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Example: modeling the topics of a document corpus

Goal: model the topics of document in a corpus.

Model parametersLearning algorithmSample of documents

θ
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Topic model (e.g., Hofmann, ’99; Blei-Ng-Jordan, ’03)

sports science

businesspolitics

k topics (distributions over vocab words).
Each document↔ mixture of topics.
Words in document ∼iid mixture dist.

athlete

aardvark

zygote

sports science politics business

1

0
3

...

+0·∼iid 0.6· +0.3· +0.1·

E.g.,

Prθ[“play” | sports] = 0.0002
Prθ[“game” | sports] = 0.0003
Prθ[“season” | sports] = 0.0001...
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Learning topic models

Topic model:

sports science

businesspolitics

k topics (dists. over d words) ~µ1, . . . , ~µk ;
Each document↔ mixture of topics.
Words in document ∼iid mixture dist.

I Input: sample of documents, generated by simple topic
model with unknown parameters θ? := {(~µt

?,wt
?)}.

I Task: find parameters θ := {(~µt ,wt )} so that θ ≈ θ?.
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Learning topic models

Simple topic model: (each document about single topic)

sports science

businesspolitics

k topics (dists. over d words) ~µ1, . . . , ~µk ;
Topic t chosen with prob. wt ,
words in document ∼iid ~µt .

I Input: sample of documents, generated by simple topic
model with unknown parameters θ? := {(~µt

?,wt
?)}.

I Task: find parameters θ := {(~µt ,wt )} so that θ ≈ θ?.
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Some approaches to estimation

Maximum-likelihood (e.g., Fisher, 1912).
θMLE := arg maxθ Prθ[data].

Current practice (> 40 years): local search for
local maxima — can be quite far from θMLE.

Method-of-moments (Pearson, 1894).
Find parameters θ that (approximately)

satisfy system of equations based on the data.

Many ways to instantiate & implement.
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Moments: normal distribution

Normal distribution: x ∼ N (µ, v)

First- and second-order moments:

E(µ,v)[x ] = µ, E(µ,v)[x2] = µ2 + v .

Method-of-moments estimators of µ? and v?:
find µ̂ and v̂ s.t.

ÊS[x ] ≈ µ̂, ÊS[x2] ≈ µ̂2 + v̂ .

A reasonable solution:

µ̂ := ÊS[x ], v̂ := ÊS[x2]− µ̂2

since ÊS[x ]→ E(µ?,v?)[x ] and ÊS[x2]→ E(µ?,v?)[x2] by LLN.
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Moments: simple topic model

For any n-tuple (i1, i2, . . . , in) ∈ Vocabularyn:

(Population) moments under some parameter θ:

Prθ
[
document contains words i1, i2, . . . , in

]
.

e.g., Prθ[“machine” & “learning” co-occur].

Empirical moments from sample S of documents:

P̂rS

[
document contains words i1, i2, . . . , in

]
i.e., empirical frequency of co-occurrences in sample S.
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Method-of-moments

Method-of-moments strategy:
Given data sample S, find θ to satisfy system of equations

momentsθ = ̂momentsS.

(Recall: we expect ̂momentsS ≈ momentsθ? by LLN.)

Q1. Which moments should we use?

Q2. How do we (approx.) solve these moment equations?
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Q1. Which moments should we use?

moment order reliable estimates? unique solution?
1st, 2nd

1st- and 2nd-order moments (e.g., prob. of word pairs).

[Vempala-Wang, ’02]

1st 2nd Ω(k)th

[McSherry, ’01]

order of moments

[Arora-Ge-Moitra, ’12]
[Kleinberg-Sandler, ’04]
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1st- and 2nd-order moments (e.g., prob. of word pairs).
I Fairly easy to get reliable estimates.

P̂rS[“machine”, “learning”] ≈ Prθ? [“machine”, “learning”]

I Can have multiple solutions to moment equations.

momentsθ1 = ̂moments = momentsθ2 , θ1 6= θ2
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Q1. Which moments should we use?

moment order reliable estimates? unique solution?
1st, 2nd 3 7

Ω(k)th 7 3

Can we get best-of-both-worlds?

[Moitra-Valiant, ’10]

1st 2nd Ω(k)th
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Q1. Which moments should we use?

moment order reliable estimates? unique solution?
1st, 2nd 3 7

Ω(k)th 7 3

Can we get best-of-both-worlds? Yes!

In high-dimensions,
low-order multivariate moments suffice.

