOx dataset, KDE performs the best in all trials.

ARM provides the second best performance gains. Selecting
the best model among the ensemble based on their perfor-
mance provides reasonably good performance gains. To our
surprise MAD, which was most commonly used in previous
GP-based regression ensemble work, did not perform well.
This is because median average utilizes very few predictions
around the median, thus ignoring the bulk of the predictions.
For MSD experiments the three factorings simply reduce

the amount of the data used for training. We generally see
the performance gain values fall as less data is provided to
the GP learners. The exception is the AVE ensemble perfor-
mance. Interestingly, AVE produces the best results MSD3,
when each learner is given only 400 training points. We
hypothesize this is because as data size is reduced to such
small size each learner specializes in a different region of the
input space and makes different errors. Thus, the models
have uncorrelated errors and taking the average prediction
becomes a good strategy for combining models [25].

6.2 Impact of Different Factorings
With the NOx experiments, we examine the impact of

different factorings on ensemble performance. Looking at
the NOx results in Figure 1, we notice models learned in the
NOx4 experiment are generally better and the distribution is
tighter than the rest (although there is a long tail of outliers).
Conversely, we see that the models from NOx2 have less
consistent results and perform worse than the rest. This is
understandable since NOx2 is built with subset of features.
We first examine the performance gain of the AMPmethod

across experiments. AMP results in worse performance than
the classic GP baseline in all experiments except NOx4. This
suggests that factoring the operator set (L) could be the
linchpin in seeing performance gains from fusion. However,
this merits further study as this result isn’t observed across
other the other fusion strategies.
Finally, we note that KDE and ARM result in consistently

good performance gains, irrespective of factoring. This sug-

gests that factor settings may not have such a large impact
on ensemble performance.

6.3 Reducing the Size of the Data
In our experiments we examine how reducing the size of

the data used by each local learner affects ensemble perfor-
mance. Reducing the training data directly decreases the
time taken to evaluate an individual, allowing for faster
learning overall. However, learning on less data typically
comes at the cost of decreased performance.

When decreasing the size of data in the MSD experiments,
we see that while individual model performance drops, the
fusion results remain better than baseline. As reported in
Table 3, we experimented with using 10%, 1%, and 0.1%
(40K, 4K and 400 data points, respectively) for training. As
we can see in Figure 1 right, the resulting individual mod-
els perform less reliably as the number of training cases de-
creases. This is shown by the increased variance in the model
performance. However, as reported in Table 6 the ensem-
ble performance shows only slight decrease in performance.
Indeed, ARM fusion performs better than the baseline in
all cases. This demonstrates that decreasing the amount of
training data used by a factor of 100 still allows for improved
performance of the ensemble.

6.4 Analyzing Real-Time Fusion
In this section we assess how the performance of the fusion

strategiess perform as time progresses and the GP models
evolve more generations. Figure 2 presents the performance
of the different fusion strategies in real time on the NOx
problem. At each time step we collect the models so far,
construct ensembles using the proposed methods, compute
their predictions on Dt and report their performance gain.
Plots for NOx2, NOx3 and NOx5 were omitted as they are
highly similar to the three shown.

The plots in Figure 2 illustrate a couple interesting points.
First, notice BAM is not robust and can give arbitrarily poor
performance at different points in time. This is because
BAM might select a model which has overfit on Di

tr in such
a way that it still does well on Di

val but performs poorly
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Figure 2: Improvements achieved over the baseline (no fusion) methodology as generations are executed and
time (in seconds) progresses in our framework for NOx data.

on Dt. Thus, even though it achieves similar performance
gains to ARM at some points, it is not a reliable strategy.
Second, notice that ARM, KDE and AVE have stable and
incremental performance. That is, as time progresses they
either improve or remain at their last attained performance.
This sort of performance stabilization over time suggests we
could use the fused performance as a stopping criteria for
the entire system.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a regression ensemble sys-

tem which produces model ensembles by relying on a GP-
based learner. Our system pairs the stochastic nature of GP
with a probabilistic parameter factoring method and the
variable computation speed of the cloud to produce many
diverse models for fusion. We presented multiple robust
strategies for fusing predictions from these ensembles of mod-
els. We also explored the affect of this probabilistic factoring
method on the generation of model ensembles. A discussion
of other results and suggested follow-on work follows.
Informed Factoring Distributions In our current imple-
mentation, we set all distributions for factoring to be static,
uniform distributions. However, since these distributions are
retrieved from the parent node, they could change dynami-
cally as new nodes are launched. For example, a node could
modify p(Di

tr ) to decrease the chance any node it starts will
select the same training cases it did. Alternatively, if new
nodes are to be brought up after the system has been run-
ning, p(Di

tr ) could be modified to weight difficult training
cases more and p(F ) could be modified to weight features
with little apparent informative power less. We hope to ex-
plore such possibilities in the future.
Data Challenge: We challenged ourselves to give each
learner as little data as possible while still retrieving fused
performance equivalent to the case where multiple learners
are given large amounts of data. This enables our iterative
learning mechanism to learn quickly from large data. We
have been particularly successful in this challenge. For one
of our problems we have provided as little as 400 training
data points from a total of 400,000 available points. Un-
der these constraints we achieved comparable performance
to the case where 40,000 data points were made available.
We also achieved comparable performance to the benchmark
available in literature for this dataset, which utilises all data

for training. As part of the future work we intend to fur-
ther explore this aspect of our system and to seek answers
to the following questions: How much data at each learner
is enough? How many models, where each is trained on a
small subset, are enough?
Repeating experiments While the results presenting are
compelling, little attention has been paid to how robust they
are. Ensembles are built from thousands of models, which
should be sufficiently large enough to ensure we have used
a representative sampling of possible models. However, a
more rigorous and extensive experimental design incorpo-
rating cross-validation and repeated trials is needed before
any deeper conclusions can be drawn.
Multiple Fusion Approaches: We have chartered the
largely unexplored territory of how to fuse multiple continuous-
valued predictions of regression ensembles. We presented
multiple strategies with different complexities. We show
conventionally used methods of average and median aver-
age do not yield good results.
Ensemble Learning at Scale: Finally, we presented a
system which factors the data and the genetic programming
learner in multiple ways. We demonstrated our system’s
capability to provide accurate intermediate fused answers
as time progresses. As part of our future work we intend to
demonstrate our system’s capacity to leverage the power of
thousands of nodes by testing the system on larger datasets
where many learners build models independently.
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