MapJAX: Data Structure Abstractions for Asynchronous Web Applications

Jennifer N. Carlisle
MIT CSAIL

Daniel S. Myers
MIT CSAIL

Abstract

The current approach to developing rich, interactive web
applications relies on asynchronous RPCs (Remote Pro-
cedure Calls) to fetch new data to be displayed by the
client. We argue that for the majority of web appli-
cations, this RPC-based model is not the correct ab-
straction: it forces programmers to use an awkward
continuation-passing style of programming and to ex-
pend too much effort manually transferring data. We
propose a new programming model, MapJAX, to rem-
edy these problems. MapJAX provides the abstraction
of data structures shared between the browser and the
server, based on the familiar primitives of objects, locks,
and threads. MapJAX also provides additional features
(parallel for loops and prefetching) that help develop-
ers minimize response times in their applications. Map-
JAX thus allows developers to focus on what they do
best—writing compelling applications—rather than worry-
ing about systems issues of data transfer and callback
management.

We describe the design and implementation of the
MapJAX framework and show its use in three prototyp-
ical web applications: a mapping application, an email
client, and a search-autocomplete application. We evalu-
ate the performance of these applications under realistic
Internet latency and bandwidth constraints and find that
the unoptimized MapJAX versions perform comparably
to the standard AJAX versions, while MapJAX perfor-
mance optimizations can dramatically improve perfor-
mance, by close to a factor of 2 relative to non-MapJAX
code in some cases.

1 Introduction

“It is really, really, really hard to build some-
thing like Gmail and Google Maps,” said
David Mendels, general manager of platform
products for Macromedia. “Google hired
rocket scientists... Most companies can’t go
and repeat what Google has done.” [1]

Recent months have shown an explosive growth in
rich, interactive content on the World Wide Web — a
phenomenon termed Web 2.0. Central to this growth

Barbara H. Liskov
MIT CSAIL

James A. Cowling
MIT CSAIL

is a communication technique known as AJAX: Asyn-
chronous Javascript and XML [2]. Before AJAX, web
applications were forced to fetch an entire page from the
server in order to display any new data. By contrast,
AJAX allows Javascript programs to send requests to the
server without reloading the page or blocking the user
interface. This has permitted the development of a new
class of highly-responsive, desktop-like applications on
the web. Moreover, support for the underlying AJAX
mechanisms is ubiquitous, having been present in web
browsers since the late 1990s, so these applications can
be delivered without the need for third-party plugins.

The current AJAX programming model has two sig-
nificant shortcomings, however. First, AJAX requires
that web clients request content from web servers us-
ing asynchronous HTTP requests: the client bundles any
statements that depend on the result of the request into a
callback that will be executed when the response to the
HTTP request arrives. This approach forces program-
mers to use an awkward continuation-passing program-
ming style and thread program state through a series of
callback functions. While various toolkits [9, 15] elevate
the level of abstraction to that of an RPC, none has elim-
inated the use of continuations and callbacks.

Additionally, a programmer using AJAX must develop
his or her own techniques for avoiding delays associated
with fetching content from the server. These delays can
be reduced by prefetching content before it is needed,
and by sending requests in parallel. Neither AJAX nor
current tools built on top of it provides direct support for
these approaches.

This paper presents MapJAX, a data-centric frame-
work for building AJAX applications without any new
client-side software. In place of asynchronous RPCs,
MapJAX provides the programmer with the illusion of
logical data structures shared between the client and
server. These data structures appear to be ordinary ob-
jects that can be accessed through normal Javascript
method calls, hiding the underlying complexity of con-
tinuations and callback functions. Instead, the code that
causes a fetch of data from the server can be thought of
as running in its own thread. The thread blocks while the
call is being processed and then continues running when
the server response arrives. The MapJAX approach thus
allows users to create programs with the mental model to

which they have grown accustomed: threads and objects.

In addition, MapJAX also provides a number of mech-
anisms that enable efficient interaction between client
and server. Given that the cost of communication far
exceeds the cost of computation in this setting, we fo-
cus on ways to reduce communication delays. First,
MapJAX allows application programmers to decrease
the latency involved in data structure access by using
spare bandwidth to prefetch objects. The MapJAX run-
time maintains a cache of previously fetched objects and
avoids communication delay when the requested content
is present in the cache.

Second, MapJAX provides a mechanism that allows
a number of fetches to be sent in parallel. This is pro-
vided in the form of a parallel for statement. A common
use case for web applications is to copy a range of ele-
ments to the screen. This is naturally expressed as a se-
quential for loop over a shared data structure, albeit with
poor performance. Instead, the parallel for starts up the
iterations in parallel, allowing the requests to be issued
immediately and concurrently.

In order to allow applications to express ordering con-
straints on these loops while preserving concurrency,
MapJAX provides a new locking mechanism that allows
a thread to reserve a lock in advance of acquiring it. Lock
reservation is non-blocking and simply places the identi-
fier of the thread into the lock queue. Later, the thread
acquires the lock using an acquisition function which
blocks until the lock is available. As detailed in Sec-
tion 3.5, this model allows threads to generate requests
in parallel, yet process their responses in order.

MapJAX also provides a few additional features to in-
crease the effectiveness of prefetching and parallel for.
It is able to group a number of requests into one com-
munication with the server, and it allows the program to
cancel requests that are no longer needed.

MapJAX is defined as a small veneer over Javascript,
as a goal of the system is to require a minimum of pro-
grammer retraining. Its implementation consists of a
compiler that translates MapJAX programs to Javascript,
and a runtime system written in Javascript that provides
the needed support for the MapJAX features. Despite
significant work on programming environments for web
applications [13, 10, 9, 3, 15, 4, 11], we are not aware
of any existing work that provides a programming model
like that of MapJAX.

We have used MapJAX to implement three prototyp-
ical web applications—a mapping application, an email
client, and a search autocomplete application. These
were all implemented with relative ease, while benefit-
ing from prefetching and parallel for loops. Our results
show that MapJAX has minimal overhead compared to
an equivalent AJAX program. The results also show that
use of our advanced features resulted in substantial per-

formance improvements. to as much as a factor of 2 in
some cases.

2 Javascript and AJAX Applications

We first provide a brief overview of Javascript and
AJAX. The Javascript language was originally developed
at Netscape in 1996 to allow interactivity in web pages.
In particular, Javascript allows handlers to be registered
for activation in response to various events that can occur
on the page, such as the page being loaded, the user click-
ing on a link, moving his or her mouse over an image,
and so forth. While Javascript has seen use outside of
the context of web pages, within this context Javascript
programs are event-based. As only one event handler can
execute concurrently and scheduling is non-preemptive,
Javascript programs can be viewed as executing under
a single-process, event driven (SPED) model similar to
e.g. Zeus [17].

Application programmers can modify web page con-
tent from Javascript using the Document Object Model
(DOM), a programmatically-accessible, tree-structured
representation of the elements on the page.