(1st-, 2nd-, and 3rd-order moments)

[Vempala-Wang, ’02]

1st 2nd Ω(k)th

[McSherry, ’01] [Prony, 1795]
[Lindsay, ’89]

3rd order of moments

this work [Moitra-Valiant, ’10]
[Gravin et al, ’12][Arora-Ge-Moitra, ’12]

[Kleinberg-Sandler, ’04]
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Low-order multivariate moments suffice

Key observation: in high dimensions (d � k ),
low-order moments have simple (“low-rank”) algebraic structure.
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Low-order multivariate moments suffice

j

i
(Empirical: P̂)Pθ :=

Prθ[words i , j]

Given a document about topic t ,

Prθ[ words i , j | topic t ] = (~µt )i · (~µt )j .

Claim: Pθ and T θ uniquely determine the parameters θ.
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Low-order multivariate moments suffice

j

i
(Empirical: P̂)Pθ :=

Prθ[words i , j]

Averaging over topics,

Prθ[ words i , j ] =
∑

t

wt · (~µt ⊗ ~µt )i,j .

Claim: Pθ and T θ uniquely determine the parameters θ.
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Low-order multivariate moments suffice

j

i
(Empirical: P̂)Pθ :=

Prθ[words i , j]

In matrix notation Pθ,

Pθ =
∑

t

wt ~µt ⊗ ~µt .

Claim: Pθ and T θ uniquely determine the parameters θ.
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Low-order multivariate moments suffice

(Empirical: T̂ )T θ :=
i

j
k

Prθ[words i , j , k ]

Similarly,

Prθ[ words i , j , k ] =
∑

t

wt · (~µt ⊗ ~µt ⊗ ~µt )i,j,k .

Claim: Pθ and T θ uniquely determine the parameters θ.
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Reduction to orthogonal case via whitening

Pθ =
∑

t wt ~µt ⊗ ~µt defines “whitened” coord. system.

Upshot: {~v1, ~v2, . . . , ~vk} are orthonormal.

Claim: Orthogonal decomposition of Bθ is unique.
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Reduction to orthogonal case via whitening

Pθ =
∑

t wt ~µt ⊗ ~µt defines “whitened” coord. system.

Technical reduction:
Apply change-of-basis transformation P−1/2
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k∑

t=1

wt ~µt ⊗ ~µt ⊗ ~µt 7−→ Bθ =
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where λt = 1/
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wt , ~vt = P−1/2
θ (

√
wt ~µt ).
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Reduction to orthogonal case via whitening

Pθ =
∑

t wt ~µt ⊗ ~µt defines “whitened” coord. system.

“Whitened” third-order moment tensor Bθ has
orthogonal decomposition

Bθ =
k∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt .

(And {(λt , ~vt)} are related to parameters {(wt , ~µt)}.)

Upshot: {~v1, ~v2, . . . , ~vk} are orthonormal.

Claim: Orthogonal decomposition of Bθ is unique.
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The spectral theorem and eigendecompositions
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The spectral theorem and eigendecompositions

Any symmetric matrix

Decomposition is unique

are distinct.
only if all eigenvalues λi

A =
∑k

i=1 λi ~vi ⊗ ~vi
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Q2. How to solve the moment equations?

Solve moment equations via optimization problem

minθ ‖T θ − T̂‖2 s.t. Pθ = P̂. (†)

Not convex in parameters θ = {(~µi ,wi)}.

What we do: find one topic (~µi ,wi) at a time,
using local optimization on rank-1 approximation objective:

Can approximate all local optima, each corresp. to a topic.
−→ Near-optimal solution to (†).
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Variational argument

Interpret Pθ : Rd × Rd → R and T θ : Rd × Rd × Rd → R
as bi-linear and tri-linear forms.

Lemma
Assuming {~µi} linearly independent and wi > 0,
each of the k distinct, isolated local maximizers ~u∗ of

max
~u∈Rd

T θ(~u, ~u, ~u) s.t. Pθ(~u, ~u) ≤ 1 (‡)

satisfies, for some i ∈ [k ],

Pθ~u∗ =
√

wi ~µi , T θ(~u∗, ~u∗, ~u∗) =
1√
wi
.

∴ {(~µi ,wi) : i ∈ [k ]} uniquely determined by Pθ and T θ.
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1√
wi
.

∴ {(~µi ,wi) : i ∈ [k ]} uniquely determined by Pθ and T θ.
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Implementation of topic model estimator

Potential deal-breakers: Explicitly form T̂ , count word-triples
−→ Ω(d3) space, Ω(length3) time / doc.

Can exploit algebraic structure to avoid bottlenecks.
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Implementation of topic model estimator

Potential deal-breakers: Explicitly form T̂ , count word-triples
−→ Ω(d3) space, Ω(length3) time / doc.

