#### Method-of-moments

Daniel Hsu

#### Example: modeling the topics of a document corpus



Topic model (e.g., Hofmann, '99; Blei-Ng-Jordan, '03)



 $\label{eq:ktopics} \begin{array}{l} \textit{k} \text{ topics (distributions over vocab words).} \\ \textbf{Each document} \leftrightarrow \textbf{mixture of topics.} \\ \textbf{Words in document} \sim_{\textbf{iid}} \textbf{mixture dist.} \end{array}$ 

Topic model (e.g., Hofmann, '99; Blei-Ng-Jordan, '03)



#### Topic model:



*k* topics (dists. over *d* words)  $\vec{\mu}_1, \dots, \vec{\mu}_k$ ; Each document  $\leftrightarrow$  mixture of topics. Words in document  $\sim_{iid}$  mixture dist.

Simple topic model: (each document about single topic)



*k* topics (dists. over *d* words)  $\vec{\mu}_1, \ldots, \vec{\mu}_k$ ; Topic *t* chosen with prob.  $w_t$ , words in document  $\sim_{iid} \vec{\mu}_t$ .

Simple topic model: (each document about single topic)



*k* topics (dists. over *d* words)  $\vec{\mu}_1, \ldots, \vec{\mu}_k$ ; Topic *t* chosen with prob.  $w_t$ , words in document  $\sim_{iid} \vec{\mu}_t$ .

Input: sample of documents, generated by simple topic model with unknown parameters θ<sup>\*</sup> := {(μ<sub>t</sub><sup>\*</sup>, w<sub>t</sub><sup>\*</sup>)}.

Simple topic model: (each document about single topic)



*k* topics (dists. over *d* words)  $\vec{\mu}_1, \ldots, \vec{\mu}_k$ ; Topic *t* chosen with prob.  $w_t$ , words in document  $\sim_{iid} \vec{\mu}_t$ .

- Input: sample of documents, generated by simple topic model with unknown parameters θ<sup>\*</sup> := {(μ<sub>t</sub><sup>\*</sup>, w<sub>t</sub><sup>\*</sup>)}.
- **Task**: find parameters  $\theta := \{(\vec{\mu}_t, w_t)\}$  so that  $\theta \approx \theta^*$ .



#### 



Current practice (> 40 years): **local search** for local maxima — can be quite far from  $\theta_{MLE}$ .



Current practice (> 40 years): **local search** for local maxima — can be quite far from  $\theta_{MLE}$ .



**Method-of-moments** (Pearson, 1894). Find parameters  $\theta$  that (approximately) *satisfy system of equations* based on the data.



Current practice (> 40 years): **local search** for local maxima — can be quite far from  $\theta_{MLE}$ .



Method-of-moments(Pearson, 1894).Find parameters  $\theta$  that (approximately)satisfy system of equations based on the data.

Many ways to instantiate & implement.



Current practice (> 40 years): **local search** for local maxima — can be quite far from  $\theta_{MLE}$ .



Method-of-moments(Pearson, 1894).Find parameters  $\theta$  that (approximately)satisfy system of equations based on the data.

Many ways to instantiate & implement.

Moments: normal distribution

Normal distribution:  $x \sim \mathcal{N}(\mu, \mathbf{v})$ 

First- and second-order moments:  $\mathbb{E}_{(\mu, \nu)}[x] = \mu, \qquad \mathbb{E}_{(\mu, \nu)}[x^2] = \mu^2 + \nu.$ 

#### Moments: normal distribution

Normal distribution:  $x \sim \mathcal{N}(\mu, \mathbf{v})$ 

First- and second-order moments:

$$\mathbb{E}_{(\mu,\nu)}[x] = \mu, \qquad \qquad \mathbb{E}_{(\mu,\nu)}[x^2] = \mu^2 + \nu.$$

Method-of-moments estimators of  $\mu^*$  and  $v^*$ : find  $\hat{\mu}$  and  $\hat{v}$  s.t.

$$\widehat{\mathbb{E}}_{\mathcal{S}}[x] \approx \hat{\mu}, \qquad \qquad \widehat{\mathbb{E}}_{\mathcal{S}}[x^2] \approx \hat{\mu}^2 + \hat{\nu}.$$

