
DS-GA-1005/CSCI-GA.2569 Problem Set 5 1

Inference and Representation, Fall 2014

Problem Set 5: Structured Prediction for Part-of-Speech Tagging
Due: Monday, December 8, 2014 at 5pm as a zip file sent to pg1338@nyu.edu. Please
make sure the filename is in the format xyz-ps5.zip, where xyz is your NetID.)

The zip file should include a PDF file called “solutions.pdf” with your written
solutions, separate output files, and all of the code that you wrote.

Important: See problem set policy on the course web site.

In this problem set, you will experiment with structured prediction using the Structured SVM
algorithm on a chain-structured conditional random field (CRF). You will tackle the task of
part-of-speech (POS) tagging, a problem from the natural language processing domain. POS
tagging is a classification problem where the goal is to accurately predict the part of speech (e.g.,
noun, verb, adjective) of each word in a sentence.

The CRF used in this prediction task is a Markov model. Let Li be the length of sentence i.
Then, the CRF for sentence i has variables Y1, . . . , YLi

, where Yl is a discrete variable denoting
the part-of-speech of token l. The tokens are denoted by the variables X1, . . . , XLi . The CRF
for a sequence of length 4 is shown below.

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Raw POS tagging data takes the form of a set of sentences and tag sequences. Each token
(normally a word but sometimes a number or punctuation symbol) in each sentence is associated
with exactly one tag. Standard POS tag sets typically include around C = 40 distinct tags. For
the purpose of this assignment, we have prepared data with a simplified tag set consisting of
C = 10 groups of tags. Each token in the data set is assigned one of these 10 tags. To learn
prediction models for the POS tagging task, we need to select a feature space to represent the
tokens. For the first part of the assignment you will use simple features that we have already
extracted from the tokens for you, following which you will design and implement new features.

The data consist of a set of training sentences train-i.txt and a set of test sentences test-i.txt.
Each file contains one sentence. Each row in each file contains the raw token, the tag ID for that
token, and five feature values in standard comma-separated-value (CSV) format. The format of
each row is as follows: <Token>, <TagId>, <Bias>, <InitCap>, <AllCap>, <Pre>, <Suff>.
A description of the fields is given below.

Column Field Description Value

1 Token The raw token string Any string
2 TagID The ID of the tag {1, ..., 10}
3 Bias Feature: Bias 1
4 InitCap Feature: Initial Capital {0, 1}
5 AllCap Feature: All Capitals {0, 1}
6 Pre Feature: Prefix ID {1, ..., 201}
7 Suff Feature: Suffix ID {1, ..., 201}



DS-GA-1005/CSCI-GA.2569 Problem Set 5 2

The 10 tag ID’s correspond to the following 10 tag groups: verb, noun, adjective, adverb, prepo-
sition, pronoun, determiner, number, punctuation, and other. The Bias feature is a constant
1 for all tokens. The InitCap feature is 1 if the token string starts with a capital letter and
0 otherwise. The AllCap feature is 1 if the token string is all capital letters and 0 otherwise.
The Pre feature takes one of 201 values corresponding to the most common two-character token
string prefixes. The Suff feature takes one of 201 values corresponding to the most common
two-character token string suffixes.

For each word l we have a feature vector xl of dimension 5 (corresponding to rows 3–7 in the
table), where xla takes values in the set Va (given in the last column of the table). The CRF has
one parameter wA

cav for each of part-of-speech tag c, feature a, and feature value v (note: different
features a have different numbers of values as given by the set Va). These parameters encode the
compatibility between feature values and class labels. The CRF also has one transition parameter
wT

cc′ for each pair of labels c and c′. The transition parameters encode the compatibility between
adjacent class labels in the sequence. All of the parameters can take arbitrary (positive or
negative) real values. To be clear, there are exactly (1 + 2 + 2 + 201 + 201) · 10 + 102 = 4170
parameters to be learned. The log-potentials are then given by:

θl(yl,xl) =

5∑
a=1

wA
yl,a,xla

θl,l+1(yl, yl+1) = wT
yl,yl+1

Given a new sentence of length L, we predict its part-of-speech tagging by MAP inference in
this CRF,

Predict POS(x; w) = arg max
y

L∑
l=1

θl(yl,xl) +

L−1∑
l=1

θl,l+1(yl, yl+1)

Since the CRF is chain-structured, MAP inference can be performed in linear time using variable
elimination or max-sum belief propagation. Suppose that w is the weight vector (i.e., of dimen-
sion 4170) and f(x,y) is the feature vector (the sufficient statistics). Then, Predict POS(x; w) =
arg maxy w · f(x,y).

