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Inference and Representation, Fall 2014

Problem Set 4: Monte-Carlo methods and variational inference
Due: Monday, November 17, 2014 at 5pm as a zip file sent to pg1338@nyu.edu. Please
make sure the filename is in the format xyz-ps4.zip, where xyz is your NetID.)

The zip file should include a PDF file called “solutions.pdf” with your written
solutions, separate output files, and all of the code that you wrote.

Important: See problem set policy on the course web site.

Latent Dirichlet allocation (LDA) is a probabilistic model for discovering topics in sets of docu-
ments [1]. The generative model is as follows:

• For each document, m = 1, . . . ,M

1. Draw topic probabilities θm ∼ p(θ|α)

2. For each of the N words:

(a) Draw a topic zmn ∼ p(z|θm)

(b) Draw a word wmn ∼ p(w|zmn, β),

where p(θ|α) is a Dirichlet distribution, and where p(z|θm) and p(w|zmn, β) are Multinomial
distributions. Treat α and β as fixed hyperparameters. Note that β is a matrix, with one
column per topic, and the Multinomial variable zmn selects one of the columns of β to yield
multinomial probabilities for wmn.
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Figure 1: Graphical structure of the LDA model.

1. In this question you will use an off-the-shelf implementation of LDA to get practice with
learning topic models on real-world data, and to analyze various trade-offs that can be
made during learning.

(a) Prepare a corpus of documents from which you’ll learn. You can find some already
prepared text collections here:

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

However, we prefer that you be creative and construct your own!

(b) Learn a latent Dirichlet allocation model on your corpus using default parameters.
You can use any software package that you like. Two excellent options are:
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• Mallet (http://mallet.cs.umass.edu/)

• Gensim (http://radimrehurek.com/gensim/)

Qualitatively describe what topics are discovered.

(c) Re-run learning using varying numbers of topics (e.g., 5, 20, 100). Describe qualita-
tively the differences that you observe as the number of topics increases.

2. Derive a Gibbs sampler for the LDA model (i.e., write down the set of conditional proba-
bilities for the sampler; see Sec. 24.2 of Murphy). To obtain full credit, you must hand in
your full derivation, not just the final formulas.

You may find it helpful to refer to your solutions from Problem Set 2 (question 5).

3. Derive a collapsed Gibbs sampler for the LDA model, where you consider the marginal
distribution Pr(zm | wm;α, β) (integrating out the topic probabilities θm) and are now
only sampling z. Again, you must hand in your full derivation.

4. Derive a mean-field algorithm for inference in the LDA model by minimizing the KL-
divergence D(qγm,φm(θ, z)||p(θ, z | w)) with respect to the variational parameters φ and γ,
where qγ,φ(θ, z) = qγ(θ)

∏
n qφn(zn), qγ(θ) is a Dirichlet, and the qφn(zn) are Multinomial.

For this question only, it is permissible to consult external resources – such as the LDA
paper [1] – to help you figure out the derivation (please cite any sources you used). In
particular, you will probably want to use the fact that:

Eqγ [log θi] = Ψ(γi)−Ψ(

k∑
j=1

γj)

5. Implement each of the three inference algorithms that you derived. You will then run your
algorithms to find the posterior topic distribution θ for an input document.

We have previously learned the parameters (i.e., α and β) of a 200-topic LDA model
on a corpus containing thousands of abstracts of papers from the top machine learning
conference, Neural Information Processing Systems (NIPS). Your task will be to infer the
topic distribution for a new document.

We have provided the following data files:

• alphas.txt, which has on each line for topic i: i, αi, and a list of the most likely
words for this topic,

• abstract *.txt, with the words of document m (i.e., the abstract),

• abstract *.txt.ready, with, in order,

– the number of topics k,

– αi, for i = 1, . . . , k,

– for every word wn, the word itself followed by βwn,i for i = 1, . . . , k.

Note that your code only needs to read in the abstract *.txt.ready files – the
alphas.txt and abstract *.txt files are provided for your reference only.

It is common with MCMC methods to discard the first X samples to avoid using samples
that are highly correlated with the arbitrary starting assignment (this is called “burning
in”). Use X = 50 for your Gibbs sampling implementations.

For each of the abstracts,
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(a) Use your code to generate an accurate estimate of E[θ] using collapsed Gibbs sampling
with a high number of iterations (e.g. 104). Use this as ground truth.

The following formula can be used to obtain an estimate of θ from the collapsed Gibbs
sampler (where T is the number of samples):

E[θi] =
Tαi +

∑T
t=1

∑N
n=1 1[ztn = i]

T (
∑k
î=1 αî +N)

(b) Plot the `2 error on your estimate of E[θ] as a function of the number of iterations
for each of the three algorithms.

(c) Which algorithm converges fastest? Do all algorithms return an accurate estimate of
E[θm] when run for a sufficiently long time? Explain your answers.

Only include in your solutions the plot for the data file NIPS2008 0517. The
remaining files are provided for your own experimentation.

You may use the programming language of your choice. We recommend first checking that
packages are available to (1) sample from a Dirichlet distribution, and (2) compute the
Digamma function Ψ(x), as these will simplify your coding. For example, see Python’s
numpy.random.mtrand.dirichlet and scipy.special.psi.
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