#### Moments: normal distribution

Normal distribution:  $x \sim \mathcal{N}(\mu, \mathbf{v})$ 

First- and second-order moments:

$$\mathbb{E}_{(\mu,\nu)}[x] = \mu, \qquad \qquad \mathbb{E}_{(\mu,\nu)}[x^2] = \mu^2 + \nu.$$

Method-of-moments estimators of  $\mu^*$  and  $v^*$ : find  $\hat{\mu}$  and  $\hat{v}$  s.t.

$$\widehat{\mathbb{E}}_{\mathcal{S}}[x] \approx \widehat{\mu}, \qquad \qquad \widehat{\mathbb{E}}_{\mathcal{S}}[x^2] \approx \widehat{\mu}^2 + \widehat{\nu}.$$

A reasonable solution:

$$\hat{\mu} := \widehat{\mathbb{E}}_{\mathcal{S}}[x], \qquad \qquad \hat{\mathbf{v}} := \widehat{\mathbb{E}}_{\mathcal{S}}[x^2] - \hat{\mu}^2$$

since  $\widehat{\mathbb{E}}_{\mathcal{S}}[x] \to \mathbb{E}_{(\mu^{\star}, v^{\star})}[x]$  and  $\widehat{\mathbb{E}}_{\mathcal{S}}[x^2] \to \mathbb{E}_{(\mu^{\star}, v^{\star})}[x^2]$  by LLN.

#### Moments: simple topic model

For any *n*-tuple  $(i_1, i_2, \ldots, i_n) \in \text{Vocabulary}^n$ :

(**Population**) moments under some parameter  $\theta$ :

 $\Pr_{\theta}$  [document contains words  $i_1, i_2, \ldots, i_n$ ].

*e.g.*,  $Pr_{\theta}$ ["machine" & "learning" co-occur].

#### Moments: simple topic model

For any *n*-tuple  $(i_1, i_2, \ldots, i_n) \in \text{Vocabulary}^n$ :

(*Population*) *moments* under some parameter  $\theta$ :

 $\Pr_{\theta} \left[ \text{document contains words } i_1, i_2, \dots, i_n \right].$ 

*e.g.*,  $Pr_{\theta}$ ["machine" & "learning" co-occur].

*Empirical moments* from sample *S* of documents:

 $\widehat{\Pr}_{\mathcal{S}}\left[\text{document contains words } i_1, i_2, \dots, i_n\right]$ 

i.e., empirical frequency of co-occurrences in sample S.

## Method-of-moments

#### Method-of-moments strategy:

Given data sample S, find  $\theta$  to satisfy system of equations

moments<sub> $\theta$ </sub> = moments<sub>S</sub>.

(Recall: we expect  $\widehat{\text{moments}}_{S} \approx \text{moments}_{\theta^{\star}}$  by LLN.)

Q1. Which moments should we use?

Q2. How do we (approx.) solve these moment equations?

| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> |                     |                  |

1<sup>st</sup>- and 2<sup>nd</sup>-order moments (e.g., prob. of word pairs).



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        |                  |

1<sup>st</sup>- and 2<sup>nd</sup>-order moments (*e.g.*, prob. of word pairs).

Fairly easy to get reliable estimates.

 $\widehat{\Pr}_{\mathcal{S}}$ ["machine", "learning"]  $\approx \Pr_{\theta^{\star}}$ ["machine", "learning"]



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        | ×                |

1<sup>st</sup>- and 2<sup>nd</sup>-order moments (*e.g.*, prob. of word pairs).

Fairly easy to get reliable estimates.

 $\widehat{\Pr}_{\mathcal{S}}$ ["machine", "learning"]  $\approx \Pr_{\theta^{\star}}$ ["machine", "learning"]

Can have multiple solutions to moment equations.

moments<sub> $\theta_1$ </sub> = moments = moments<sub> $\theta_2$ </sub>,  $\theta_1 \neq \theta_2$ 



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        | ×                |
| $\Omega(k)^{th}$                  |                     |                  |

 $\Omega(k)$ <sup>th</sup>-order moments (prob. of word *k*-tuples)



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        | ×                |
| $\Omega(k)^{th}$                  |                     | $\checkmark$     |

 $\Omega(k)$ <sup>th</sup>-order moments (prob. of word *k*-tuples)

Uniquely pins down the solution.



