
Flex-GP: Genetic Programming on the Cloud

Dylan Sherry, Kalyan Veeramachaneni, James McDermott, and Una-May
O’Reilly

Massachusetts Institute of Technology, USA.
{dsherry,kalyan,jmmcd,unamay}@csail.mit.edu

Abstract. We describe Flex-GP, which we believe to be the first large-
scale genetic programming cloud computing system. We took advantage
of existing software and selected a socket-based, client-server architecture
and an island-based distribution model. We developed core components
required for deployment on Amazon EC2. Scaling the system to hun-
dreds of nodes presented several unexpected challenges and required the
development of software for automatically managing deployment, report-
ing, and error handling. The system’s performance was evaluated on two
metrics, performance and speed, on a difficult symbolic regression prob-
lem. Our largest successful Flex-GP runs reached 350 nodes and taught
us valuable lessons for the next phase of scaling.

1 Introduction

Cloud computing has emerged as a new paradigm for commercial, scientific, and
engineering computation. A cloud allows an organization to own or rent efficient,
pooled computer systems instead of acquiring multiple, isolated, large computer
systems each commissioned and assigned to particular internal projects [1, 7].

Cloud computing has substantial advantages. First, it offers elasticity. Elas-
ticity allows a software application to use as much computational resources as it
needs, when it wants. A cloud also offers redundancy. If a server fails, a replace-
ment is swiftly available from the resource pool. However it cannot be automat-
ically incorporated into a long-running computation unless the computation is
designed to allow this. A cloud also offers higher utilization. Utilization refers to
the amount of time a pool of resources is in use rather than idle.

For evolutionary algorithms (EA) researchers, the cloud represents both a
huge opportunity and a great challenge. Parallelization has been well-studied
in the context of EAs, and has been shown to affect population dynamics and
diversity, and to improve performance. With the cloud we can aim to run parallel
evolutionary algorithms at a scale never before seen, but we must first make our
algorithms and implementations cloud-ready.

In the long term we envisage novel refactoring and rethinking of genetic
programming (GP) as the cornerstone of a massively scalable cloud-based evo-
lutionary machine learning system. Our immediate goal is to design, implement,
deploy and test a cloud-based GP system, which we call Flex-GP.

In this paper, we adopt an island based parallelization model with communi-
cation via sockets, and choose Amazon’s EC2 as a computational substrate. We
choose symbolic regression as an application. We start modestly with a few nodes
and scale to tens and then hundreds of nodes. We encounter some unexpected
challanges but achieve parallelization of GP up to 350 islands.

In Sect. 2, we begin with a discussion of related work on the parallelization
and scaling of EAs. Sect. 3 briefly describes the elastic compute resource pro-
vided by Amazon. In Sect. 4 we present the strategies we employed to scale the
algorithm and the challenges that arose. We then present a benchmark problem
and experimental results in Sect. 5. We present our conclusions and future work
in Sect. 6.

2 Related Work

The simplest EC parallelization models are the independent parallel runs
model and the master-slave fitness evaluation model. Both are useful in some
circumstances. Our research interest is in a different model, the island model.
Multiple populations or islands run independently and asynchronously, with in-
frequent migration of good individuals between islands. The island model has
been studied extensively, with surveys by Cantú-Paz [2] and Tomassini [9].

The topology of an island model may be visualised as a network of nodes
(each representing a population) and directed edges (representing migration).
Island models typically depend on a centralised algorithm to impose the desired
neighbourhood structure. Decentralised algorithms have also been studied, where
the network structure emerges in a peer-to-peer or bottom-up fashion [4].

Island models may be expected to deliver performance benefits over single-
machine EC, due to their larger total populations. As demonstrated by Tomassini [9],
island models can in fact do even better. This happens chiefly because a struc-
tured population can avoid premature convergence on just one area of the search
space. Vanneschi [10] (p. 199) notes that for each problem there is a population
size limit beyond which increases are not beneficial. Tomassini found that iso-
lated populations have an advantage in performance over single large popula-
tions, where total population size is 2500, and that communicating islands have
an advantage over multiple isolated ones.

A key opportunity in cloud computing is its massive scale. Most existing
research in island model evolutionary algorithms has not used very large numbers
of nodes. A typical value in previous experiments is between 5 and 10 nodes [9,
10]. Although we note that each of these projects are now quite old, few specific
node-counts are available in the recent literature. The most important exception
is the 1000-node cluster used by Koza [8] (p. 95).

