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Inference and Representation, Fall 2014

Problem Set 1: Bayesian networks
Due: Monday, September 15, 2014 at 10pm (as a PDF document sent to pg1338@nyu.edu)

Important: See problem set policy on the course web site.

1. Show that the statement
p(A,B|C) = p(A|C)p(B|C)

is equivalent to the statement
p(A|B,C) = p(A|C)

and also to
p(B|A,C) = p(B|C)

(you need to show both directions, i.e. that each statement implies the other).

2. This problem investigates the way in which conditional independence relationships affect
the amount of information needed for probabilistic calculations. H,E1, and E2 are random
variables and the notation p(H) refers to the probability distribution for H, i.e. one number
for every h ∈ Val(H).

(a) Suppose we wish to calculate p(H|E1, E2), and we have no conditional independence
information. Which of the following sets of numbers are sufficient for the calculation?

i. p(E1, E2), p(H), p(E1|H), p(E2|H).

ii. p(E1, E2), p(H), p(E1, E2|H).

iii. p(E1|H), p(E2|H), p(H).

Provide justification for your answer.

(b) Suppose we know that E1 and E2 are conditionally independent given H. Now which
of the above three sets are sufficient? Explain why.

3. Bayesian networks must be acyclic. Suppose we have a graph G = (V,E) and discrete
random variables X1, . . . , Xn, and define

f(x1, . . . , xn) =
∏
v∈V

fv(xv|xpa(v)),

where pa(v) refers to the parents of variable Xv in G and fv(xv | xpa(v)) specifies a distri-
bution over Xv for every assignment to Xv’s parents, i.e. 0 ≤ fv(xv | xpa(v)) ≤ 1 for all
xv ∈ Vals(Xv) and

∑
xv∈Vals(Xv)

fv(xv | xpa(v)) = 1. Recall that this is precisely the defi-
nition of the joint probability distribution associated with the Bayesian network G, where
the fv are the conditional probability distributions.

Show that if G has a directed cycle, f may no longer define a valid probability distribu-
tion. In particular, give an example of a cyclic graph G and distributions fv such that∑

x1,...,xn
f(x1, . . . , xn) 6= 1. (A valid probability distribution must be non-negative and

sum to one.) This is why Bayesian networks must be defined on acyclic graphs.
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4. D-separation. Consider the Bayesian network shown in the below figure:

(d) Given three discrete random variables (X, Y, Z) and their PMF p, the
following three statements are all equivalent (that is, (i) ⇔ (ii) ⇔
(iii))

(i) X ⊥ Y | Z

(ii) p(x, y, z) = h(x, z)k(y, z) for some functions h and k.

(iii) p(x, y, z) = p(x, z)p(y, z)/p(z).
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Figure 1: (a) A directed graph. (b) An undirected graphical model: a 3 × 3
grid or lattice graph. (Two-dimensional lattices frequently arise in spatial
statistics.)

Problem 1.4
Directed graphical models: Consider the graph in Figure 1(a).

(a) Is the ordering {1, 2, . . . , 10} topological? If yes, justify your answer;
if not, find a topological ordering.

(b) Write down the standard factorization for the given graph.

(c) For what pairs (i, j) does the statement Xi ⊥ Xj hold? (Don’t assume
any conditioning in this part.)

(d) Suppose that we condition on {X2, X9}, shown shaded in the graph.
What is the largest set A for which the statement X1 ⊥ XA | {X2, X9}
holds. The Bayes ball algorithm could be helpful.

(e) What is the largest set B for which X8 ⊥ XB | {X2, X9} holds?

2

(a) For what pairs (i, j) does the statement Xi ⊥ Xj hold? (Do not assume any condi-
tioning in this part.)

(b) Suppose that we condition on {X2, X9}, shown shaded in the graph. What is the
largest set A for which the statement X1 ⊥ XA | {X2, X9} holds? The Bayes ball
algorithm for d-separation given in Section 10.5.1 of Murphy’s book may be helpful.

(c) What is the largest set B for which X8 ⊥ XB | {X2, X9} holds?

5. Markov blanket. Let X = {X1, ..., Xn} be a set of random variables with distribution p
given by the following graph.

(a) Consider the variable X1. What is the minimal subset of the variables, A ⊆ X−{X1},
such that (X1 ⊥ X −A− {X1}|A)? Justify your answer.

