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Conditional random fields (CRFs)

@ Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

e Y is a set of target variables
e X is a set of observed variables

@ We typically show the graphical model using just the Y variables

@ Potentials are a function of X and Y
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Formal definition

@ A CRF is a Markov network on variables X U'Y, which specifies the
conditional distribution

1
P(y | X) = > ¢C(XC)yC)
Z(x) CI;[C
with partition function

Z(X) = Z H Qf)c(xca 9c)

y ceC

@ As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

@ The only difference with a standard Markov network is the normalization
term — before marginalized over X and Y, now only over Y
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Application: named-entity recognition

@ Given a sentence, determine the people and organizations involved and the
relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance committee.”

@ Entities sometimes span multiple words. Entity of a word not obvious
without considering its context

@ CRF has one variable X; for each word, which encodes the possible labels of
that word

@ The labels are, for example, “B-person, |-person, B-location, I|-location,
B-organization, l-organization”

e Having beginning (B) and within () allows the model to segment
adjacent entities
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Application: named-entity recognition

The graphical model looks like (called a skip-chain CRF):

KEY
BPER  Begin person name
LPER  Within person name
B-LOC  Begin location name
ILOC  Within location name
OTH Not an entitiy

?i'@.‘?'?i*?i'@'ﬁ'?i'?h@
SIOICICISICIONS

There are three types of potentials:

@ ¢!(Y4, Yiy1) represents dependencies between neighboring target variables
[analogous to transition distribution in a HMM]

@ #*(Y;, Y for all pairs t, ' such that x; = x./, because if a word appears
twice, it is likely to be the same entity

@ ¢3(Y:, X1, -, X7) for dependencies between an entity and the word
sequence [e.g., may have features taking into consideration capitalization]

Notice that the graph structure changes depending on the sentence!
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Application: Part-of-speech tagging
United flies some large jet

}

N—V—D—A—N

N

United; fliess somes larges jets
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Graphical model formulation of POS tagging

given:

e a sentence of length n and a tag set 7
e one variable for each word, takes values in T
e edge potentials 0(i — 1,i,t',t) forallien, t,t' €T

example:

O—O0—0O—0-—10

United; flies; somes largey jets

T={AD,N,V}
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Features for POS tagging

@ Parameterization as log-linear model:

o Weights w € R9. Feature vectors f.(x,y.) € R.
o dc(x,yciw) = exp(w - fe(x,yc))

@ Edge potentials: Fully parameterize (7 x T features and weights), i.e.
T
Oi1,i(t',t) = wy ,
where the superscript “T" denotes that these are the weights for the
transitions

@ Node potentials: Introduce features for the presence or absence of certain
attributes of each word (e.g., initial letter capitalized, suffix is “ing"), for
each possible tag (7 x Ftattributes features and weights)

This part is conditional on the input sentence!

@ Edge potential same for all edges. Same for node potentials.
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Density estimation for CRFs

@ Suppose we want to predict a set of variables Y given some others X, e.g.,
stereo vision or part-of-speech tagging:

input: two images output: disparity “/;\}_"/I;‘, \\}_{/ ;\\_‘/’/\‘;\M/I; \M/;\\_‘/;\‘,’\,‘\\‘
\I/‘ ‘\T/ ‘\T/ \I/’ \I/' N ‘\T/
orcD) (awon) (&) (sme) () () (am)
NG/ NG NG NGV NG

@ We concentrate on predicting p(Y|X), and use a conditional loss function
/OSS(X7yaM) = - |Og ﬁ(y | X).

@ Since the loss function only depends on p(y | x), suffices to estimate the
conditional distribution, not the joint
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Density estimation for CRFs

CRF: ply | x) = Z(lx) 1 ¢cxy0),  Z(x) =TT éc(x.52)
ceC

y ceC

e Empirical risk minimization with CRFs, i.e. min o Ep [Ioss(x,y,/ol)}:

wht — argminé| Z —log p(y | x; w)
(x,y)eD
= argmax Y (Y logoclx.yeiw) — log Z(x;w))
(xy)eD ¢
= argmax w-( Z ch(x,yc)>— Z log Z(x; w)
(x,y)eD ¢ (x,y)eD

@ What if prediction is only done with MAP inference? Then, the
partition function is irrelevant. Is there a way to train to take
advantage of this?
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Goal of learning

@ The goal of learning is to return a model M that precisely captures the
distribution p* from which our data was sampled

@ This is in general not achievable because of

e computational reasons
o limited data only provides a rough approximation of the true underlying
distribution

@ We need to select M to construct the " best” approximation to M*

@ What is "best"?
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What notion of “best” should learning be optimizing?