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        | ×                |
| $\Omega(k)^{th}$                  | ×                   | ✓                |

 $\Omega(k)$ <sup>th</sup>-order moments (prob. of word *k*-tuples)

- Uniquely pins down the solution.
- Empirical estimates very unreliable.



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        | ×                |
| $\Omega(k)^{th}$                  | ×                   | <b>&gt;</b>      |

#### Can we get best-of-both-worlds?



| moment order                      | reliable estimates? | unique solution? |
|-----------------------------------|---------------------|------------------|
| 1 <sup>st</sup> , 2 <sup>nd</sup> | $\checkmark$        | ×                |
| $\Omega(k)^{th}$                  | ×                   | <b>&gt;</b>      |

#### Can we get best-of-both-worlds? Yes!

# In high-dimensions, low-order multivariate moments suffice.

(1<sup>st</sup>-, 2<sup>nd</sup>-, and 3<sup>rd</sup>-order moments)



# **Key observation**: in high dimensions ( $d \gg k$ ), low-order moments have simple ("low-rank") algebraic structure.



Given a document about topic t,

 $\Pr_{\theta}[ \text{ words } i, j \mid \text{topic } t ] = (\vec{\mu}_t)_i \cdot (\vec{\mu}_t)_j.$ 



Given a document about topic t,

 $\Pr_{\theta}[ \text{ words } i, j \mid \text{topic } t ] = (\vec{\mu}_t \otimes \vec{\mu}_t)_{i,j}.$ 



Averaging over topics,

$$\Pr_{\theta}[ \text{ words } i, j ] = \sum_{t} \mathbf{w}_{t} \cdot (\vec{\mu}_{t} \otimes \vec{\mu}_{t})_{i,j}.$$



In matrix notation  $P_{\theta}$ ,

$$P_{\theta} = \sum_{t} \mathbf{w}_{t} \ \vec{\mu}_{t} \otimes \vec{\mu}_{t}.$$



Similarly,

$$\mathsf{Pr}_{\theta}[ \text{ words } i, j, k ] = \sum_{t} \mathsf{w}_{t} \cdot (\vec{\mu}_{t} \otimes \vec{\mu}_{t} \otimes \vec{\mu}_{t})_{i,j,k}.$$



In tensor notation  $T_{\theta}$ ,

$$T_{\theta} = \sum_{t} w_{t} \vec{\mu}_{t} \otimes \vec{\mu}_{t} \otimes \vec{\mu}_{t}.$$


$$P_{\theta} = \sum_{t=1}^{k} \mathbf{w}_t \ \vec{\mu}_t \otimes \vec{\mu}_t \quad \text{and} \quad T_{\theta} = \sum_{t=1}^{k} \mathbf{w}_t \ \vec{\mu}_t \otimes \vec{\mu}_t \otimes \vec{\mu}_t$$



$$P_{\theta} = \sum_{t=1}^{k} \mathbf{w}_{t} \ \vec{\mu}_{t} \otimes \vec{\mu}_{t} \quad \text{and} \quad T_{\theta} = \sum_{t=1}^{k} \mathbf{w}_{t} \ \vec{\mu}_{t} \otimes \vec{\mu}_{t} \otimes \vec{\mu}_{t}$$

Low-rank matrix and tensor



$$P_{\theta} = \sum_{t=1}^{k} \mathbf{w}_t \ \vec{\mu}_t \otimes \vec{\mu}_t \quad \text{and} \quad T_{\theta} = \sum_{t=1}^{k} \mathbf{w}_t \ \vec{\mu}_t \otimes \vec{\mu}_t \otimes \vec{\mu}_t$$

Moment equations:  $P_{\theta} = \widehat{P}, T_{\theta} = \widehat{T}$ 

(i.e., find low-rank decompositions of empirical moments).



$$P_{\theta} = \sum_{t=1}^{k} w_t \, \vec{\mu}_t \otimes \vec{\mu}_t \quad \text{and} \quad T_{\theta} = \sum_{t=1}^{k} w_t \, \vec{\mu}_t \otimes \vec{\mu}_t \otimes \vec{\mu}_t$$

Moment equations:  $P_{\theta} = \widehat{P}, T_{\theta} = \widehat{T}$ 

(i.e., find low-rank decompositions of empirical moments).

