Inference and Representation, Fall 2014

Problem Set 2: Undirected graphical models

Due: Friday, September 26, 2014 at 5pm (as a PDF document sent to pg1338@nyu.edu. Please make sure the filename is in the format xyz-ps2.pdf, where xyz is your NetID.)

Important: See problem set policy on the course web site.

- 1. Exercise 26.1 from Murphy's book (causal reasoning in the sprinkler network).
- 2. Recall that an Ising model is given by the distribution

$$p(x_1, \cdots, x_n) = \frac{1}{Z} \exp\Big(\sum_{(i,j)\in E} w_{i,j} x_i x_j - \sum_{i\in V} u_i x_i\Big),\tag{1}$$

where the random variables $X_i \in \{-1, +1\}$. Related to the Ising model is the *Boltzmann* machine, which is parameterized the same way (i.e., using Eq. 1), but which has variables $X_i \in \{0, 1\}$. Here we get a non-zero contribution to the energy (i.e. the quantity in the parentheses in Eq. 1) from an edge (i, j) only when $X_i = X_j = 1$.

Show that a Boltzmann machine distribution can be rewritten as an Ising model. More specifically, given parameters \vec{w}, \vec{u} corresponding to a Boltzmann machine, specify new parameters \vec{w}', \vec{u}' for an Ising model and prove that they give the same distribution $p(\mathbf{X})$ (assuming the state space $\{0, 1\}$ is mapped to $\{-1, +1\}$).

3. Give a procedure to convert any Markov network on discrete variables into a pairwise Markov random field. In particular, given a distribution $p(\mathbf{X})$, specify a new distribution $p'(\mathbf{X}, \mathbf{Y})$ which is a pairwise MRF, such that $p(\mathbf{x}) = \sum_{\mathbf{y}} p'(\mathbf{x}, \mathbf{y})$, where \mathbf{Y} are any new variables added.

Clarification: Assume that the input is specified as full tables specifying the value of the potential for every assignment to the variables for each potential. The new pairwise MRF must have a description which is polynomial in the size of the original MRF.

Hint: First consider a simple case, such as a MRF on 3 binary variables with a single potential function for the 3 variables, i.e. $p(\mathbf{X}) \propto \psi_{123}(X_1, X_2, X_3)$. Introduce a new variable Y with $2^3 = 16$ states and let $p'(\mathbf{X}, Y) \propto \psi_Y(Y)\psi_{1Y}(X_1, Y)\psi_{2Y}(X_2, Y)\psi_{3Y}(X_3, Y)$. Figure out how to set the new potential functions $\psi_Y(Y), \psi_{1Y}(X_1, Y), \psi_{2Y}(X_2, Y)$ and $\psi_{3Y}(X_3, Y)$ so as to have $p(\mathbf{x}) = \sum_y p'(\mathbf{x}, y)$ for all assignments \mathbf{x} .

4. **Exponential families** (see Chap. 9). Probability distributions in the exponential family have the form:

$$p(\mathbf{x}; \eta) = h(\mathbf{x}) \exp\{\eta \cdot \mathbf{f}(\mathbf{x}) - \ln Z(\eta)\}\$$

for some scalar function $h(\mathbf{x})$, vector of functions $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \ldots, f_d(\mathbf{x}))$, canonical parameter vector $\eta \in \mathbb{R}^d$ (often referred to as the *natural parameters*), and $Z(\eta)$ a constant (depending on η) chosen so that the distribution normalizes.

(a) Determine which of the following distributions are in the exponential family, exhibiting the $\mathbf{f}(\mathbf{x})$, $Z(\eta)$, and $h(\mathbf{x})$ functions for those that are.

- i. $N(\mu,I)$ —
multivariate Gaussian with mean vector μ and identity covariance matrix.
- ii. Dir(α)—Dirichlet with parameter vector $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$ (see Sec. 2.5.4).
- iii. log-Normal distribution—the distribution of $Y = \exp(X)$, where $X \sim N(0, \sigma^2)$.
- iv. Boltzmann distribution—an undirected graphical model G = (V, E) involving a binary random vector **X** taking values in $\{0,1\}^n$ with distribution $p(\mathbf{x}) \propto \exp \{\sum_i u_i x_i + \sum_{(i,j) \in E} w_{i,j} x_i x_j \}$.
- (b) *Conditional models*. One can also talk about conditional distributions being in the exponential family, being of the form:

$$p(\mathbf{y} \mid \mathbf{x}; \eta) = h(\mathbf{x}, \mathbf{y}) \exp\{\eta \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) - \ln Z(\eta, \mathbf{x})\}.$$

The partition function Z now depends on \mathbf{x} , the variables that are conditioned on. Let Y be a binary variable whose conditional distribution is specified by the logistic function,

$$p(Y = 1 \mid \mathbf{x}; \alpha) = \frac{1}{1 + e^{-\alpha_0 - \sum_{i=1}^n \alpha_i x_i}}$$

Show that this conditional distribution is in the exponential family.

5. Conjugacy and Bayesian prediction.

(a) Let $\theta \sim \text{Dir}(\alpha)$. Consider discrete random variables (X_1, X_2, \dots, X_N) , where $X_i \sim \text{Cat}(\theta)$ for each *i* (thus the X_i are conditionally independent of one another given θ). Show that the posterior $p(\theta \mid x_1, \dots, x_N, \alpha)$ is given by $\text{Dir}(\alpha')$, where

$$\alpha'_k = \alpha_k + \sum_{i=1}^N \mathbb{1}[x_i = k].$$

This property, that the posterior distribution $p(\theta \mid \mathbf{x})$ is in the same family as the prior distribution $p(\theta)$, is called *conjugacy*. The Dirichlet distribution (see Sec. 2.5.4) is the *conjugate prior* for the Categorical distribution. Every distribution in the exponential family has a conjugate prior. For example, the conjugate prior for the mean of a Gaussian distribution can be shown to be another Gaussian distribution.

(b) Now consider a random variable $X_{\text{new}} \sim \text{Cat}(\theta)$ that is assumed conditionally independent of (X_1, X_2, \ldots, X_N) given θ . Compute:

$$p(x_{\text{new}} \mid x_1, x_2, \dots, x_N, \alpha)$$

by integrating over θ .

Hint: Your result should take the form of a ratio of gamma functions.

This is called *Bayesian* prediction because we put a prior distribution over the parameters θ (in this case, a Dirichlet) and are thus able to take into consideration our initial uncertainty over (and prior knowledge of) the parameters together with the evidence we observed (samples x_1, \ldots, x_N) when giving our predictions for x_{new} .