Until relatively recently, Javascript was used only for
purely client-side tasks, such as verifying text input into
a zip-code form field. Since the late 1990’s however,
Javascript has contained an “XMLHttpRequest” object,
allowing programmers to send asynchronously-handled
HTTP requests for XML-formatted data. The realiza-
tion in the web development community that this ob-
ject could be used to fetch new data without reloading
a page gave rise to AJAX, standing for “Asynchronous
Javascript and XML”, although more recently alternative
encodings such as Javascript Object Notation (JSON) [5]
have been used in place of XML.

3 Programming Model

This section describes the MapJAX programming model.
We begin with the basic features that allow programmers
to write working programs (shared data structures and
non-preemptive threads), then describe various features
that help them to improve performance (data prefetching,
parallel for loops, RLU locks, and request canceling).

3.1 MapJAX Maps

MapJAX objects represent logical data structures shared
between the client and server, and are at the core of the
MapJAX system. These objects are collections of ele-
ments, e.g., a collection of email messages, or a collec-
tion of grid cells in a mapping application. Each map is
associated with a URL at the server to which requests are
sent to retrieve elements.

o Cmap(String url, Object prefetch, String transport).
Creates a new MapJAX map, where url is the URL
that will be used to fetch its elements, prefetch is the
prefetching policy, and transport identifies the type
of transport used to make requests.

e Object access(String key). Returns the element
named by key. Alternatively, returns a failure code
if the key is invalid or the network fails.

e Boolean has(String key). Returns true if the element
named by key is present in the cache.

e void prefetch(String[] keys). User-initiated

prefetching.

e void cancel(String key). Cancel an outstanding ac-
cess.

Figure 1: MapJAX maps APL

The base representation provided by MapJAX for col-
lections of elements is a map from keys to values, where
the keys are strings, and the values can be any Javascript
data type (we assume that maps do not contain other
maps). Maps are supported at the server by this base rep-
resentation. At the client side, however, it can be useful
to access the shared structure at a higher level of abstrac-
tion, such as an array or tree.

MapJAX provides three higher-level abstractions: one
and two-dimensional arrays, and trees, with the class
names ARRAYMAP, GRIDMAP, and TREEMAP, respec-
tively. One dimensional arrays use integers as keys, two
dimensional arrays use pairs of integers as keys, and trees
use strings where each string represents the path from
the root to the element of interest. Programmers are free
to implement their own abstractions using any of these
primitives, and MapJAX is capable of supporting general
object graphs.

MapJAX objects appear as ordinary Javascript objects.
Figure 1 shows the interface to MapJAX maps; although
Javascript is not statically typed, we have included types
in the method descriptions to clarify the presentation.

The constructor takes as an argument the URL to be
used to fetch elements of the map. It also takes a prefetch
object, which defines how prefetching works for this
map; prefetching is described in Section 3.3. The third
argument specifies the type of transport to be used to re-
trieve elements; we defer discussion of this implementa-
tion detail to Section 4.

The most interesting method of a MapJAX object is
access. A call of this method, e.g., foo.access(“bar”),
is a blocking call: it will not return until the requested
element has been retrieved from the server, although it

may return immediately if the value is already cached.
The MapJAX threading model (discussed below) allows
other Javascript or browser code to execute while the call
is blocked.

The has, prefetch, and cancel methods are used for
cache management and server functionality; they are dis-
cussed in later sections.

Maps are read-only. Given the generally read-oriented
nature of the web, we do not feel this to be an overly
onerous limitation, but leave write-enabled structures as
an area of future work.

3.2 Threads

A MapJAX program consists of a collection of threads.
A new thread is created each time an event handler is
invoked by the browser. Threads are also created for it-
erations in the parallel for as discussed in Section 3.4.

Threads are scheduled non-preemptively: a thread re-
tains control until relinquishing it. A thread relinquishes
control when it finishes processing an event or when it
makes a blocking call on a MapJAX object. For exam-
ple, when a thread calls the access method of a MapJAX
map object, causing an RPC to be made to the server, it
relinquishes control; it will regain control at some point
after the result of the RPC arrives (or the RPC is aborted
because of communication problems).

Threads are implicit at present, and relinquishing con-
trol is also implicit. However, it would not be difficult
to extend MapJAX to support explicit threads and thread
management (e.g., a yield statement) if this turned out to
be useful.

It is worth pointing out that the concurrency in Map-
JAX programs also exists in AJAX programs. The dif-
ference is that in MapJAX programmers can think of
each event handler as running in its own thread, with the
system switching control among threads automatically,
whereas in AJAX, the programmer needs to write call-
backs and continuation functions.

3.3 Prefetching

All MapJAX maps support prefetching via programmer-
defined prefetching policies. A prefetching policy is a
Javascript object. It provides a method, getPrefetchSet,
that, given a key, returns a set of keys that identify ele-
ments to prefetch. Prefetching policies are usually spe-
cialized to the kind of MapJAX map in use in the web
application. E.g., for a map-viewing application, the
prefetching policy might indicate to fetch all grid cells
adjacent to the one being requested. Additionally, the
prefetching policy can be tailored to a particular higher
level abstraction; e.g., one defined for arrays would ex-
pect keys to be integers.

Figure 2 provides an example prefetching object that
implements a “read-ahead K” policy for an ARRAYMAP.

// Javascript object constructor
function ReadAheadKPolicy (k) {
this.k = k;
}
// Javascript object definition
ReadAheadPolicy.prototype = {
getPrefetchSet: function (idx) {
var pf_set = new Array();
for (var 1 = 1; 1 <= k; ++i) {
pf_set.push (idx + k);
}

return pf_set;

}

Figure 2: Example read-ahead-k prefetching policy for
an ARRAYMAP.

The getPrefetchSet method merely identifies elements
of interest. The MapJAX runtime ensures that elements
already present in the cache will not be refetched, so
these policies do not need to be aware of the state of the
cache.

Calls to getPrefetchSet are made automatically as part
of processing a call to the access method. Access calls
getPrefetchSet on the prefetch policy object associated
with the map and then requests a fetch of the original
key plus all the keys returned by the call. A program-
mer can also initiate ad-hoc prefetching by calling the
prefetch method of a map object with an array of keys to
prefetch. This method informs the MapJAX runtime of
the need to prefetch the elements and then returns imme-
diately (it is non-blocking). The actual fetching occurs
in the background.

Custom prefetch policies can be written with a mini-
mal amount of effort from application programmers, al-
lowing prefetching to be tailored to specific web appli-
cations. We note additionally that these policies need
not be static: as full-fledged Javascript objects, they can
maintain internal state to adapt based on the request his-
tory.

3.4 Parallel for Loops

A common use case for web applications is to copy a
range of elements to the display. The obvious way to
program this is to use a for loop, where each iteration is
responsible for fetching and rendering each element. A
sequential execution model is not well suited for the pro-
cessing of such a loop, however, since it will force one
iteration to complete before the next iteration begins; in
particular, this will needlessly delay the launch of RPCs
to fetch missing data. Prefetching helps but does not
completely solve the problem.

To optimize this common and important case, we in-
troduce a parallel for statement into the MapJAX lan-

guage, written pfor. The semantics of this statement are
as follows. Each iteration runs in a separate thread. Con-
trol starts with the first loop iteration; as soon as it blocks,
the next iteration starts to run, and so on. More formally,
we guarantee that each iteration will initially be given a
chance to run in loop order; after the thread correspond-
ing to that iteration yields control, however, it regains
control in an arbitrary order with respect to other threads
in the loop. Locks, described in the next section, can be
used to impose additional ordering constraints if need be.
Control passes to code following the loop only once all
the iteration threads have terminated.