You will be using an off-the-shelf Python library PyStruct to solve the structured SVM. The
installation instructions and documentation can be found at http://pystruct.github.io

As we discussed in class, structured SVM has several advantages including a clear objective func-
tion (based on hinge loss, which is an upper bound on 0-1 loss) and max-margin regularization.

1. Learn a structural SVM to model the above POS-tagging task using PyStruct. To help you
get started, we have provided you with a skeleton code sample code.py that reads in
the training data, learns a structural SVM on a subset of the training data, and performs
inference on a subset of the training data. (For more details, refer to the code.) There are
two hyperparameters max iter and C, that need to be supplied to OneSlackSSVM. For
the purpose of this assignment, you can fix max iter to 200. Choose C using a held-out
set: learn the structural SVM using the first 4500 training samples, and use the last 500
training points as validate data. Let C∗ be the optimal value of C (giving the smallest
validate error) obtained from the above process. Then, use the entire training set to learn
a model with C = C∗. Finally, report the test error (i.e., for the text XXX.txt files)
using the learned model.

PyStruct by default uses margin scaling with Hamming loss. Its “score” function will
report the average Hamming error (normalized by sentence length). This is the error that
we want you to report in this assignment.



DS-GA-1005/CSCI-GA.2569 Problem Set 5 3

2. Repeat the experiment of question 1, but varying the number of training sentences to be
the first 100, 200, 500, or 1000. The value of the hyperparameter C could, in general, be
different for different sizes of the training set. Hence, you should use the validate data
(keep this fixed to the last 500 training points) to find the optimal value of C for each size
of the training data separately. Produce one plot showing both the test and train error
as a function of the amount of training data (also include in the plot the result for 4500
training sentences, as computed in the previous question).

3. For the next two questions, use the results from question 1. Out of the 10 given POS
tags/classes, pick any three classes. For all ordered pairs of the three classes above, report
the corresponding transition parameters. Comment on any interesting observations. For
each of these three classes, which 10 features have the largest absolute value weights (i.e.,
contribute the most to the predictions)? You should look up the corresponding prefix and
suffix IDs using the provided files prefixes.txt and suffixes.txt (do not simply
report the IDs themselves, as this is not meaningful). Do the results make sense?

The learnt parameters of the model are stored in a vector w of the OneSlackSSVM object.
When training a ChainCRF using OneSlackSSVM with m features per training sample
and k classes in the directed setting, the size of weight vector w will be mk + k2, with
mk features for the single-node potentials and k2 features for the pairwise potentials. All
the single-node features are followed by all the pairwise features. The single-node features
have the following order in w: m features for the 1st class/POS tag (verb), m features for
the 2nd class/POS tag (noun), . . .. As we described earlier, the pairwise features directly
give the values of the pairwise potential; the order is (class 1, class 1), . . ., (class 1, class
k), . . ., (class k, class 1), . . ., (class k, class k). Thus, for our problem setting, the last 100
values of the vector correspond to the transition parameters.

4. Choose any 10 test sentences and, using the predict function of OneSlackSSVM, find
the POS tags assigned by the model to the words in the sentences. Compare the predicted
tags with the actual tags, and report any mismatches.

5. [Extra credit] The accuracy of the CRF model is limited by the features used. Consider
defining some of your own features and adding them to the existing set of features. Re-run
the evaluation using your new features. Can you find new features that lead to a reduction
in POS tag prediction error?

Note that the original set of features correspond to a chain-structured CRF where the edge
potentials do not depend on the sentence, which is why we used the simpler ChainCRF
model. If you want to add skip edges or parameterize the edge potentials to depend on the
input, you should instead use PyStruct’s EdgeFeatureGraphCRF model. If the model is
still tree-structured, you can continue using max-product as the inference method. If it
isn’t, you can use ad3, which performs dual decomposition. This will be slower to train,
and it is recommended that you test it on smaller training sets before applying to all of
the data.

Acknowledgement: This problem set is partly based on an assignment developed at UMass
Amherst by Ben Marlin, Andrew McCallum, Sameer Singh and Michael Wick.