The Hadoop implementation [http://hadoop.apache.org/] of the MapRe-
duce framework [3] has been used for genetic algorithms [11]. We started from
ECJ [5] which is an industrial-strength EC system written in Java. It includes
an island model framework which uses sockets for communication in a master-
slave arrangement. ECJ is more flexible than MapReduce and can avoid its

http://hadoop.apache.org/

requirement for a master node which represents a single point of failure and a
synchronisation bottleneck; it is actively maintained; and it offers an easy-to-use,
but limited, island model. Therefore ECJ was selected for our work.

3 Deploying Flex-GP

We chose to use the Amazon Elastic Compute Cloud (EC2), a versatile cloud
computing service. It provides a simple abstraction: the user is granted as many
instances (VMs) as needed, but no access to the underlying host machines. In-
stances can vary in size, with the smallest costing as little as $0.02 per hour.
Users can request instances immediately, reserve instances for a set time period,
or bid against the current spot price. An instance’s software is specified by a VM
image called an Amazon Machine Image (AMI). Amazon provides a selection of
off-the-shelf AMIs and also allows custom ones. We found the default Amazon
Linux AMI to suit our needs. We chose to use the cheapest instance size, micro,
on an immediate-request basis.

Table 1. Notations

Name Notation

Island q Iq
Number of Neighbors Nn

Number of islands q

Number of instances n

IP address of the node i IPi

Neighbor Destinations Ndn

Time out for replacing instance To

Fig. 1. An ECJ island consists of multiple processes (left). The three-island model on
EC2 (right).

Algorithm 1 The socket based n-island model

1. Pre-process: Create the necessary params files
2. Initialization
for d = 0 to n do

Initialize Id
if d = 0 then
IPs ← IPd

end if
if d 6= 0 then

Recv Id(IPs)
Send I0(IPd)

end if
end for
4. Set up communications
if d = 0 then

for d = 1 to n do
Send neighborhood information: Send Id(Nn, Ndn, N id

dn, IPdn, Pdn).
Send Migration parameters: Send Id(Ms, Fm, SG).
Send GP parameters: Send Id(psize, ngens).

end for
end if
5. Start computation
if d = 0 then

for d = 1 to n do
Instructs Id to start computation

end for
end if
6. Stopping computation
if d 6= 0 then

while Id did not receive stop signal do
Send I0(Oi)

end while
end if
if d = 0 then

Recv(Oi)
if Oi ≥ Od then

for d = 1 to n do
Send Id(stop signal)

end for
end if

end if
The server and all islands have exited

As described in Sect. 2, we chose to use ECJ’s island model. It uses a client-
server architecture, where each client hosts one island, and a sole server is re-
sponsible for setting up the topology, starting and halting computation. In ECJ’s
off-the-shelf island models, one of the clients doubles up as the server. We chose
to configure a separate server with an eye to scaling. Algorithm 1 presents the

pseudocode for the n-island model. Parameters like migration size, Ms, rate, Fm,
start generation SG are provided by the user.

Each island consists of two Java threads, as shown in Fig. 1. The first is the
main thread, which performs evolutionary computation and periodically sends
packets of emigrants to neighboring islands. The second acts as a mailbox, and
is responsible for receiving packets of incoming immigrants. The main thread
periodically fetches newly arrived individuals from the mailbox and mixes them
into the population. Note that this architecture implies that if a node crashes,
those nodes to which it sends will not be affected, nor will those which send to
it. Although the topology of the network will be damaged, all other nodes will
continue calculations. This is a limited form of robustness.

4 Scaling Flex-GP

As we proceeded from an initial run towards large numbers of islands, new issues
emerged. We present our progress as a series of milestones: Q = 3, Q = 20,
Q = 100 and finally Q = 350 islands. In this section our aim is only to consider
scaling, and so the details of the problem and the fitness values are achieved are
not reported. For completeness, we note that the experimental setup was the
same as that in Sect. 5.

Milestone 1: Three Islands. Our initial goal was a proof of concept. We
manually constructed a three-island ring topology on three EC2 instances, with
the server hosted on a fourth. This enabled us to understand the steps involved
in launching, starting and running a basic island-based GP system on EC2. We
found that three key ECJ components were easy to use and ready to run on
EC2: socket based communication, an evolutionary loop, and experiment setup.
The three-island model ran successfully.

Milestone 2: 20 Islands. As soon as more than three islands were required,
the overhead required to manually start each island as above became unachiev-
able. We automated the instance requests using EC2’s Python API, boto. We
avoided the transfer of files by creating a custom AMI containing our code-base.
With this setup we achieved the 20-island milestone.

Milestone 3: 100 Islands. During the next phase of scaling, several more
issues became apparent.