Our parallel for loops are thus similar to standard par-
allel for loops in that they require loop iterations not to
effect the termination condition of the loop. They differ
slightly, however, because they explicitly start iterations
in loop order. Combined with our novel locks, discussed
below, this allows programmers to enforce useful order-
ing constraints that could not be captured with a standard
parallel for.

The use of the parallel for statement can provide con-
siderable performance benefits, as discussed further in
Section 6.

3.5 Locks

Any language with concurrency requires some mecha-
nism for its control. In MapJAX, we provide program-
mers with a novel type of local lock. These locks can
be used in the normal way: first a thread acquires the
lock and later releases it. However, our locks also pro-
vide the ability to reserve the lock in advance of acquir-
ing it. We call these RLU locks because of the “re-
serve/lock/unlock” regime for using them.

Reserving a lock doesn’t block the thread; instead it
records the thread on the end of a reservation list. When
a thread executes the lock method, it will be delayed un-
til the lock is available and it is the earliest thread on
the list. The interface for MapJAX locks is given in Fig-
ure 3. Note that a thread can call the lock method without
having previously reserved the lock. In addition, the un-
reserve method can be called to give up a reservation.

RLU locks are motivated in large part by our pfor
loops. Consider a pfor loop in which the programmer
intends for each iteration to update a shared variable
in loop order using data fetched from the web server
through a shared map. While the iterations are started
in loop order, the responses to the fetch requests may ar-
rive in a different order.

With normal locks, the only solution would be for each
iteration to acquire the lock on the shared variable before
performing the access call, thus preventing the iterations
from making their fetch requests in parallel. With RLU
locks, threads reserve the lock in loop order. They may

e RLUlock(). Creates a new lock object. The lock is
available and the reservation list is empty.

e void reserve(). If the thread is already on the reser-
vation list for the lock object, does nothing. Oth-
erwise adds the thread to the end of the reservation
list.

e void lock(). If the thread isn’t on the reservation list,
adds it to the end of the list. Blocks until this thread
is at the front of the list and the lock is available.
Then acquires the lock and removes the thread from
the list.

e void unlock(). If this thread holds the lock, releases
the lock, else does nothing.

e void unreserve(). If this thread is on the reservation
list, removes it from the list, else does nothing.

Figure 3: MapJAX RLU locks APL

then immediately call access and initiate the transfer of
remote data, blocking to acquire the lock only when ab-
solutely necessary (before updating the shared variable).
The code is given in Figure 4.

var sharedData = new ArrayMap(...);
var 1 = new RLULock () ;
pfor(var i = 0; 1 < 47; ++i) {
l.reserve();
var newData = sharedData.access (i);
l.lock();
localObject += newData;
l.unlock();

}

Figure 4: Locking example.

Finally, we note that RLU locks are useful outside of
a pfor statement as well: the network reordering issues
they are designed to address can arise any time multiple
threads seek to synchronize their accesses to an object,
and they can also be used as normal locks.

3.6 Request Canceling

When bandwidth is limited, applications must manage it
carefully. Request canceling is one mechanism by which
they may do so. Specifically, sometimes an application
can determine that certain data elements are no longer
needed. For example, in our mapping application, a user
scrolling quickly in a low-bandwidth environment can
trigger two updates for the same cell on screen, where
only the latter update is required. If the application can
indicate to the runtime that the first update is no longer
needed, considerable bandwidth can be saved in the case

where the RPC for the first request has not yet been sent
to the server.

Request canceling is supported by the cancel method
of MapJAX maps. This call takes a key, k, as an ar-
gument. If there is no outstanding RPC with £ as an
argument, the cancel request has no effect. Otherwise,
the RPC with k as an argument might be canceled; other
RPCs might be canceled as well. If an RPC is canceled,
any call of access that is waiting for the results of that
RPC will return with a failure code. The failure code
allows the thread that is waiting for the result to act ap-
propriately when it starts running again.

The MapJAX runtime determines what is canceled
based on heuristics about the utility of the outstanding
RPCs. Generally, if k was an argument to a previous ac-
cess call, the system will cancel all RPCs corresponding
to that call, i.e., requests both for k and for other keys
identified by prefetching. However it will not cancel an
RPC for one of the prefetch keys if it appeared as an
argument to a later access call or contains requests for
non-canceled items. More details about how canceling
works can be found in Section 4.2.4. Note that program-
mers needn’t be concerned with these details; instead
they simply cancel based on knowledge of what is no
longer needed, and the runtime makes the ultimate deci-
sion.

4 Implementation

This section describes the implementation of MapJAX.
MapJAX is presented to the user as a small extension
to the standard Javascript language. The MapJAX im-
plementation has three parts: a compiler that translates
MapJAX programs to standard Javascript, a client-side
runtime Javascript library that implements the majority
of the MapJAX programming model, and a server-side
library.

The current version of MapJAX implements the vast
majority of the programming model described in Sec-
tion 3, although it is still an unoptimized prototype. The
only features not fully implemented are some request-
canceling corner cases described in Section 4.2.4.

4.1 MapJAX Language and Compiler

A major goal for MapJAX is to allow programmers to
access data at servers using normal method calls, thus
avoiding the complexity of programming with contin-
uations and callbacks. MapJAX also provides support
for writing high-performance code, including the paral-
lel for statement.

Both blocking calls and the parallel for statement re-
quire the use of a compiler whose job it is to produce the
corresponding Javascript program. This code is based

on callbacks and continuation functions, which permit
an efficient implementation.

The MapJAX compiler needs to be able to recognize
the features requiring translation. We accomplish this as
follows. Blocking method calls are indicated by using
special names for these methods: these names always
end in “#” (e.g., access#, lock#). The parallel for state-
ment is indicated by using an additional keyword pfor.
Thus our extensions to Javascript are very small. We
opted for this approach because we wanted MapJAX to
remain similar to Javascript, so that programmers who
already knew Javascript would be able to use MapJAX
without much effort.

When the compiler encounters one of the blocking
method calls, it computes the continuation of the call,
packages that code as a continuation function, and adds
that function as an extra argument to the call. Addition-
ally, the compiler applies this procedure transitively: any
function that calls a blocking method is tagged, and the
compiler applies this procedure for any call to a tagged
function. Thus, code using the MapJAX programming
model is converted into callback-based code compatible
with standard Javascript.

The code produced for the pfor statement also makes
use of continuations and callbacks. Here the compiler
must produce code to spawn each iteration as a new
thread, to produce the next thread when the previous one
blocks, and to ensure that the code after the loop isn’t
executed until all iterations have terminated.

4.1.1 Function Denesting

Javascript supports nested function declarations, and the
initial version of the compiler used them in the generated
code: continuation functions were nested in the function
from which they were generated, which allowed easy ac-
cess to variables declared therein. (This would also be an
attractive way to write standard AJAX code.) Due to the
Firefox implementation of Javascript, however, perfor-
mance of this code was quite poor: we found that access
to variables declared in a nesting hierarchy was consid-
erably slower than access to variables declared in a top-
level function. Therefore, the compiler now performs
an optimization pass in which the nested code generated
by the compiler is fully de-nested; variables needed by
formerly-nested functions are stored and passed explic-
itly in “closure objects.” Nested code that existed in the
original input file is not denested.