**Claim**:  $P_{\theta}$  and  $T_{\theta}$  uniquely determine the parameters  $\theta$ .

 $P_{\theta} = \sum_{t} \mathbf{w}_{t} \vec{\mu}_{t} \otimes \vec{\mu}_{t}$  defines "whitened" coord. system.

 $P_{\theta} = \sum_{t} \mathbf{w}_{t} \, \vec{\mu}_{t} \otimes \vec{\mu}_{t}$  defines "whitened" coord. system.

#### Technical reduction:

Apply *change-of-basis* transformation  $P_{\theta}^{-1/2}$  to  $T_{\theta}$ :

$$T_{\theta} = \sum_{t=1}^{k} w_t \ \vec{\mu}_t \otimes \vec{\mu}_t \otimes \vec{\mu}_t \quad \longmapsto \quad B_{\theta} = \sum_{t=1}^{k} \lambda_t \ \vec{v}_t \otimes \vec{v}_t \otimes \vec{v}_t$$

where  $\lambda_t = 1/\sqrt{w_t}$ ,  $\vec{v}_t = P_{\theta}^{-1/2} (\sqrt{w_t} \ \vec{\mu}_t)$ .

 $P_{\theta} = \sum_{t} \mathbf{w}_{t} \, \vec{\mu}_{t} \otimes \vec{\mu}_{t}$  defines "whitened" coord. system.

#### Technical reduction:

Apply *change-of-basis* transformation  $P_{\theta}^{-1/2}$  to  $T_{\theta}$ :

$$T_{\theta} = \sum_{t=1}^{k} w_t \ \vec{\mu}_t \otimes \vec{\mu}_t \otimes \vec{\mu}_t \quad \longmapsto \quad B_{\theta} = \sum_{t=1}^{k} \lambda_t \ \vec{v}_t \otimes \vec{v}_t \otimes \vec{v}_t$$
  
where  $\lambda_t = 1/\sqrt{w_t}, \quad \vec{v}_t = P_{\theta}^{-1/2} \ (\sqrt{w_t} \ \vec{\mu}_t).$ 

Upshot:  $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$  are orthonormal.

 $P_{\theta} = \sum_{t} \mathbf{w}_{t} \, \vec{\mu}_{t} \otimes \vec{\mu}_{t}$  defines "whitened" coord. system.

"Whitened" third-order moment tensor  $B_{\theta}$  has orthogonal decomposition

$$B_{\theta} = \sum_{t=1}^{\kappa} \lambda_t \; \vec{\mathbf{v}}_t \otimes \vec{\mathbf{v}}_t \otimes \vec{\mathbf{v}}_t.$$

(And  $\{(\lambda_t, \vec{v}_t)\}$  are related to parameters  $\{(w_t, \vec{\mu}_t)\}$ .)

Upshot:  $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$  are orthonormal.

**Claim**: Orthogonal decomposition of  $B_{\theta}$  is unique.

#### Any symmetric matrix

$$A = \sum_{i=1}^k \lambda_i \ \vec{v}_i \otimes \vec{v}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.



$$A = \sum_{i=1}^{k} \lambda_i \ \vec{\mathbf{v}}_i \otimes \vec{\mathbf{v}}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.



#### Any symmetric matrix

$$A = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.



Any symmetric matrix

$$A = \sum_{i=1}^k \lambda_i \ \vec{v}_i \otimes \vec{v}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.

Special 3rd-order tensor

$$B = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i \otimes \vec{v}_i$$

If decomposition exists, then it's always unique (even if  $\lambda_i$  all same).

#### Any symmetric matrix

$$A = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.

Special 3rd-order tensor

$$B = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i \otimes \vec{v}_i$$

If decomposition exists, then it's always unique (even if  $\lambda_i$  all same).





Any symmetric matrix

$$A = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.