This depends on what we want to do

@ Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

@ Specific prediction tasks: we are using the distribution to make a prediction

© Structure or knowledge discovery: we are interested in the model itself
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Structured prediction

@ Often we learn a model for the purpose of structured prediction, in which
given x we predict y by finding the MAP assignment:

argmax p(y|x)
y

@ Rather than learn using log-loss (density estimation), we use a loss function
better suited to the specific task

@ One reasonable choice would be the classification error:

Ey)opr [I{ 3y #y st p(y'|x) > pylx) }]

which is the probability over all (x,y) pairs sampled from p* that our
classifier selects the right labels

@ If p* is in the model family, training with log-loss (density estimation) and
classification error would perform similarly (given sufficient data)

@ Otherwise, better to directly go for what we care about (classification error)

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 25, 2014 13 /29



Structured prediction

@ Consider the empirical risk for 0-1 loss (classification error):

Z 1{ 3y #y st ply|x) > pylx) }

(x,y)€D

@ Each constraint p(y’|x) > p(y|x) is equivalent to
w- ch(x,ylc) —log Z(x;w) > w - ch(x,yc) — log Z(x; w)
c Cc

@ The log-partition function cancels out on both sides. Re-arranging, we have:
w - (Z fc(xaylc) - ch(x7)'c)> >0
c c

@ Said differently, the empirical risk is zero when V(x,y) € D and y' #y,

w- (Z fo(x,yc) — ch(x, yf_.)) >0
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Structured prediction

@ Empirical risk is zero when V(x,y) € D and y' #y,

w- (Z fe(x,yc) — Zf,_—(x,yé)) > 0.

@ In the simplest setting, learning corresponds to finding a weight vector w
that satisfies all of these constraints (when possible)

@ This is a linear program (LP)!
@ How many constraints does it have? |D| x || — exponentially many!
@ Thus, we must avoid explicitly representing this LP

@ This lecture is about algorithms for solving this LP (or some variant) in a
tractable manner
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Structured perceptron algorithm

Input: Training examples D = {(x™,y™)}

Let f(x,y) = > fc(x,yc). Then, the constraints that we want to satisfy are

w - (f(x’",y’") - f(xm,y)) >0, Vy#y”

@ The perceptron algorithm uses MAP inference in its inner loop:

MAP(x™; w) = arg maxw - f(x™,y)
yey

The maximization can often be performed efficiently by using the structure!

@ The perceptron algorithm is then:

@ Start withw =20

© While the weight vector is still changing:
(8] Form=1,...,|D]

Q y < MAP(x™; w)

e w <;‘N<Ff(xmaym) 7f(xm7y)

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 25, 2014 16 / 29



Structured perceptron algorithm

@ If the training data is separable, the perceptron algorithm is guaranteed to
find a weight vector which perfectly classifies all of the data

@ When separable with margin «, number of iterations is at most
2R\?
v )

@ In practice, one stops after a certain number of outer iterations (called
epochs), and uses the average of all weights

where R = maxp, y ||f(x™,y)|]2

@ The averaging can be understood as a type of regularization to prevent
overfitting
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Allowing slack

@ We can equivalently write the constraints as

w - (f(xm,y"’) - f(xm,y)> >1, Vy#y”

@ Suppose there do not exist weights w that satisfy all constraints

@ Introduce slack variables £,, > 0, one per data point, to allow for constraint
violations:

w- (f(xm,y’") - f(xm,y)) >1—&n Yy #y”

@ Then, minimize the sum of the slack variables, ming>o )", &m, subject to
the above constraints
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Structural SVM (support vector machine)

min > &m+ Cliwl?
’ m

subject to:

v

wo (F(X",y™) ~F(x™y)) = 1-Em Fmy £y
¢m > 0, Vm

This is a quadratic program (QP). Solving for the slack variables in closed form,
we obtain

& = max (0, ma)>}< 1—w- (f(xm,y’”) - f("’”d)))

ye

Thus, we can re-write the whole optimization problem as

m“in Z max (0, max 1-—w- (f(x"’,y"’) - f(x"’,y))> + Cl|w|[?
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@ We can view max (0, maxyey 1 —w- (f(x’",y’") — f(x’",y))) as a loss
function, called hinge loss

@ When w - f(x™ y™) > w - f(x™y) for all y (i.e., correct prediction), this
takes a value between 0 and 1

@ When 3y such that w - f(x™,y) > w - f(x™,y™) (i.e., incorrect prediction),
this takes a value > 1

@ Thus, this always upper bounds the 0-1 loss!

@ Minimizing hinge loss is good because it minimizes an upper bound on the
0-1 loss (prediction error)
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Better Metrics

@ It doesn't always make sense to penalize all incorrect predictions equally!

