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Inference and Representation, Fall 2014

Problem Set 2: Undirected graphical models
Due: Friday, September 26, 2014 at 5pm (as a PDF document sent to pg1338@nyu.edu.
Please make sure the filename is in the format xyz-ps2.pdf, where xyz is your NetID.)

Important: See problem set policy on the course web site.

1. Exercise 26.1 from Murphy’s book (causal reasoning in the sprinkler network).

2. Recall that an Ising model is given by the distribution

p(x1, · · · , xn) =
1

Z
exp

( ∑
(i,j)∈E

wi,jxixj −
∑
i∈V

uixi

)
, (1)

where the random variables Xi ∈ {−1,+1}. Related to the Ising model is the Boltzmann
machine, which is parameterized the same way (i.e., using Eq. 1), but which has variables
Xi ∈ {0, 1}. Here we get a non-zero contribution to the energy (i.e. the quantity in the
parentheses in Eq. 1) from an edge (i, j) only when Xi = Xj = 1.

Show that a Boltzmann machine distribution can be rewritten as an Ising model. More
specifically, given parameters ~w, ~u corresponding to a Boltzmann machine, specify new
parameters ~w′, ~u′ for an Ising model and prove that they give the same distribution p(X)
(assuming the state space {0, 1} is mapped to {−1,+1}).

3. Give a procedure to convert any Markov network on discrete variables into a pairwise
Markov random field. In particular, given a distribution p(X), specify a new distribution
p′(X,Y) which is a pairwise MRF, such that p(x) =

∑
y p
′(x,y), where Y are any new

variables added.

Clarification: Assume that the input is specified as full tables specifying the value of the
potential for every assignment to the variables for each potential. The new pairwise MRF
must have a description which is polynomial in the size of the original MRF.

Hint: First consider a simple case, such as a MRF on 3 binary variables with a single
potential function for the 3 variables, i.e. p(X) ∝ ψ123(X1, X2, X3). Introduce a new vari-
able Y with 23 = 16 states and let p′(X, Y ) ∝ ψY (Y )ψ1Y (X1, Y )ψ2Y (X2, Y )ψ3Y (X3, Y ).
Figure out how to set the new potential functions ψY (Y ), ψ1Y (X1, Y ), ψ2Y (X2, Y ) and
ψ3Y (X3, Y ) so as to have p(x) =

∑
y p
′(x, y) for all assignments x.

4. Exponential families (see Chap. 9). Probability distributions in the exponential family
have the form:

p(x; η) = h(x) exp{η · f(x)− lnZ(η)}

for some scalar function h(x), vector of functions f(x) = (f1(x), . . . , fd(x)), canonical
parameter vector η ∈ Rd (often referred to as the natural parameters), and Z(η) a constant
(depending on η) chosen so that the distribution normalizes.

(a) Determine which of the following distributions are in the exponential family, exhibiting
the f(x), Z(η), and h(x) functions for those that are.
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i. N(µ, I)—multivariate Gaussian with mean vector µ and identity covariance ma-
trix.

ii. Dir(α)—Dirichlet with parameter vector α = (α1, α2, . . . , αK) (see Sec. 2.5.4).

iii. log-Normal distribution—the distribution of Y = exp(X), where X ∼ N(0, σ2).

iv. Boltzmann distribution—an undirected graphical model G = (V,E) involving
a binary random vector X taking values in {0, 1}n with distribution p(x) ∝
exp

{∑
i uixi +

∑
(i,j)∈E wi,jxixj

}
.

(b) Conditional models. One can also talk about conditional distributions being in the
exponential family, being of the form:

p(y | x; η) = h(x,y) exp{η · f(x,y)− lnZ(η,x)}.

The partition function Z now depends on x, the variables that are conditioned on.
Let Y be a binary variable whose conditional distribution is specified by the logistic
function,

p(Y = 1 | x;α) =
1

1 + e−α0−
∑n

i=1 αixi

Show that this conditional distribution is in the exponential family.

5. Conjugacy and Bayesian prediction.

(a) Let θ ∼ Dir(α). Consider discrete random variables (X1, X2, . . . , XN ), where Xi ∼
Cat(θ) for each i (thus the Xi are conditionally independent of one another given θ).
Show that the posterior p(θ | x1, . . . , xN , α) is given by Dir(α′), where

α′k = αk +

N∑
i=1

1[xi = k].

This property, that the posterior distribution p(θ | x) is in the same family as the
prior distribution p(θ), is called conjugacy. The Dirichlet distribution (see Sec. 2.5.4)
is the conjugate prior for the Categorical distribution. Every distribution in the
exponential family has a conjugate prior. For example, the conjugate prior for the
mean of a Gaussian distribution can be shown to be another Gaussian distribution.

(b) Now consider a random variable Xnew ∼ Cat(θ) that is assumed conditionally inde-
pendent of (X1, X2, . . . , XN ) given θ. Compute:

p(xnew | x1, x2, . . . , xN , α)

by integrating over θ.

Hint: Your result should take the form of a ratio of gamma functions.

This is called Bayesian prediction because we put a prior distribution over the pa-
rameters θ (in this case, a Dirichlet) and are thus able to take into consideration our
initial uncertainty over (and prior knowledge of) the parameters together with the
evidence we observed (samples x1, . . . , xN ) when giving our predictions for xnew.