Special 3rd-order tensor

$$B = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i \otimes \vec{v}_i$$

If decomposition exists, then it's always unique (even if  $\lambda_i$  all same).

Uniqueness of orthogonal decomposition (+low-rank structure) implies that  $P_{\theta}$  and  $T_{\theta}$  uniquely determine  $\theta$ .

Any symmetric matrix

$$A = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i$$

Decomposition is unique only if all eigenvalues  $\lambda_i$  are distinct.

Special 3rd-order tensor

$$B = \sum_{i=1}^{k} \lambda_i \ \vec{v}_i \otimes \vec{v}_i \otimes \vec{v}_i$$

If decomposition exists, then it's always unique (even if  $\lambda_i$  all same).

Uniqueness of orthogonal decomposition (+low-rank structure) implies that  $P_{\theta}$  and  $T_{\theta}$  uniquely determine  $\theta$ .

Solve moment equations via optimization problem

$$\min_{\theta} \|T_{\theta} - \widehat{T}\|^2 \quad \text{s.t.} \quad P_{\theta} = \widehat{P}. \tag{\dagger}$$

Solve moment equations via optimization problem

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad P_{\theta} = \widehat{P}. \tag{\dagger}$$

Not convex in parameters  $\theta = \{(\vec{\mu}_i, \mathbf{w}_i)\}.$ 

Solve moment equations via optimization problem

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad P_{\theta} = \widehat{P}. \tag{\dagger}$$

Not convex in parameters  $\theta = \{(\vec{\mu}_i, \mathbf{w}_i)\}.$ 

What we do: find one topic  $(\vec{\mu}_i, w_i)$  at a time, using local optimization on rank-1 approximation objective:

$$\operatorname{min}_{\lambda,\vec{v}} \|\lambda\vec{v}\otimes\vec{v}\otimes\vec{v}-\widehat{B}\|^2 \tag{\ddagger}$$

(after change-of-coord. system via  $\widehat{P}$ :  $\widehat{T} \longrightarrow \widehat{B}$ ).

Solve moment equations via optimization problem

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad P_{\theta} = \widehat{P}. \tag{\dagger}$$

Not convex in parameters  $\theta = \{(\vec{\mu}_i, \mathbf{w}_i)\}.$ 

What we do: find one topic  $(\vec{\mu}_i, w_i)$  at a time, using local optimization on rank-1 approximation objective:

$$\max_{\|\vec{u}\| \le 1} \sum_{i,j,k} \widehat{B}_{i,j,k} u_i u_j u_k \tag{\ddagger}$$

Solve moment equations via optimization problem

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad P_{\theta} = \widehat{P}. \tag{\dagger}$$

Not convex in parameters  $\theta = \{(\vec{\mu}_i, \mathbf{w}_i)\}.$ 

What we do: find one topic  $(\vec{\mu}_i, w_i)$  at a time, using local optimization on rank-1 approximation objective:



Solve moment equations via optimization problem

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad P_{\theta} = \widehat{P}. \tag{\dagger}$$

Not convex in parameters  $\theta = \{(\vec{\mu}_i, \mathbf{w}_i)\}.$ 

What we do: find one topic  $(\vec{\mu}_i, w_i)$  at a time, using local optimization on rank-1 approximation objective:



Can approximate *all* local optima, each corresp. to a topic.

 $\longrightarrow$  Near-optimal solution to (†).

# Variational argument

Interpret  $P_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  and  $T_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  as **bi-linear** and **tri-linear** forms.

# Variational argument

Interpret  $P_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  and  $T_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  as **bi-linear** and **tri-linear forms**.

Lemma Assuming  $\{\vec{\mu}_i\}$  linearly independent and  $w_i > 0$ . each of the k distinct, isolated local maximizers  $\vec{u}^*$  of  $\max_{\vec{u}\in\mathbb{R}^d} T_{\theta}(\vec{u},\vec{u},\vec{u}) \quad s.t. \quad P_{\theta}(\vec{u},\vec{u}) \leq 1$ (‡) satisfies, for some  $i \in [k]$ ,  $P_{\theta}\vec{u}^* = \sqrt{W_i} \vec{\mu}_i, \qquad T_{\theta}(\vec{u}^*, \vec{u}^*, \vec{u}^*) = \frac{1}{\sqrt{W_i}}.$ 

# Variational argument

Interpret  $P_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  and  $T_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  as **bi-linear** and **tri-linear** forms.

