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One of the most exciting advances in machine learning (AI, signal
processing, coding, control, . . .) in the last decades
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How can we gain global insight based on local observations?
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Key idea

1 Represent the world as a collection of random variables X1, . . . ,Xn

with joint distribution p(X1, . . . ,Xn)

2 Learn the distribution from data

3 Perform “inference” (compute conditional distributions
p(Xi | X1 = x1, . . . ,Xm = xm))
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Reasoning under uncertainty

As humans, we are continuously making predictions under uncertainty

Classical AI and ML research ignored this phenomena

Many of the most recent advances in technology are possible because
of this new, probabilistic, approach
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Applications: Deep question answering
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Applications: Machine translation
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Applications: Speech recognition
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Applications: Stereo vision

output: disparity!input: two images!
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Key challenges

1 Represent the world as a collection of random variables X1, . . . ,Xn

with joint distribution p(X1, . . . ,Xn)

How does one compactly describe this joint distribution?
Directed graphical models (Bayesian networks)
Undirected graphical models (Markov random fields, factor graphs)

2 Learn the distribution from data

Maximum likelihood estimation. Other estimation methods?
How much data do we need?
How much computation does it take?

3 Perform “inference” (compute conditional distributions
p(Xi | X1 = x1, . . . ,Xm = xm))
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Syllabus overview

We will study Representation, Inference & Learning

First in the simplest case

Only discrete variables
Fully observed models
Exact inference & learning

Then generalize

Continuous variables
Partially observed data during learning (hidden variables)
Approximate inference & learning

Learn about algorithms, theory & applications
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Logistics: class

Class webpage:
http://cs.nyu.edu/~dsontag/courses/inference14/

Sign up for mailing list!

Book: Machine Learning: a Probabilistic Perspective by Kevin
Murphy, MIT Press (2012)

Required readings for each lecture posted to course website.
A good optional reference is Probabilistic Graphical Models: Principles
and Techniques by Daphne Koller and Nir Friedman, MIT Press (2009)

Office hours: Tuesdays 10:30-11:30am. 715 Broadway, 12th floor,
Room 1204

Lab: Thursdays, 5:10-6:00pm in Silver Center 401

Instructor: Yacine Jernite (jernite@cs.nyu.edu)
Required attendance; no exceptions.

Grader: Prasoon Goyal (pg1338@nyu.edu)
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Logistics: prerequisites & grading

Prerequisite:
DS-GA-1003/CSCI-GA.2567 (Machine Learning and Computational
Statistics)
Exceptions to the prerequisite must be confirmed by me (via email),
and are only likely to be granted to PhD students

Grading: problem sets (55%) + in class midterm exam (20%) + in
class final exam (20%) + participation (5%)

Class attendance is required.
7-8 assignments (every 1–2 weeks). Both theory and programming.
First homework out today, due Monday Sept. 15 at 10pm (via email)
Important: See collaboration policy on class webpage

Solutions to the theoretical questions require formal proofs.

For the programming assignments, I recommend Python (Java or
Matlab OK too). Do not use C++.
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Example: Medical diagnosis

Variable for each symptom (e.g. “fever”, “cough”, “fast breathing”,
“shaking”, “nausea”, “vomiting”)

Variable for each disease (e.g. “pneumonia”, “flu”, “common cold”,
“bronchitis”, “tuberculosis”)

Diagnosis is performed by inference in the model:

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 findings
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Representing the distribution

Naively, could represent multivariate distributions with table of
probabilities for each outcome (assignment)

How many outcomes are there in QMR-DT? 24600

Estimation of joint distribution would require a huge amount of data

Inference of conditional probabilities, e.g.

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many variables’ values

Moreover, defeats the purpose of probabilistic modeling, which is to
make predictions with previously unseen observations
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Structure through independence

If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

2n entries can be described by just n numbers (if |Val(Xi )| = 2)!

However, this is not a very useful model – observing a variable Xi

cannot influence our predictions of Xj

If X1, . . . ,Xn are conditionally independent given Y , denoted as
Xi ⊥ X−i | Y , then

p(y , x1, . . . , xn) = p(y)p(x1 | y)
n∏

i=2

p(xi | x1, . . . , xi−1, y)

= p(y)p(x1 | y)
n∏

i=2

p(xi | y).

This is a simple, yet powerful, model
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Example: naive Bayes for classification

Classify e-mails as spam (Y = 1) or not spam (Y = 0)
Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Suppose that the words are conditionally independent given Y . Then,

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

Estimate the model with maximum likelihood. Predict with:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

Are the independence assumptions made here reasonable?