Instance boot was both unreliable (about 1 in 250 requested nodes simply
fails to start) and highly variable in the time required (from 15 seconds to several
minutes). The time required for instance network connection was also variable,
up to 30 seconds. Since the ECJ island computation does not begin until all
islands have reported successful startup, it was therefore essential to provide
monitoring and dynamic control of instance startup. In Algorithm 2 we
present a dynamic launch monitor and control process. It has two parameters,
the wait time α and the time for timeout, To. All EC2 interfaces have latency
of a few seconds, so α must be long enough to allow for that. We set To as the
mean time required for an instance to launch and connect. Its main function

is to make instance requests and take account of requests which are apparently
failing.

Algorithm 2 Dynamic logic for instance startup

Generate a cloneable image C
d← 0
while d ≤ n do

Request an instance of C via Boto
while To 6= γ do

if Instance is running according to API then
if Instance is connected then
d← d+ 1
To ← γ

else
wait for α
To ← To + α

end if
else

wait for α
To ← To + α

end if
end while

end while

Even after an instance is correctly created, a variety of problems can occur
at runtime, including software and configuration bugs, network problems, and
other unknown errors. Error tolerance and reporting is essential. To better
handle debugging and post-run analysis we first coded these messages. Once we
resorted to a coded catalogue/dictionary for errors, it enabled us to incorporate
more log messages throughout our code-base. The coding of messages helped to
reduce the bandwidth when transferring logs from the islands.

Milestone 4: 350 Islands. Amazon limits new EC2 users to 20 concur-
rent instances. Requests for increases may be placed and are usually fulfilled
incrementally some days later. After several requests our limit stands at 400
instances. Our next goal was to approach this limit. The main questions to be
considered were: would the socket-based model withstand communication among
hundreds of islands? Would the fact that the server is a single point of failure
prove problematic?

At this level, two major augmentations were required. We added an ad-
ditional dedicated instance as a monitoring/log server. To do so, we added a
LogServer, supported by the Twisted open source Python networking engine.
The LogServer’s role was to aggregate and display information about the current
status of computation across the network. Two types of information were trans-
mitted to the LogServer : performance and migration tracking. In our larger tests
we inadvertently “stress tested” the capacity of this server. During benchmarks

with 350 islands, the LogServer received and recorded almost 100, 000 lines of
text over several minutes, successfully receiving 100% of incoming messages.

Fig. 2. The 350-Island System

We also wished to take advantage of our large limit of 400 instances by
running multiple tests simultaneously, for example almost the entirety of the 1,
2, 4, 16, 128 and 256 island runs mentioned in the next section. We introduce the
concept of a bucket, that is a set of nodes allocated to a single task. We added a
ResourceManager to manage instances and buckets, consisting of the following
components: a Connection class which communicates with EC2; a list of free
instances; and a set of buckets to which the free instances can be allocated. Each
test run requires one bucket. Managing multiple buckets in the ResourceManager
means that multiple tests can be run simultaneously. The ResourceManager
favoured the serial re-use of buckets to minimise setup time.

5 Experimental Setup

Our next goal was to evaluate our system. The benchmark was a difficult two-
variable symbolic regression problem taken from [12]1. The aim is to match
training data produced from a known target function,

f(x, y) =
e−(x−1)2

1.2 + (y − 2.5)2

The training data was 100 points randomly generated in the interval (x, y) ∈
[0.3, 4], with a different set of points being generated for each island. No sep-
arate testing phase was run. Fitness was defined as the mean error over the

1 Thanks to Sean Luke for providing this code

training points. The function set was {x, y,+, ∗,−,%,pow, exp, square}, where
% indicates protected division (if the denominator is zero, 1 is returned).

The population was initialised using the ramped half-and-half algorithm,
with minimum depth 2 and maximum depth 6. Tournament selection was used
with tournament size 7. Subtree crossover, biased 90/10 in favour of internal
nodes, was used with probability 0.9, and reproduction with probability 0.1.
No mutation was used, nor was elitism. The maximum tree depth was 17. The
population size at each island was 3000 and the number of generations was 100.
The island topology used was a non-toroidal four-neighbor grid. Each island
was configured to send 40 emigrants to its destination neighbors every four
generations. We ran the benchmark on 1, 2, 4, 16, 64, 128 and 256 islands.
For each of these cases we conducted at least 10 runs.We evaluated benchmark
performance on two metrics, accuracy and time.