4.2 Client-side Runtime

The majority of MapJAX is implemented in the client-
side runtime. Specifically, the runtime provides sup-
port for handling accesses to MapJAX objects (including

RPC transmission and cache management), creating and
scheduling threads of control, and locks.

4.2.1 Object Cache

The MapJAX runtime makes use of a Javascript ob-
ject that implements a cache for MapJAX object ele-
ments. The cache holds previously fetched object ele-
ments. Each time a new element arrives from the server,
it is added to the cache. Elements are removed from the
cache based on TTLs; these TTLs are provided by the
server and are sent in the RPC replies. TTLs are in-
tended to ensure data freshness, not to manage the size
of the cache. In general, we believe that cache manage-
ment policies are relatively uninteresting for these appli-
cations, given the large size of the cache relative to the
amount of data that would normally be downloaded in
a reasonable timeframe. Adding sophisticated manage-
ment policies would be straightforward and able to draw
on the large body of existing work.

4.2.2 Accessing Objects

When the access method of a MapJAX map is invoked,
it first computes the set of prefetch keys. Then it passes
the requested key, the set of prefetch keys, and associ-
ated callback function (generated by the compiler) to the
MapJAX runtime. The runtime interacts with the cache
to determine which of the requested elements need to be
fetched, and it prunes the list to remove all elements cur-
rently present in the cache.

If any elements remain after this pruning, the runtime
initiates a request or requests to the server for the missing
elements. Then, if the cache contains the requested ele-
ment, the callback function is invoked immediately. Oth-
erwise, the MapJAX runtime stores the callback func-
tion. When an element arrives from the server, callback
functions pending on that element are invoked in the or-
der they were submitted.

The MapJAX runtime maintains information about
each pending access method call: it records the key re-
quested as an argument of that call, plus any additional
prefetch keys, the callback, and the RPCs generated to
satisfy the request.

4.2.3 Transport Abstraction

The communication protocol is abstracted into a separate
class, allowing different transports to be used to fetch
objects. For example, AJAX requests through the XML-
HttpRequest object can only be used to fetch text data.
Binary data, such as images, are not supported. How-
ever, by substituting a class that uses the browser’s sup-
port for loading images directly, rather than AJAX calls,
we can support image requests using the same model as

is used for text data. The purpose of the third argument
of MapJAX object constructors, left unspecified earlier,
is to specify which transport should be used to service
misses for that object.

4.2.4 Request Canceling

Request canceling is currently implemented in a simple
way; requests are canceled if they contain a single cance-
lable element. A full implementation would be designed
as follows. The MapJAX runtime looks through its list of
outstanding access requests and their associated RPCs.
If the key k being canceled is the key requested by some
access request, we cancel all RPCs associated with that
request except for RPCs requesting keys that are listed in
more recent access requests. If k is not a requested key
(i.e., it is a key generated by a prefetching policy), we
cancel the RPC containing the request for it, provided
any other keys in the request have already been canceled
(the runtime carries out the necessary bookkeeping to de-
termine if they have been).

4.2.5 Request Combining

For performance and scalability reasons, requests to the
server for MapJAX object values should be grouped into
single messages when possible. The MapJAX runtime
cannot predict the future and doesn’t know when it re-
ceives a request whether it should wait for another. How-
ever, when executing the code corresponding to a pfor
loop, it is clearly advantageous to wait. In this case,
MapJAX defers sending any requests until each iteration
of the loop has been given a chance to run, offering op-
portunities for combining.

4.2.6 Callstack Depth Monitoring

Because the client runtime uses continuations, it is pos-
sible for the call stack to grow excessively deep. In par-
ticular, consider a (non-parallel) for loop over an array
where all elements are already locally cached. In this
case, each loop iteration will add another stack frame,
and moderate-sized loops were found to exceed the max-
imum Javascript stack depth in practice. To cope with
this issue, the compiler inserts code to track the depth of
the stack at runtime, and the MapJAX runtime monitors
this value. If the stack depth grows beyond a given value,
the runtime will break the call chain by using Javascript-
provided facilities to schedule future event execution
(window.setTimeout) to execute the next call, rather than
allowing it proceed directly.

4.3 Server-side Library

Implementing MapJAX objects requires cooperation
from the server. Specifically, each object is associated
with a URL on the server that accepts requests for one or
more elements in the corresponding shared data structure
and returns the corresponding values and TTLs. Map-
JAX provides a library for use in Java Servlets and Java
Server pages for building such servers, but nothing about
MapJAX requires the use of Java on the server-side: any
software able to process HTTP requests with request pa-
rameters will suffice.

S5 Applications

We have implemented a number of web applications
to evaluate MapJAX based on both programming effi-
ciency and performance. Our chosen applications repli-
cate three prototypically successful AJAX applications:
Google Suggest, Google Maps, and Gmail. Each was
implemented from scratch using both standard AJAX
techniques and MapJAX. Here, we describe the appli-
cations and their implementations; in Section 6, we de-
scribe their performance under the MapJAX framework.

5.1 Auto-Complete Application

The search auto-complete application, echoing the func-
tionality of Google Suggest, is representative of applica-
tions where very low-latency fetching of server data is
required. Here, a user types a search phrase into a text
box within a web page, and suggested text completions
are offered in real-time. A TREEMAP MapJAX object is
used to implement a trie providing access to the sugges-
tion set for each successive keypress. Cache misses must
be handled with low overhead to ensure responsiveness
for typists of even moderate speed.

As each keypress generates a new completion set that
obsoletes any previous one, and given that the network
may reorder messages, care must be taken to ensure that
the correct data are always displayed. MapJAX locks
provide a simple mechanism to enforce this constraint:
the handling code for a keypress event simply reserves
a lock on the completion display object, accesses the
shared trie, then locks and updates the display object.

Given the speed at which users type, completion set
prefetching can yield a noticeable improvement in appli-
cation performance. Figure 5 illustrates the expression of
a custom prefetching policy in the MapJAX framework.
The prediction of the next character that the user will in-
put is based on the last character he or she has entered:
we predict that a consonant will follow a vowel, and vice-
versa, which is an approximation to English word struc-
ture.

EnglishPrefetchPolicy.prototype = {
getPrefetchSet: function (idx) {
var lastchar = idx.charAt (idx.length - 1);
var pset = new Array();
if (this.isVowel (lastchar))
for (var i=0; i<this.con.length; i++) {

pset[i] = idx + this.con[i];
}
} else {
for (var i=0; i<this.vowels.length; i++)
pset[i] = idx + this.vowels[i];

}
}
return pset;
}
bi

Figure 5: Implementation of a custom prefetching policy
in MapJAX. This policy uses a basic model of the En-
glish language to predict future search queries based on
the current query.