Philosophy: Nearly all probabilistic models are “wrong”, but many are
nonetheless useful
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Bayesian networks
Reference: Chapter 10

A Bayesian network is specified by a directed acyclic graph
G = (V ,E ) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

Powerful framework for designing algorithms to perform probability
computations

Enables use of prior knowledge to specify (part of) model structure

David Sontag (NYU) Inference and Representation Lecture 1, September 2, 2014 18 / 47



Example

Consider the following Bayesian network:

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

What is its joint distribution?

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)
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More examples

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

Will my car start this morning?

Heckerman et al., Decision-Theoretic Troubleshooting, 1995
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More examples

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

What is the differential diagnosis?

Beinlich et al., The ALARM Monitoring System, 1989
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Bayesian networks are generative models

naive Bayes

Y

X1 X2 X3 Xn. . .

Features

Label

   

Evidence is denoted by shading in a node

Can interpret Bayesian network as a generative process. For
example, to generate an e-mail, we

1 Decide whether it is spam or not spam, by samping y ∼ p(Y )
2 For each word i = 1 to n, sample xi ∼ p(Xi | Y = y)
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Bayesian network structure implies conditional
independencies!

Grade

Letter

SAT

IntelligenceDifficulty

The joint distribution corresponding to the above BN factors as

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

However, by the chain rule, any distribution can be written as

p(d , i , g , s, l) = p(d)p(i | d)p(g | i , d)p(s | i , d , g)p(l | g , d , i , g , s)

Thus, we are assuming the following additional independencies:
D ⊥ I , S ⊥ {D,G} | I , L ⊥ {I ,D,S} | G . What else?
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Bayesian network structure implies conditional
independencies!

Generalizing the above arguments, we obtain that a variable is
independent from its non-descendants given its parents

Common parent – fixing B decouples A and C

!
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Cascade – knowing B decouples A and C

!
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V-structure – Knowing C couples A and B

!
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This important phenomona is called explaining away and is what
makes Bayesian networks so powerful
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A simple justification (for common parent)

!
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We’ll show that p(A,C | B) = p(A | B)p(C | B) for any distribution
p(A,B,C ) that factors according to this graph structure, i.e.

p(A,B,C ) = p(B)p(A | B)p(C | B)

Proof.

p(A,C | B) =
p(A,B,C )

p(B)
= p(A | B)p(C | B)
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Z when variables
Y are observed:

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Z when variables
Y are observed:

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Z when variables
Y are observed:

X Y Z X Y Z

(a) (b)

If no such path, then X and Z are d-separated with respect to Y

d-separation reduces statistical independencies (hard) to connectivity
in graphs (easy)

Important because it allows us to quickly prune the Bayesian network,
finding just the relevant variables for answering a query
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D-separation example 1

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6

Is X6 ⊥ X5 | X2,X3? Is X4 ⊥ X5 | X2,X3?
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D-separation example 2

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6

Is X4 ⊥ X5 | X1,X6? What about is X6 is not observed? I.e., is
X4 ⊥ X5 | X1?
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Independence maps

Let I (G ) be the set of all conditional independencies implied by the
directed acyclic graph (DAG) G

Let I (p) denote the set of all conditional independencies that hold for
the joint distribution p.

A DAG G is an I-map (independence map) of a distribution p if
I (G ) ⊆ I (p)

A fully connected DAG G is an I-map for any distribution, since
I (G ) = ∅ ⊆ I (p) for all p

G is a minimal I-map for p if the removal of even a single edge
makes it not an I-map

A distribution may have several minimal I-maps
Each corresponds to a specific node-ordering

G is a perfect map (P-map) for distribution p if I (G ) = I (p)
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Equivalent structures

Different Bayesian network structures can be equivalent in that they
encode precisely the same conditional independence assertions (and
thus the same distributions)

Which of these are equivalent?

Y

(a) (b) (c) (d)

X

Z Z

X Y

X

Z

Y Z

X Y

David Sontag (NYU) Inference and Representation Lecture 1, September 2, 2014 32 / 47



Equivalent structures

Different Bayesian network structures can be equivalent in that they
encode precisely the same conditional independence assertions (and
thus the same distributions)

Are these equivalent?