Accuracy is the best fitness achieved, i.e. 1/(1 + e) where e is the mean
squared error on our benchmark problem. In Fig. 3 we show the improvement in
accuracy of the system as a function of number of islands. We plot the average
fitness achieved at the end of each generation. We average this number over 10
independent runs. This is shown in Figure 3(right). Fitness generally improves
as we add more resources. In the experiment only the number of islands was
varied, and all other parameters left fixed. The larger trials thus had a lower
relative degree of information flow between islands, which may have impaired
performance. Finally it is possible that this result reflects Vanneschi’s finding
that for any problem, there is a limit to total population size beyond which
performance does not increase and can even be impaired [10] (p. 199). We also
show the variance in the best fitness at the hundred generations for multiple
runs as a box plot in Figure 3(left). It is interesting to note that the variance in
the best fitness achieved significantly reduces as we add more resources.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Generations

A
ve

ra
ge

 F
itn

es
s

1 island

256 islands

1 4 16 64 128 256
0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
itn

es
s

Fig. 3. Results achieved on a benchmark symbolic regression problem

Time is measured as achieving this higher accuracy in the same amount of
time that would be used on a single machine. We measure both communications

and infrastructure setup time and total compute time, with results as shown in
Fig. 4. We plot three different times. First one is to set up LogServer and the
second is the time taken by the evolutionary server to set up islands and the
communications. Both these times see an increase in time from 1̃0 seconds to
1̃80 seconds. Finally we show the actual computation time of the islands. Even
though we add 256 nodes the compute time only increases by a factor of 2.

1 4 16 64 128 256
0

100

200

300

400

500

600

700

800

900

1000

Number of islands

T
im

e
in

 s
ec

on
ds

Initiation
Log server setup
Island setup
Compute time

Fig. 4. Time taken by the server to set up island infrastructure and topology for
communications.

6 Conclusions and Future Work

In this paper we have described development of Flex-GP, which we believe to
be the first large-scale cloud GP implementation. This is timely and is made
possible by the advances made in virtualization and cloud infrastructure. We
chose the Amazon EC2 cloud service. From several pre-existing software pack-
ages, we chose ECJ which provides a simple off-the-shelf island model with socket
communication. We made each island a separate EC2 instance.

In order to scale up to 350 islands we had to develop many additional soft-
ware features including cloning, dynamic launch, and a LogServer. We made use
of some publicly available open source tools like twisted, boto, nmap. We encoun-
tered and overcame several problems during scaling. We were able to identify
when certain features become critical: for example, automatic launch via cloning
becomes necessary for island numbers above 5.

Our success is demonstrated through Flex-GP performance on a benchmark
problem. Increased resources improve performance, with some cost in time.

Our next goal is to scale Flex-GP to at least 1000 islands. From experience
in scaling to 350, we expect to require a number of additional infrastructural

features such as distributed startup, visualization tools and no single point of
failure. We also aim to modify the Flex-GP island model to introduce features
of elasticity (add or remove instances when needed) resiliency (gracefully han-
dle node failures). After achieving these we aim to examine other distribution
models.

Acknowledgements

This work was supported by the GE Global Research center. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of General Electric
Company.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28 (2009)

2. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles
10(2) (1998)

3. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of ACM 51(1), 107–113 (2008)

4. Laredo, J., Castillo, P., Paechter, B., Mora, A., Alfaro-Cid, E., Esparcia-Alcázar,
A., Merelo, J.: Empirical validation of a gossiping communication mechanism for
parallel EAs. In: Applications of Evolutionary Computing. pp. 129–136. Springer
(2007)

5. Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Bassett, J., Hubley, R.,
Chircop, A.: ECJ: A Java-based evolutionary computation research system (2007),
http://cs.gmu.edu/~eclab/projects/ecj/

6. McDermott, J., Sherry, D., O’Reilly, U.M.: Evolutionary and generative music
informs music hci—and vice versa. In: Wilkie, K., Holland, S., Mulholland, P.,
Seago, A. (eds.) Music Interaction. Springer (2011), forthcoming

7. Ograph, B., Morgens, Y.: Cloud computing. Communications of the ACM 51(7)
(2008)

8. Poli, R., Langdon, W., McPhee, N.: A field guide to genetic programming. Lulu
Enterprises UK Ltd (2008)

9. Tomassini, M.: Spatially structured evolutionary algorithms. Springer (2005)
10. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. the-

sis, Université de Lausanne (2004)
11. Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms

using mapreduce. In: Proceedings of Intelligent Systems Design and Applications.
pp. 13 –18 (2009)

12. Vladislavleva, E., Smits, G., Den Hertog, D.: Order of nonlinearity as a complexity
measure for models generated by symbolic regression via pareto genetic program-
ming. Transactions on Evolutionary Computation 13(2), 333–349 (2009)

http://cs.gmu.edu/~eclab/projects/ecj/

	XX-GP: Genetic Programming on the Cloud