@ We can change the constraints to
wo (FX™y™) = F(x7,y)) = Aly,y™) = €m, Y,
where A(y,y™) > 0 is a measure of how far the assignment y is from the
true assignment y™

@ This is called margin scaling (as opposed to slack scaling)

@ We assume that A(y,y) = 0, which allows us to say that the constraint
holds for all y, rather than just 'y # y”

A frequently used metric for MRFs is Hamming distance, where
Ay, y") = Ziev Iy; # vy
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Structural SVM with margin scaling

min 3 max (80ny") —w- (f(<7.y") = F".y)) ) + €l

How to solve this? Many methods!
@ Cutting-plane algorithm (Tsochantaridis et al., 2005)
@ Stochastic subgradient method (Ratliff et al., 2007)
© Dual Loss Primal Weights algorithm (Meshi et al., 2010)
@ Frank-Wolfe algorithm (Lacoste-Julien et al., 2013)
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Stochastic subgradient method

min > max (A(y,y™) —w- (F(x7.y™) = £(x".)) ) + C|w]

@ Although this objective is convex, it is not differentiable everywhere

@ We can use a subgradient method to minimize (instead of gradient descent)
@ The subgradient of maxycy A(y,y") —w- (f(x”ﬂy’") - f(x’",y)) at wis
f(xm’ 9) - f(xmv ym)’

where § is one of the maximizers with respect to w(?), i.e.

m

§ =argmax A(y,y") +w(® - f(x",y)
yey

@ This maximization is called loss-augmented MAP inference
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Loss-augmented inference

A

§ = argmax Aly,y") + wt) - f(x™, y)

@ When A(y,y™) = >_icy Ulyi # y{"], this corresponds to adding additional
single-node potentials

0i(yi) =11if y; # yi", and 0 otherwise

@ If MAP inference was previously exactly solvable by a combinatorial
algorithm, loss-augmented MAP inference typically is too

@ The Hamming distance pushes the MAP solution away from the true
assignment y"”
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Cutting-plane algorithm

min > &+ Cllw|P?
’ m
subject to:

W'(f(xm,ym)—f(xm,y)) > A(Y,y")—&m, Ymy € Vn
En > 0, Vm

Start with Y, = {y™}. Solve for the optimal w*, £*

Then, look to see if any of the unused constraints are violated

@ To find a violated constraint for data point m, simply solve the
loss-augmented inference problem:

y =argmax A(y,y")+w-f(x"y)
yey

If § € Ym, do nothing. Otherwise, let V,, = Y U {y}

Repeat until no new constraints are added. Then we are optimal!
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Cutting-plane algorithm

@ Can prove that, in order to solve the structural SVM up to e (additive)
accuracy, takes a polynomial number of iterations

@ In practice, terminates very quickly

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 25, 2014 26 / 29



Summary of convergence rates

Optimization algorithm ‘ Online Primal/Dual Type of guarantee Oracle type ‘ # Oracle calls
Stuzi ;[);Séz;gmdicnt (Taskar no primal-‘dual’ saddle point gap ~ Bregman projection o (7"}2 l;f D/‘\)
Z’ggﬁﬁlfizoﬁcnézggf gradient yes dual expected dual error expectation O (%)
?;izs:;v(c‘t al.igggll) reduction no primal-dual duality gap expectation O (nR %

BMRM (Teo et al., 2010) no primal >primal error maximization o ("’)‘f)

1-slack SVM-Struct (Joachims
et al., 2009)

no primal-dual duality gap maximization O ("’R2 )

stochastic subgradient . . . ~ [ R?

(Shalev-Shwartz et al., 2010a) yes primal primal error w.h.p. maximization o (;)
alev- rartz et al.,

his ' block-c i

;‘;:nl?— Ez’g(e)ife block-coordinate yes primal-dual expected duality gap maximization (0] (lj—j) Thm. 3

R same as before. n=number of training examples. A is the regularization
constant (correpsonding to 2C/n)
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Application to segmentation & support inference

Input Depth Inpainted Depth 3D Planes Support Relations

(Silberman, Sontag, Fergus. ECCV '14)
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Application to machine translation

Word alignment between languages:

@] le
w R . .. .
| R . ... de
w O les
O] grands
m objectifs
() de
0 . ... les
| . -+ . consultations
) est
m de
mO faire
00 .. . en
Om + - - sorte
w que
Ll la
] relance
() profite
. également
a
tous

wO -
@ -

of
these

consultations
all

the
major

objectives
is

to

nake

the
recovery

sure
that
benefits

(Taskar, Lacoste-Julien, Klein. EMNLP '05)
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