W

V X

Y

Z

W

V X

Y

Z
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2011 Turing Award was for Bayesian networks
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What are some frequently used graphical models?
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Hidden Markov models

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Frequently used for speech recognition and part-of-speech tagging

Joint distribution factors as:

p(y, x) = p(y1)p(x1 | y1)
T∏

t=2

p(yt | yt−1)p(xt | yt)

p(y1) is the distribution for the starting state
p(yt | yt−1) is the transition probability between any two states
p(xt | yt) is the emission probability

What are the conditional independencies here? For example,
Y1 ⊥ {Y3, . . . ,Y6} | Y2
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Hidden Markov models

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Joint distribution factors as:

p(y, x) = p(y1)p(x1 | y1)
T∏

t=2

p(yt | yt−1)p(xt | yt)

A homogeneous HMM uses the same parameters (β and α below)
for each transition and emission distribution (parameter sharing):

p(y, x) = p(y1)αx1,y1

T∏

t=2

βyt ,yt−1αxt ,yt

How many parameters need to be learned?
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Mixture of Gaussians

The N-dim. multivariate normal distribution, N (µ,Σ), has density:

p(x) =
1

(2π)N/2|Σ|1/2 exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)

Suppose we have k Gaussians given by µk and Σk , and a distribution
θ over the numbers 1, . . . , k

Mixture of Gaussians distribution p(y , x) given by
1 Sample y ∼ θ (specifies which Gaussian to use)
2 Sample x ∼ N (µy ,Σy )
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Mixture of Gaussians

The marginal distribution over x looks like:

David Sontag (NYU) Inference and Representation Lecture 1, September 2, 2014 39 / 47



Latent Dirichlet allocation (LDA)

Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents
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Many applications in information retrieval, document summarization,
and classification
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LDA is one of the simplest and most widely used topic models
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are fixed hyperparameters. Thus θ is a distribution
over T topics with mean θt = αt/

∑
t′ αt′

2 For i = 1 to N, sample the topic zi of the i ’th word

zi |θ ∼ θ

3 ... and then sample the actual word wi from the zi ’th topic

wi |zi ∼ βzi
where {βt}Tt=1 are the topics (a fixed collection of distributions on
words)
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are hyperparameters.The Dirichlet density, defined over

∆ = {~θ ∈ RT : ∀t θt ≥ 0,
∑T

t=1 θt = 1}, is:

p(θ1, . . . , θT ) ∝
T∏

t=1

θαt−1
t

For example, for T=3 (θ3 = 1− θ1 − θ2):

α1 = α2 = α3 =

θ1 θ2

log Pr(θ)

θ1 θ2

log Pr(θ)

α1 = α2 = α3 =
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Generative model for a document in LDA
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Example of using LDA

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

Figure 1: The intuitions behind latent Dirichlet allocation. We assume that some
number of “topics,” which are distributions over words, exist for the whole collection (far left).
Each document is assumed to be generated as follows. First choose a distribution over the
topics (the histogram at right); then, for each word, choose a topic assignment (the colored
coins) and choose the word from the corresponding topic. The topics and topic assignments
in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from
data.

model assumes the documents arose. (The interpretation of LDA as a probabilistic model is
fleshed out below in Section 2.1.)

We formally define a topic to be a distribution over a fixed vocabulary. For example the
genetics topic has words about genetics with high probability and the evolutionary biology
topic has words about evolutionary biology with high probability. We assume that these
topics are specified before any data has been generated.1 Now for each document in the
collection, we generate the words in a two-stage process.

1. Randomly choose a distribution over topics.

2. For each word in the document

(a) Randomly choose a topic from the distribution over topics in step #1.

(b) Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each
document exhibits the topics with different proportion (step #1); each word in each document

1Technically, the model assumes that the topics are generated first, before the documents.

3

θd

z1d

zNd

β1

βT

(Blei, Introduction to Probabilistic Topic Models, 2011)
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“Plate” notation for LDA model

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Variables within a plate are replicated in a conditionally independent manner
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Comparison of mixture and admixture models

i = 1 to N

d = 1 to D

wid

Prior distribution
over topics

Topic of doc d

Word

βTopic-word
distributions

θ

zd

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Model on left is a mixture model
Called multinomial naive Bayes (a word can appear multiple times)
Document is generated from a single topic

Model on right (LDA) is an admixture model
Document is generated from a distribution over topics
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Summary

Bayesian networks given by (G ,P) where P is specified as a set of
local conditional probability distributions associated with G ’s nodes

One interpretation of a BN is as a generative model, where variables
are sampled in topological order

Local and global independence properties identifiable via
d-separation criteria

Computing the probability of any assignment is obtained by
multiplying CPDs

Bayes’ rule is used to compute conditional probabilities
Marginalization or inference is often computationally difficult

Examples (will show up again): naive Bayes, hidden Markov
models, latent Dirichlet allocation
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