5.2 Mapping Application

Our mapping application closely resembles Google
Maps: it provides the user with a mobile viewport over a
large map. By clicking and dragging the viewport, the
user can examine different portions of the map. This
example exhibits the implementation of a complex web
application (one widely claimed to be difficult to im-
plement) with relatively little effort under the MapJAX
framework. The grid nature of the data is well matched
by a two-dimensional array abstraction, provided by the
MapJAX GRIDMAP. While the logical dimensions of
this grid are extremely large (100,000+), MapJAX re-
quires only enough memory on the client to store the data
accessed. Moreover, MapJAX is able to stream data as
they are needed, rather than requiring the entire working
set to be transferred at once.

The map application takes advantage of parallel data
fetches from the server and uses locks to ensure that
the proper elements are displayed. This application
presents a particular challenge, however, because of the
bandwidth requirements involved. If prefetching is im-
plemented poorly, it can increase response times by
delaying requests that satisfy cache misses. Even if
prefetching decreases response times, overly-aggressive
prefetching wastes bandwidth, causing the application
provider to incur unnecessary bandwidth costs. In our
experiments we implement a simple omnidirectional
prefetch policy, OMNI, which fetches all tiles within a
square of size k of the accessed tile.

When the user moves to another region of the grid, the
current set of tiles will be rendered obsolete as new infor-
mation is requested. Often, if the user is moving quickly
through the space, tiles that have been requested for the
current display have not yet arrived. Furthermore, these
tiles have associated prefetch sets that have also been ren-

dered obsolete. Fetching these unwanted tiles to satisfy
outstanding access requests wastes bandwidth. With re-
quest cancellation, these requests can be eliminated.

The mapping application is not actually an AJAX ap-
plication due to the inability of AJAX to transfer binary
data. Both the MapJAX and non-MapJAX implementa-
tions use native browser support for loading and caching
images. The example illustrates the ability of MapJAX
to provide a uniform interface to data, regardless of its

type.

5.3 Webmail Application

We implemented a two-pane webmail application. The
left pane displays a list of email message headers (sender,
date, and subject); when one of the headers is clicked, the
corresponding message body is displayed in the right-
hand pane. The left pane contains at most 40 message
headers; additional message headers can be viewed by
clicking a “next page” link, which loads the next 40 head-
ers.

The usage patterns characteristic of webmail applica-
tions provide an ideal setting for MapJAX-based data
prefetching. Users desire low latency when loading new
screens of message headers or viewing message bodies,
but they generally have long “think times” while read-
ing messages, providing a long interval during which the
system can prefetch data. MapJAX permits an imple-
mentation of this application with little programmer ef-
fort. The application programmer simply accesses head-
ers and bodies directly from MapJAX objects, without
considering data transfer explicitly except for choosing a
prefetching policy.

This application also illustrates the utility of MapJAX
parallel for loops and locks. When loading a new screen
of message headers, the programmer needs to append
new header objects to the header list in the appropri-
ate order. A non-MapJAX implementation needs to im-
plement this ordering manually, which complicates pro-
gram development by forcing the programmer to manu-
ally group object requests into messages and ensure that
responses are processed in order.

By contrast, the MapJAX version of the code using a
parallel for loop is correct, simple, and fast. The code in
Figure 6 loads the first 40 headers into the header list in
order, regardless of how many RPCs the MapJAX run-
time chooses to issue to retrieve the headers. We assume
that the header list is represented by a <DIV> element
whose ID is “header_list_div”’. We show the correspond-
ing Javascript code generated by the MapJAX compiler
in Figure 7.

Figure 8 shows a version of the AJAX code which
retrieves all headers using a single RPC. Already, this
code can be seen to be more complicated than its Map-

var mailHeaders = new ArrayMap ("mailHeaders",
new ReadAheadKPolicy (10),
"AJAXTransport");
var headerList =
document .getElementByID ("header_list_div");
var hdrLock = new RLULock () ;
pfor(var i = 0; 1 < 40; ++i) {
hdrLock.reserve () ;
var header = mailHeaders.access# (1);
// Omit code to check for error condition
hdrLock.lock# () ;
var hdrDiv = document.createElement ("div");
// Omit code to initialize hdrDiv from header
headerList.appendChild (headerDiv) ;
hdrLock.unlock () ;
}

Figure 6: MapJAX implementation for loading a page of
email headers.

JAX counterpart; adding facilities for tracking and order-
ing multiple requests (which might boost performance)
would only make the situation worse.

5.4 Non-MapJAX Implementations

We close with a word on our non-MapJAX implementa-
tions of these applications. While the MapJAX applica-
tions use the automatic prefetching and caching features
of the framework, we do not implement manual caching
or prefetching in the non-MapJAX applications. Our ra-
tionale is that a manually-tuned application should al-
ways be able to perform as well as MapJAX, given a suf-
ficient time investment: MapJAX and human program-
mers both have the same set of primitives available to
them. We thus show the improvement possible given a
programmer unwilling or unable to invest extensive time
and energy in optimization.

Note that the absence of prefetching in the non-
MapJAX examples greatly reduces their implementation
complexity. Had we included this functionality, the bene-
fits of of MapJAX would have been even more apparent.
Caching on its own, by contrast, would be of little use
on the test workloads presented in Section 6, as they do
not reuse data, and the non-MapJAX applications do not
suffer from its absence.

Caching and prefetching aside, we have attempted to
write implementations that, while straightforward, avoid
obvious performance pitfalls. We describe each in more
detail below.

The non-MapJAX version of the webmail application
takes the one-RPC approach to fetching message headers
as discussed in Section 5.3 and illustrated in Figure 8.
Message bodies are retrieved using one RPC per body,
as multiple bodies are never fetched simultaneously.

The non-MapJAX version of the suggest application
is almost identical to the MapJAX version, except that
it explicitly sends an RPC to fetch completion requests.

var mailHeaders = new ArrayMap ("mailHeaders",
new ReadAheadKPolicy (10),
"AJAXTransport");
var headerList =
document .getElementByID ("header_list_div");
var hdrLock = new RLULock () ;
for(var 1 = 0; 1 < 40; ++1i) {
hdrLock.reserve () ;
_cx_thread_create (function () {
mailHeaders.access (i, _cx_contl);
1)
}

function _cx_contl (header) {
var contobj = new Object ();
contobj.header = header;
hdrLock.lock (_cx_cont2, contobj);

}

function _cx_cont2 (contobj) {
var header = contobj.header;

var hdrDiv = document.createElement (*‘'div’’);
// Omit code to initialize hdrDiv from header

headerList.appendChild (headerDiv) ;
hdrLock.unlock () ;
}

Figure 7: Javascript code produced by the MapJAX com-
piler for loading a page of email headers.

In order to cope with network reordering, it maintains a
version number on the completion display field that it in-
crements each time it sends an RPC. The callback func-
tion for each RPC has a copy of the version number with
which it is associated; when it is run, it checks the ver-
sion number on the completion display and only updates
the display if the version matches. For compatibility with
the Google version of the application, whose data we use,
RPC results contain Javascript code which is eval’ d to
update the display.