Lemma Assuming  $\{\vec{\mu}_i\}$  linearly independent and  $w_i > 0$ . each of the k distinct, isolated local maximizers  $\vec{u}^*$  of  $\max_{\vec{u}\in\mathbb{R}^d} T_{\theta}(\vec{u},\vec{u},\vec{u}) \quad s.t. \quad P_{\theta}(\vec{u},\vec{u}) \leq 1$ (‡) satisfies, for some  $i \in [k]$ ,  $P_{\theta}\vec{u}^* = \sqrt{W_i} \vec{\mu}_i, \qquad T_{\theta}(\vec{u}^*, \vec{u}^*, \vec{u}^*) = \frac{1}{\sqrt{W_i}}.$ 

 $\therefore \{(\vec{\mu_i}, \mathbf{w}_i) : i \in [k]\}$  uniquely determined by  $P_{\theta}$  and  $T_{\theta}$ .

**Potential deal-breakers**: Explicitly form  $\widehat{\mathcal{T}}$ , count word-triples  $\longrightarrow \Omega(d^3)$  space,  $\Omega(\text{length}^3)$  time / doc.

**Potential deal-breakers**: Explicitly form  $\widehat{\mathcal{T}}$ , count word-triples  $\longrightarrow \Omega(d^3)$  space,  $\Omega(\text{length}^3)$  time / doc.

Can exploit algebraic structure to avoid bottlenecks.

**Potential deal-breakers**: Explicitly form  $\widehat{\mathcal{T}}$ , count word-triples  $\longrightarrow \Omega(d^3)$  space,  $\Omega(\text{length}^3)$  time / doc.

Can exploit algebraic structure to avoid bottlenecks.

Implicit representation of  $\hat{T}$ :

$$\widehat{T} \approx rac{1}{|S|} \sum_{ec{h} \in S} ec{h} \otimes ec{h} \otimes ec{h}$$

where  $\vec{h} \in \mathbb{N}^d$  is (sparse) histogram vector for a document.

**Potential deal-breakers**: Explicitly form  $\widehat{\mathcal{T}}$ , count word-triples  $\longrightarrow \Omega(d^3)$  space,  $\Omega(\text{length}^3)$  time / doc.

Can exploit algebraic structure to avoid bottlenecks.

Computation of objective gradient at vector  $\vec{u} \in \mathbb{R}^d$ :

$$\widehat{T}(\vec{u}) \approx \frac{1}{|S|} \sum_{\vec{h} \in S} \left(\vec{h} \otimes \vec{h} \otimes \vec{h}\right) (\vec{u}) = \frac{1}{|S|} \sum_{\vec{h} \in S} (\vec{h}^{\mathsf{T}} \vec{u})^2 \vec{h}$$

(sparse vector operations; time = O(input size)).

- Corpus: 300000 New York Times articles.
- Vocabulary size: 102660 words.
- Set number of topics k := 50.

- Corpus: 300000 New York Times articles.
- Vocabulary size: 102660 words.
- Set number of topics k := 50.

#### Predictive performance of straightforward implementation:

 $\approx$  4–8 $\times$  speed-up over Gibbs sampling.



#### Sample topics: (showing top 10 words for each topic)

| Econ.     | Baseball | Edu.      | Health care | Golf       |
|-----------|----------|-----------|-------------|------------|
| sales     | run      | school    | drug        | player     |
| economic  | inning   | student   | patient     | tiger_wood |
| consumer  | hit      | teacher   | million     | won        |
| major     | game     | program   | company     | shot       |
| home      | season   | official  | doctor      | play       |
| indicator | home     | public    | companies   | round      |
| weekly    | right    | children  | percent     | win        |
| order     | games    | high      | cost        | tournament |
| claim     | dodger   | education | program     | tour       |
| scheduled | left     | district  | health      | right      |