(b) Now, generalize this to any BN defined by (G, p). Specifically, consider variable
Xi. What is the Markov blanket of Xi? Namely, the minimal subset of variables
A ⊆ X − {Xi} such that (Xi ⊥ X − A − {Xi} | A)? Prove that this subset is
necessary and sufficient.

(Hint: Think about the variables that Xi cannot possibly be conditionally indepen-
dent of, and then think some more).

6. Consider the following distribution over 3 binary variables X,Y, Z:

p(x, y, z) =
{

1/12 x⊕ y ⊕ z = 0
1/6 x⊕ y ⊕ z = 1
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where ⊕ denotes the XOR function.

Show that there is no directed acyclic graph G such that Id−sep(G) = I(p).

7. Consider the following two networks:
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Two networks G, G′ are I-equivalent if their structures encode exactly the same indepen-
dence statements, i.e. I(G) = I(G′). For each of the above two networks, determine
whether there can be any other Bayesian network that is I-equivalent to it. Justify your
answer, listing all of the I-equivalent Bayesian networks (if any).

8. For this question, you will use SamIam: Sensitivity Analysis, Modeling, Inference
and More, which is a free tool for inference using graphical models. The installation
files, installation instructions and documentation are available on http://reasoning.cs.

ucla.edu/samiam/.

Note: On some systems, when you first launch SamIam, you may not be able to create
new files or load existing network files. Follow these steps to resolve the issue:
- Under the Preferences menu, go to Preferences.
- Go to Global tab.
- Change ‘User interface look and feel’ to ‘Nimbus’.

Consider the following Bayesian network structure:
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The description of the nodes is given in the following table:

Node Values Description
Forecast {WillRain, WillNotRain} Prediction of whether it will rain or not
Umbrella {Yes, No} Whether you are carrying an umbrella along or not
Rain {Yes, No} Whether it actually rains or not
Sprinkler {On, Off} Whether the sprinkler was On or Off last night
Drenched {Yes, No} Whether you get drenched in the rain
WetGrass {Yes, No} Whether the grass is wet or not
Cold {Yes, No} Whether you catch cold or not

For the above network, answer the following questions using SamIam. You should use the
“Shenoy-Shafer” inference algorithm, which performs exact inference. It’s a good idea to
set monitors on all of the variables (these show you the nodes’ marginal probabilities), so
that you can watch the effect on all of the variables of any changes that you make.

(a) After inputing the above network into SamIam, construct conditional probability
distribution (CPD) tables for each of the nodes, assigning probabilities to events that
agree with intuition. Include a print out of all of the CPD tables in your solutions,
and use these CPD tables to answer the below questions.

(b) Perturb the CPD of Forecast and observe how the marginal probability of Cold

changes. Give the initial and final CPDs of Forecast and the corresponding marginal
probabilities for Cold. Explain your observations intuitively.

(c) Given that you observe Cold=Yes, how does the probability of Rain change (that
is, compare P(Rain|Cold=Yes) with P(Rain))? Give the initial and final probability
distributions of rain (P(Rain) and P(Rain|Cold=Yes)). Explain intuitively.

(d) Given that you observe that the grass is wet, how does the probability of cold change?
What about if the grass is observed not to be wet? Give the initial and final marginal
probabilities for Cold in both cases. Explain the change intuitively. Mention the
active trail(s) which allow flow of inference in this scenario, i.e. the path(s) that the
ball travels to get from Cold to WetGrass using the Bayes Ball algorithm.

(e) Given that we observe evidence that the sprinkler was off, how does the probability of
cold change? What if, in addition, we observe that the grass is wet? Give the initial
and final marginal distributions for Cold in each case. Explain your observations
using terminology of Bayesian networks. Also give an intuitive explanation.

(f) Modify your CPTs to represent an almost perfect forecast (that is, P(Rain=Yes
|Forecast=WillRain)≈ 1.0, P(Rain=No | Forecast = WillNotRain)≈ 1.0, P(Umbrella=Yes
| Forecast=WillRain) ≈ 1.0). How does this modification change the relation between
Rain and Cold? Explain intuitively. Make sure you test your theory by setting evi-
dence on Rain and seeing its influence on Cold.