The non-MapJAX version of the mapping application
is also close in implementation to the MapJAX version.
Using much the same event-handler code, it moves and
updates a collection of image objects on screen, the pri-
mary difference being that new image data are loaded
by setting the “src” attribute of these objects to the ap-
propriate URL, rather than using a MapJAX grid-map.
While this implementation does not prefetch, the browser
will cache images, and it also benefits from the request-
canceling functionality that browser image objects sup-
port.

6 Experimental Results

In this section, we provide performance results that
demonstrate the advantages of MapJAX. We test the ap-
plications described above under realistic Internet la-
tency and bandwidth constraints and show that the un-
optimized MapJAX versions perform comparably to the

var req = new XMLHttpRequest();

req.open ("GET", "/mail-headers.cgi?idxs=0-40");
req.onreadystatechange = headerRPCHandler;
reqg.send(null);

function headerRPCHandler (req) {
if (reqg.readyState == 4 && req.status == 200)
var jsonEncodedHeaders = req.responseText;
var headers =
var headerList =
document .getElementById ("header_list_div")
for (var i = 0; 1 < headers.length; i++) {
var hdrDiv =
//Skip code to init hdrDiv from headers[i]
headerList.appendChild (hdrDiv);
}
} else {
if (reqg.readyState == 4) {
// handle RPC error condition

}

}

Figure 8: Non-MapJAX, single-RPC implementation for
loading a page of email headers.

standard AJAX versions, while MapJAX performance
optimizations can dramatically improve performance, by
up to a factor of 2 in some cases. Additionally, we pro-
vide microbenchmarks demonstrating the utility of spe-
cific features of MapJAX.

These results illustrate two points. First, they show
that the more intuitive programming model of MapJAX
is provided with little overhead. Second, the results
demonstrate that prefetching and other MapJAX opti-
mizations are useful tools for these kinds of applica-
tions, and that substantial performance increases can be
achieved with relatively simple-minded prefetching poli-
cies. Were one willing to expend additional effort devis-
ing more clever prefetching policies or tweaking other
portions of the application, one might well achieve better
performance than seen here. We do not consider that fact
to detract from our results.

Our experiments were conducted using two PCs with
Intel Pentium 4 3.8GHz CPUs and 4GB of RAM, run-
ning Fedora Core 4 with Linux kernel version 2.6.14-
1.1656.FC4_smp. The server ran Apache Tomcat 5.5.17
with the tcnative extensions, and the client web browser
was Firefox 2.0.0.1. To allow effective prefetching of im-
ages, and as recommended for good AJAX performance,
we modified the Firefox configuration variables as indi-
cated in Table 1, although we note that these changes are
not mandatory. Before executing each experiment, we
executed and discarded a complete run to warm up the
server’s cache.

To introduce network delays and bandwidth con-
straints, we used a 600 MHz Intel Pentium III running
FreeBSD 4.11 and the dummynet [12] network emula-
tor. This machine was connected to both the client and

{

decodeJSON (jsonEncodedHeaders) ;

2

document .createElement ("div");

server by 100Mbit switched Ethernet.

Parameter Value
network.http.pipelining true
network.http.pipelining.maxrequests 16
network.http.max-connections 48
network.http.max-connections-per-server 48
network.http.max-persistent-c’xns-per-server 8

Table 1: Firefox configuration variables changed from
defaults during testing.

6.1 Application Tests
6.1.1 Search Auto-Complete

As stated earlier, the search term auto-complete appli-
cation is interesting because it represents an application
with low bandwidth requirements but stringent latency
requirements: search term completions that arrive after
the user has input additional characters are of no use.

To evaluate the usefulness of MapJAX in this context,
we measured the average latency of completion retrieval
(the average request latency) of both a MapJAX and
standard AJAX implementation under a range of latency
and bandwidth parameters. Specifically, we tested using
bandwidth values ranging from 256Kb/s to 1024Kb/s,
which are typical of home broadband connections, and
latencies of both 20 and 70 ms, which correspond to
close and average-distance servers. The standard AJAX
version of the application made no attempt to prefetch,
and we tested the MapJAX version with both prefetch-
ing enabled (using the English language policy described
above) and prefetching disabled.

To measure average request latency, we used a work-
load generated by typing 65 search terms from the
April/May 2006 Google Zeitgeist list of popular search
terms into the AJAX version of the application, resulting
in a trace of 423 completion requests. The completions
returned were those that would have been returned by
Google’s version of the application (they were retrieved
from Google and cached at our server ahead of time).
The average number of suggestions per suggestion set
was 5.71, and the average suggestion set size was 264
bytes. We discarded the first 10 observed latencies to
avoid measuring noise due to the application loading.

The results of this test are shown in Figure 9. First,
we note that the non-MapJAX (i.e., standard AJAX)
implementation average latencies and the MapJAX (no
prefetching) average latencies are always within 3 ms
of each other, indicating that MapJAX imposes mini-
mal additional overhead in providing its programming
model (even with the current unoptimized implementa-
tion). Second, we observe that when sufficient band-

width is available, prefetching significantly decreases the
average latency (by close to half in the 1024Kb/s case).
As expected, when sufficient bandwidth is not available,
prefetching delays the servicing of actual cache misses
and hurts performance. Future work will include auto-
matic network performance measurements to allow pro-
grammers to scale back or disable prefetching in these
cases. Additional results (not shown) show negligible
CPU or memory overhead for the MapJAX implementa-
tion relative to the non-MapJAX implementation.

200

Average Request Latency (ms)

20ms 20ms 20ms 20ms 70ms 70ms 70ms 70ms
Network Configuration

#.Non-MapJAX B No Prefetching M Prefetching

Figure 9: Average request latencies as generated by the
auto-complete application on a sample workload under a
range of simulated network conditions.

6.1.2 Mapping Application

In contrast to the auto-complete application, the mapping
application represents a case in which the application is
somewhat tolerant to latency (map tiles simply need to
arrive before the user can scroll them completely off the
screen) but has high bandwidth requirements.

To evaluate the utility of MapJAX in this context,
we measured the average latency of map tile retrieval
of both standard and MapJAX implementations under a
range of bandwidth parameters (ranging from 256Kb/s to
8,192Kb/s) and a fixed latency of 70 ms. As before, the
standard implementation made no attempt to prefetch,
and we tested the MapJAX version with both prefetch-
ing enabled (using the OMNI policy described earlier, at
various levels of prefetching) and prefetching disabled.

To measure the average request latency, we used a pair
of user-generated workloads. Specifically, we asked a
number of subjects to perform a simple navigation task
using the mapping application with no bandwidth or de-
lay constraints: scrolling from the MIT campus in Cam-
bridge to the intersection of [-93 and MA-24 south of the
city. The trace was formed by recording the GUI events
(clicks and drags) thus generated. From this collection

256Kb/s 512Kb/s 1024Kb/s 2048Kb/s 256Kb/s 512Kb/s 1024Kb/s 2048Kb/s

of traces, we chose two for testing. The first, which
we call “hard,” was generated by a user familiar with
the area who was able to navigate at high speed. The
second, which we call “easy,” was generated by a user
new to the area who navigated more slowly. The “hard”
workload consisted of 467 GUI events resulting in 198
calls to access, and the “easy” workload consisted of 890
GUI events resulting in 196 calls to access. The average
size of an image tile used by these workloads was 4,751
bytes.