Can exploit algebraic structure to avoid bottlenecks.

Implicit representation of T̂ :

T̂ ≈ 1
|S|
∑
~h∈S

~h ⊗ ~h ⊗ ~h

where ~h ∈ Nd is (sparse) histogram vector for a document.
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Implementation of topic model estimator

Potential deal-breakers: Explicitly form T̂ , count word-triples
−→ Ω(d3) space, Ω(length3) time / doc.

Can exploit algebraic structure to avoid bottlenecks.

Computation of objective gradient at vector ~u ∈ Rd :

T̂ (~u) ≈ 1
|S|
∑
~h∈S

(
~h ⊗ ~h ⊗ ~h

)
(~u) =

1
|S|
∑
~h∈S

(~h>~u)2 ~h

(sparse vector operations; time = O(input size)).
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Illustrative empirical results

I Corpus: 300000 New York Times articles.
I Vocabulary size: 102660 words.
I Set number of topics k := 50.

Predictive performance of straightforward implementation:
≈ 4–8× speed-up over Gibbs sampling.
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Illustrative empirical results

Sample topics: (showing top 10 words for each topic)

Econ. Baseball Edu. Health care Golf
sales run school drug player

economic inning student patient tiger_wood
consumer hit teacher million won

major game program company shot
home season official doctor play

indicator home public companies round
weekly right children percent win
order games high cost tournament
claim dodger education program tour

scheduled left district health right

18



Illustrative empirical results

Sample topics: (showing top 10 words for each topic)

Invest. Election auto race Child’s Lit. Afghan War
percent al_gore car book taliban
stock campaign race children attack

market president driver ages afghanistan
fund george_bush team author official

investor bush won read military
companies clinton win newspaper u_s

analyst vice racing web united_states
money presidential track writer terrorist

investment million season written war
economy democratic lap sales bin
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Illustrative empirical results

Sample topics: (showing top 10 words for each topic)

Web Antitrust TV Movies Music
com court show film music
www case network movie song
site law season director group
web lawyer nbc play part
sites federal cb character new_york

information government program actor company
online decision television show million
mail trial series movies band

internet microsoft night million show
telegram right new_york part album

etc.
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Recap

Efficient learning algorithms for topic models, based on
solving moment equations

momentsθ = ̂momentsS.

Q1. Which moments should we use?
Suffices to use low-order (up to 3rd-order) moments, and
exploit multivariate structure in high-dimensions.

Q2. How do we (approx.) solve these moment equations?
Local optimization based on orthogonal tensor
decompositions.
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Structure in latent variable models

“Eigen-structure” found in low-order moments
for many other models of

high-dimensional data

k∑
i=1

λi ~vi ⊗ ~vi ⊗ ~vi

sports science

businesspolitics bank managerinvestment

NP

NP

DT NN
shortstop

DT NN
the ball

Vt
caught

VP

S

the
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Latent Dirichlet Allocation and Mixtures of Gaussians

Latent Dirichlet Allocation (Blei-Ng-Jordan, ’02) topic model:

sports science

businesspolitics

k topics (distributions over d words).
Each document↔ mixture of topics.
Doc.’s mixing weights ∼ Dirichlet(~α).
Words in doc. ∼iid mixture dist.

Mixtures of Gaussians (Pearson, 1894)

k sub-populations in Rd ;
t-th sub-pop. modeled as Gaussian N (~µt , Σt )
with mixing weight wt .
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Finding the relevant eigenstructure

In both LDA and mixtures of axis-aligned Gaussians:

f
(
≤ 2nd-order momentsθ

)
=
∑

wt ~µt ⊗ ~µt

g
(
≤ 3rd-order momentsθ

)
=
∑

wt ~µt ⊗ ~µt ⊗ ~µt

for suitable f and g based on additional model structure.
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Hidden Markov Models (HMMs)

h1 h2 · · · h`

~x1 ~x2 ~x`

Workhorse statistical model for sequence data

/k/ /a/ /t/

I Hidden state variables h1 → h2 → · · · form a Markov chain.
I Observation ~xt at time t depends only on hidden state ht at

time t .
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Learning HMMs

Correlations between past, present, and future

ht−1 ht ht+1

~xt−1 ~xt ~xt+1

Suffices to use low-order (asymmetric) cross moments

Eθ[ ~xt−1 ⊗ ~xt ⊗ ~xt+1 ].
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Where to read more

Tensor decompositions for learning latent variable models
A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, M. Telgarsky

Journal of Machine Learning Research, 2014.

http://jmlr.org/papers/v15/anandkumar14b.html
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