#### Sample topics: (showing top 10 words for each topic)

| Invest.    | Election     | auto race | Child's Lit. | Afghan War    |
|------------|--------------|-----------|--------------|---------------|
| percent    | al_gore      | car       | book         | taliban       |
| stock      | campaign     | race      | children     | attack        |
| market     | president    | driver    | ages         | afghanistan   |
| fund       | george_bush  | team      | author       | official      |
| investor   | bush         | won       | read         | military      |
| companies  | clinton      | win       | newspaper    | u_s           |
| analyst    | vice         | racing    | web          | united_states |
| money      | presidential | track     | writer       | terrorist     |
| investment | million      | season    | written      | war           |
| economy    | democratic   | lap       | sales        | bin           |

#### Sample topics: (showing top 10 words for each topic)

| Web         | Antitrust  | TV         | Movies    | Music    |
|-------------|------------|------------|-----------|----------|
| com         | court      | show       | film      | music    |
| www         | case       | network    | movie     | song     |
| site        | law        | season     | director  | group    |
| web         | lawyer     | nbc        | play      | part     |
| sites       | federal    | cb         | character | new_york |
| information | government | program    | actor     | company  |
| online      | decision   | television | show      | million  |
| mail        | trial      | series     | movies    | band     |
| internet    | microsoft  | night      | million   | show     |
| telegram    | right      | new_york   | part      | album    |


# Efficient learning algorithms for topic models, based on solving moment equations

moments<sub> $\theta$ </sub> = moments<sub>S</sub>.



# Efficient learning algorithms for topic models, based on solving moment equations

moments<sub> $\theta$ </sub> = moments<sub>S</sub>.

Q1. Which moments should we use? Suffices to use low-order (up to 3<sup>rd</sup>-order) moments, and exploit multivariate structure in high-dimensions.



# Efficient learning algorithms for topic models, based on solving moment equations

moments<sub> $\theta$ </sub> = moments<sub>S</sub>.

- Q1. Which moments should we use?
  Suffices to use low-order (up to 3<sup>rd</sup>-order) moments, and exploit multivariate structure in high-dimensions.
- Q2. How do we (approx.) solve these moment equations? Local optimization based on orthogonal tensor decompositions.

Structure in latent variable models

#### "Eigen-structure" found in low-order moments for many other models of high-dimensional data





### Latent Dirichlet Allocation and Mixtures of Gaussians



## Latent Dirichlet Allocation and Mixtures of Gaussians



#### Mixtures of Gaussians (Pearson, 1894)



- *k* sub-populations in  $\mathbb{R}^d$ ;
- *t*-th sub-pop. modeled as Gaussian  $\mathcal{N}(\vec{\mu}_t, \Sigma_t)$  with mixing weight  $w_t$ .

#### Finding the relevant eigenstructure

In both LDA and mixtures of axis-aligned Gaussians:

$$\begin{split} f\Big( \leq 2^{\text{nd}} \text{-order moments}_{\theta} \Big) &= \sum w_t \ \vec{\mu}_t \otimes \vec{\mu}_t \\ g\Big( \leq 3^{\text{rd}} \text{-order moments}_{\theta} \Big) &= \sum w_t \ \vec{\mu}_t \otimes \vec{\mu}_t \otimes \vec{\mu}_t \end{split}$$

for suitable f and g based on additional model structure.

#### Hidden Markov Models (HMMs)



#### Workhorse statistical model for sequence data



#### Hidden Markov Models (HMMs)



Workhorse statistical model for sequence data



- ▶ Hidden state variables  $h_1 \rightarrow h_2 \rightarrow \cdots$  form a *Markov chain*.
- Observation x<sub>t</sub> at time t depends only on hidden state h<sub>t</sub> at time t.

### Learning HMMs

Correlations between past, present, and future



### Learning HMMs

Correlations between past, present, and future



Suffices to use low-order (asymmetric) cross moments

 $\mathbb{E}_{\theta}[\vec{x}_{t-1} \otimes \vec{x}_t \otimes \vec{x}_{t+1}].$ 

#### Tensor decompositions for learning latent variable models A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, M. Telgarsky Journal of Machine Learning Research, 2014.

http://jmlr.org/papers/v15/anandkumar14b.html