Testing the application consisted of replaying these
two traces and recording the access latency observed on
non-canceled image tiles. Specifically, we used a view-
port 8 tiles wide by 4 tiles high. The initial 32 images
were loaded with prefetching disabled, and we did not
record these latencies. We then enabled prefetching and
replayed the trace. When computing average access la-
tencies, we discarded the first 15 latencies generated by
the trace to avoid measuring startup effects. The map
tile images were those used by Google; they were down-
loaded and cached at our server ahead of time.

The results of these tests are presented in Figure 10
(“easy” trace) and Figure 11 (“hard” trace). Please note
that the y-axis is log-scaled. To compensate for observed
run-to-run variability, we report the average over three
runs for each value, with error bars showing plus or mi-
nus one standard deviation.

We observe several interesting features of the graphs.
First, at 256Kb/s, both workloads exhibit extremely high
latencies with all implementations of the application, in-
dicating that the 256Kb/s is insufficient bandwidth to
support the workloads. Second, on the easy work-
load, MapJAX with prefetching disabled exhibits av-
erage latencies within 3% of the standard implemen-
tation except at 256Kb/s, where the average is highly
variable and within 10%. On the hard workload, Map-
JAX with prefetching disabled exhibits average latencies
within 12% of the standard implementation, except at
8192Kb/s, where it is within 17%.

These results indicate that the benefits of MapJAX are
available with little overhead. Moreover, we believe that
most of the overhead seen here is due to our unoptimized
implementation and can be removed. Additional results
(not shown) show that there is little to no startup over-
head imposed by MapJAX, assuming that prefetching is
disabled during startup. We also found MapJAX to im-
pose negligible CPU or memory overheads relative to the
non-MapJAX implementation.

As in the auto-complete application, as spare band-
width becomes available, prefetching is able to dra-
matically reduce the average access latency. The
“hard” workload sees a 62.5% reduction with Omni-2 at
2048Kb/s and an 83.8% reduction in latency with Omni-
2 at 4096Kb/s. The “easy” workload sees a 21.2% re-

10000

1000 —

100 ——

10 ——

Average request latency (ms)

256Kb/s 512Kb/s 1024Kb/s

Bandwidth (Kb/s)

2048Kb/s

4096Kb/s

% Non-Map]AX M Prefetch 0 M Prefetch 2

Figure 10: Results of running the mapping application
with various prefetching policies on the “easy” workload
using a simulated network with 70 ms latency and varied
bandwidth constraints.

duction with Omni-2 at 1024Kb/s, an 81.7% reduction
with Omni-2 at 2048Kb/s, and a 95.5% reduction in la-
tency with Omni-2 at 4096Kb/s. By contrast, prefetch-
ing increases access latency when spare bandwidth is not
available, as would be expected; again, future work will
allow programmers to scale back or disable prefetching
in this case.

6.1.3 Mail

We exercise some features of the mail application in
the microbenchmarks, below. Full-application tests pro-
vided no additional information beyond that obtained
from the mapping and auto-complete applications and
are omitted here.

6.2 Microbenchmarks
6.2.1 Parallel For loops and Request Combining

To evaluate parallel for loops and request combining,
we measured the total time required to load a page of
40 message headers in the MapJAX implementation of
our email application with both parallel and non-parallel
for loops. In the parallel case, we tested with request
combining both enabled and disabled. (Non-parallel for
loops provide no opportunity for request combining, so
we did not test that combination.) To eliminate net-
work effects, we introduced no latency or bandwidth
constraints and disabled prefetching.

The results of this experiment are shown in Table 2.
Parallel for loops and request combining both provide
a clear advantage: parallel for loops provide an order
of magnitude speedup over non-parallel loops, as they
are able to fetch all items required by the loop immedi-

10000

1000 +— 7

10

Average request latency (ms)

256Kb/s 1024Kb/s 2048Kb/s

Bandwidth (Kb/s)

4096Kb/s

8192Kb/s

/Non-MapJAX MPrefetch 0 MPrefetch 2 OPrefetch 4

Figure 11: Results of running the mapping application
with various prefetching policies on the “hard” workload
using a simulated network with 70 ms latency and var-
ied bandwidth constraints. The “prefetch 4” result is not
shown for the 256Kb/s and 1024Kb/s cases as perfor-
mance was extremely poor.

ately, rather than waiting for one RPC to complete before
sending the next. Request combining provides a speedup
greater than a factor of two, as it cuts the number of RPCs
issued from 40 to one. Had we used simulated network
delays, the advantage of MapJAX would have been even
greater.

For comparison, the non-MapJAX version of the code,
which sends a single RPC for all 40 headers, averaged
77.6 ms over 10 trials with a standard deviation of 0.52.
We believe most of the difference between that value and
MapJAX parallel for loops with request combining is
due to implementation artifacts and can be eliminated.

Combining
pfor | 117.8 £5.51
for (Not Run)

No Combining
277.2 4+ 12.18
1465.0 £+ 18.90

Table 2: Effectiveness of pfor loops and request com-
bining. Values shown are the times to load a page of 40
message headers in our email application, averaged over
10 trials and given in milliseconds + one standard devi-
ation.

6.2.2 Locks

To evaluate the overhead of our lock implementation, we
compared the performance of the MapJAX version of the
mapping application on the “hard” trace against the per-
formance of a version that manually ordered updates in-
stead of using locks. To eliminate network effects, we
added no bandwidth or delay constraints and disabled
prefetching. Averaging over three runs, the version using
locks had an average access latency of 59.76 ms, while

the version using manual ordering had an average access
latency of 58.20 ms. Standard deviations were 1.82 and
1.80, respectively. We conclude that our lock implemen-
tation adds negligible overhead.

6.2.3 Request Canceling

To evaluate the contribution made by request canceling,
we modified the MapJAX version of our mapping appli-
cation to not cancel requests and ran the “easy” workload
on a simulated 256Kb/s, 70ms network with prefetch-
ing disabled. (This simulated network provides insuf-
ficient bandwidth to support the trace, and thus request
canceling is particularly important). The average request
latency (averaged over three runs) was 33,397.92 ms,
which is far greater than the 6605.40 ms obtained with
canceling enabled. Additional experiments (not shown)
found the importance of canceling to decrease as band-
width increased, which is the expected result: in an en-
vironment where bandwidth is plentiful, there is no need
to conserve it. We conclude that request canceling brings
performance benefits worthy of the additional complex-
ity it adds to the model.

7 Related Work

The trade-off between threading and event-based models
has been well studied, recently in [14], which considered
the issue in a server context. The MapJAX compiler is
similar in some respects to TAME [7], which carries out a
similar continuation-elimination function for code writ-
ten using the libasync [8] C++ library for event-driven
network servers.

To our surprise, we were unable to find previous work
on locks with RLU semantics. In [6], the authors pro-
pose a lock reservation scheme to decrease the overhead
of lock acquisition in Java VMs, their scheme only al-
lows one thread to hold a lock reservation, whereas in our
scheme multiple threads can reserve a lock. Our locks
might appear similar to callback-based, asynchronously-
acquired locks (e.g. as in [10]) but in fact they provide
stronger semantics. Specifically, we guarantee that state-
ments between the calls to reserve and lock will exe-
cute strictly before any statements after the call to lock.
By contrast, an asynchronously-acquired lock makes no
such guarantee about when its callback will be executed.

There have been several proposals of programming
models for writing rich web applications, from ambitious
efforts that provide fresh display layout and program-
ming languages to smaller, lighter-weight efforts that try
to smooth the rough edges of the current model. To our
knowledge no system exists that provides the shared data
abstraction, elimination of callbacks, and array of perfor-
mance optimizations available in MapJAX.

Examples of ambitious web programming systems in-
clude Java applets and Adobe Flash. Such systems have
the advantage of starting from a clean slate, which al-
lows them to ignore the imperfections of the standard
web development model. However, on the Internet, in-
cremental deployability is often key: technologies that
require users to install new software and developers to
learn new languages often do not succeed. Additionally,
systems of this type can be difficult to integrate cleanly
into HTML-based pages, which renders them unattrac-
tive from a designer’s perspective. Flash comes closest
to the MapJAX programming model of any of the cur-
rent systems: it provides data structure objects that can
be bound to server-side data. Flash lacks MapJAX’s sup-
port for prefetching, parallel for, and RLU locks, and it
does not eliminate callbacks. Additionally, it requires a
separate browser plugin to run and requires the program-
mer to learn an additional language.

At the other end of the spectrum, the growth in popu-
larity of AJAX has given rise to numerous small libraries
that attempt to put a friendlier face on AJAX develop-
ment, including Prototype [13], Mochikit [10], JSON-
RPC-Java [9], and Direct Web Remoting [15]. In gen-
eral, these libraries tend to provide some subset of three
classes of features.

First, some offer a set of reusable user interface con-
trols for AJAX applications, such as a table that is dy-
namically filled in with data from the server. While
such controls are similar in spirit to MapJAX shared
data structures, they are hardly a full-fledged program-
ming model. Second, some libraries attempt to re-
solve some of the deficiencies in the Javascript program-
ming language; e.g., they might add extra functions for
handling strings, accessing HTML elements, managing
asynchronous tasks, or logging. Finally, some libraries
include support for some variant of RPC built on top
of AJAX requests. The level of RPC abstraction pro-
vided is widely variable: the Prototype and Mochikit
frameworks free the programmer from some of the event-
handling associated with managing AJAX requests but
keep the asynchronous HTTP-request model, whereas
DWR and JSON-RPC-Java both extend Java RMI [16] to
the browser. In all cases, however, these libraries at best
provide a more pleasant interface over what is essentially
an asynchronous RPC call, along with problems of that
abstraction.

In between the two above extremes are web devel-
opment platforms such as the Google Web Toolkit [3],
Ruby on Rails (RoR) [4] and OpenLaszlo [11]. These
systems use existing browser technologies to deploy their
applications, but they provide a higher level of abstrac-
tion than the small libraries discussed above. The Google
Web Toolkit provides a Java-to-AJAX compiler, but it
does not include MapJAX-style shared data structures,

and it provides callback-based RPCs. Ruby on Rails is a
rapid development framework for database-backed appli-
cations and thus includes some aspects of a data model,
but it supports neither prefetching nor callback elimina-
tion. Finally, OpenLaszlo provides a compiler from their
own language to AJAX, although again without shared
data structures, and it retains asynchronous callbacks.

8 Conclusion

This paper has presented MapJAX, a new programming
environment for AJAX-style web applications. In con-
trast to current systems based on asynchronous RPCs,
MapJAX provides application programmers with the ab-
straction of logical data structures shared between client
and server, accessed through a familiar programming
model based on objects, threads, and locks. MapJAX
also includes a number of additional features (parallel for
loops, data prefetching, and request canceling) that help
programmers implement highly-responsive applications.

There are several areas of MapJAX that warrant future
work. First, we would like the system to better adapt to
changing network conditions: the runtime should charac-
terize the performance of the network and adapt prefetch-
ing accordingly, either automatically or by exposing this
information to the application. Second, the cache could
be extended to persist on disk across reloads of the ap-
plication. Finally, we would like to extend MapJAX to
handle writable data structures.

In summary, we have implemented three prototypi-
cal AJAX applications using both standard AJAX tech-
niques and MapJAX. We tested them under realistic In-
ternet latency and bandwidth constraints and found that
the unoptimized MapJAX versions of the applications
performed comparably to the standard AJAX versions,
and that MapJAX performance optimizations could dra-
matically improve performance, by up to a factor of 2
in some cases. Finally, we have performed microbench-
marks exercising each of the performance optimizations
we provide and have shown the contributions made by
each. We believe our results show that MapJAX meets its
goals of reducing the development complexity while si-
multaneously improving the performance of AJAX web
applications.

9 Acknowledgments

The authors thank Robert Morris and Emil Sit for valu-
able conversations during the development of this sys-
tem, as well as the anonymous reviewers for their com-
ments.

References

(1]

(2]

[3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

FESTA, P. Will AJAX help google clean up?
http://news.com.com/Will+ AJAX+help+Google+clean+up/2100-
1032_3-5621010.html, March 2005.

GARRETT, J. Ajax: a new ap-
proach to web applications, February 2005.
http://www.adaptivepath.com/publications/essays/archives/000385.php.

GOOGLE, INC. Google web toolkit.
http://code.google.com/webtoolKkit.

HASSON, D. Ruby on Rails.
http://rubyonrails.org.

JSON.
http://www.json.org.

KAWACHIYA, K., KOSEKI, A., AND ONODERA, T. Lock reser-
vation: Java locks can mostly do without atomic operations. In
OOPSLA °02: Proceedings of the 17th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and
applications (New York, NY, USA, 2002), ACM Press, pp. 130—
141.

KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Simplified
event programming for busy network applications. In Proceed-
ings of the 2007 USENIX Annual Technical Conference (Santa
Clara, CA, USA, June 2007), USENIX.

MAZIERES, D. A toolkit for user-level file systems. In Proceed-
ings of the 2001 USENIX Annual Technical Conference (Boston,
MA, June 2001), USENIX.

METAPARADIGM PTE LTD. JSON-RPC-Java.
http://oss.metaparadigm.com/jsonrpc/.

Mochi Media, LLC.
http://mochikit.com.

Open Laszlo.
http://openlaszlo.org.

Ri1zzo, L. Dummynet: a simple approach to the evaluation of

network protocols. ACM Computer Communication Review 27,
1(1997), 31-41.

STEPHENSON, S. Prototype JavaScript Library.
http://prototype.conio.net.

VON BEHREN, R., CONDIT, J., AND BREWER, E. Why events
are a bad idea for high-concurrency servers, 2003.

WALKER, J., AND GOODWIN, M. DWR - Easy AJAX for Java.
http://getahead.ltd.uk/dwr.

WOLLRATH, A., RIGGS, R., AND WALDO, J. A distributed
object model for the Java system. In 2nd Conference on Object-
Oriented Technologies & Systems (COOTS) (1996), USENIX As-
sociation, pp. 219-232.

ZEUS TECHNOLOGY LIMITED. Zeus Web Server.
http://www.zeus.co.uk.

