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Today's lecture

@ Markov random fields

@ Factor graphs

@ Bayesian networks = Markov random fields (moralization)

© Hammersley-Clifford theorem (conditional independence = joint
distribution factorization)

@ Conditional models

© Discriminative versus generative classifiers
@ Conditional random fields
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Bayesian networks

Reminder of last lecture

o A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
© One node j € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)).
specifying the variable's probability conditioned on its parents’ values
@ Corresponds 1-1 with a particular factorization of the joint
distribution:
p(x1, ... xn) = H P(Xi | Xpai))
ievV
@ Powerful framework for designing algorithms to perform probability
computations
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Bayesian networks have limitations

@ Recall that G is a perfect map for distribution p if /(G) = I(p)

@ Theorem: Not every distribution has a perfect map as a DAG

(By counterexample.) There is a distribution on 4 variables where the only
independencies are A L C | {B,D} and B L D | {A, C}. This cannot be
represented by any Bayesian network.

(a) (b)
Both (a) and (b) encode (A L C|B, D), but in both cases (B £ DI|A, C). O
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@ Let's come up with an example of a distribution p satisfying
ALC|{B,D}and B LD|{A C}
e A=Alex’s hair color (red, green, blue)
B=Bob's hair color
C=Catherine's hair color
D=David's hair color

@ Alex and Bob are friends, Bob and Catherine are friends, Catherine
and David are friends, David and Alex are friends

@ Friends never have the same hair color!
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Bayesian networks have limitations

@ Although we could represent any distribution as a fully connected BN,
this obscures its structure

@ Alternatively, we can introduce “dummy"” binary variables Z and work
with a conditional distribution:

@ This satisfiess A L C | {B,D,Z} and B L D |{A,C,Z}
@ Returning to the previous example, we would set:

p(Zi=1]a,d)=1ifa#d, andOifa=d

Z1 is the observation that Alice and David have different hair colors
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Undirected graphical models

@ An alternative representation for joint distributions is as an undirected
graphical model

@ As in BNs, we have one node for each random variable

@ Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

P(X1, - X)) = % I 6<(xc)

Z is the partition function and normalizes the distribution:

Z= Z Hﬁbc(ic)

R1y...,%n c€C

@ Like CPD’s, ¢c(x.) can be represented as a table, but it is not normalized

@ Also known as Markov random fields (MRFs) or Markov networks
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Undirected graphical models

p(X1, ..., Xn) = % H dc(xc), Z= Z H Pc(Re)

ceC X1y Xp c€C

Simple example (potential function on each edge encourages the variables to take
the same value):

B c
danla,b)= ¢ | o¢Bclc)=4 | daclac)=o0 1

e ol 10| 1 ol 10| 1
o—o bl O

p(a, b,c) = %¢A,B(3, b) - ¢B,c(b,c) - da,c(a,c),

where

Z= > ¢as(3b) ¢s.c(b &) pac(d ) =2-1000+6- 10 = 2060.
3,b,ee{0,1}3
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Hair color example as a MRF

@ We now have an undirected graph:

0;0

@ The joint probability distribution is parameterized as

p(a, b,c,d) = %¢AB(37 b)psc(b, c)pcp(c, d)pap(a, d) dpa(a)ps(b)dc(c)én(d)

@ Pairwise potentials enforce that no friend has the same hair color:
oag(a,b) =0if a=b, and 1 otherwise
@ Single-node potentials specify an affinity for a particular hair color, e.g.
¢p("red") =0.6, ¢p("blue”)=0.3, ¢p(“green”)=0.1
The normalization Z makes the potentials scale invariant! Equivalent to

¢p(“red") =6, ¢p("blue") =3, ¢p(“green”) =1
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Markov network structure implies conditional independencies

@ Let G be the undirected graph where we have one edge for every pair
of variables that appear together in a potential

o Conditional independence is given by graph separation!

Xa
Xc

@ Xp L Xc | Xg if there is no path from a € A to ¢ € C after removing
all variables in B
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@ Returning to hair color example, its undirected graphical model is:

0’0

@ Since removing A and C leaves no path from D to B, we have
D1 B|{A C}

@ Similarly, since removing D and B leaves no path from A to C, we
have A L C | {D, B}

@ No other independencies implied by the graph
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Markov blanket

o A set U is a Markov blanket of X if X ¢ U and if U is a minimal set
of nodes such that X L (¥ —{X} -U)|U

@ In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

@ In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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Proof of independence through separation

e We will show that A L C | B for the following distribution:

O——O©

p(a, b,c) = %quB(a, b)¢ec(b, c)

o First, we show that p(a | b) can be computed using only ¢ag(a, b):
plal b) = P2

2 2 da(a, b)dec(b,2)

2252 0a8(3, b)psc(b, @)

__9aB(a b)Y . d8c(b,E)  ¢as(a b)

225048(3,b) e dpc(b,€) 30, 0as(4,b)

@ More generally, the probability of a variable conditioned on its Markov
blanket depends only on potentials involving that node
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Proof of independence through separation

e We will show that A L C | B for the following distribution:

O——O©

p(a, b,c) = %quB(a, b)¢sc(b, c)

p(a; c, b) _ pag(a; b)psc(b, c)
Za,e p(a, b, &) Za,e ¢aB(3, b)psc(b, €)
da(a, b)dpc (b, c)
>3 9a8(3,b) >z dBc(b, €)
= p(a| b)p(c|b)

O

v
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Example: Ising model

@ Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem to
his student Ernst Ising

@ Mathematical model of ferromagnetism in statistical mechanics
@ The spin of an atom is biased by the spins of atoms nearby on the material:

magnetic moments

C
7
i
1
4
4
i
i
4

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ If a spin at position i is +1, what is the probability that the spin at position
j is also +17

@ Are there phase transitions where spins go from “disorder” to “order”?
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Example: Ising model

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ The spin of an atom is biased by the spins of atoms nearby on the material:

1
p(Xla e 7Xn) = ? exp (Z WI'JXI'XJ' - Z U,‘X,')

i<j i
@ When w;; > 0, nearby atoms encouraged to have the same spin (called
ferromagnetic), whereas w; ; < 0 encourages X; # X;

@ Node potentials exp(—u;x;) encode the bias of the individual atoms

@ Scaling the parameters makes the distribution more or less spiky
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Higher-order potentials

@ The examples so far have all been pairwise MRFs, involving only
node potentials ¢;(X;) and pairwise potentials ¢; ;(X;, X;)
@ Often we need higher-order potentials, e.g.

o(x,y,z) =1x+y+z>1],

where X, Y, Z are binary, enforcing that at least one of the variables
takes the value 1

@ Although Markov networks are useful for understanding
independencies, they hide much of the distribution’s structure:

Does this have pairwise potentials, or one potential for all 4 variables?
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Factor graphs

@ G does not reveal the structure of the distribution: maximum cliques vs.
subsets of them

@ A factor graph is a bipartite undirected graph with variable nodes and factor
nodes. Edges are only between the variable nodes and the factor nodes

@ Each factor node is associated with a single potential, whose scope is the set
of variables that are neighbors in the factor graph

Markov network

@ The distribution is same as the MRF — this is just a different data structure
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Example: Low-density parity-check codes

@ Error correcting codes for transmitting a message over a noisy channel
(invented by Galleger in the 1960's, then re-discovered in 1996)

fa fg fc

@ Each of the top row factors enforce that its variables have even parity:

fA(Yl, Y2, Y3, Y4) =1if Yl & Y2 & Y3 & Y4 = 07 and 0 otherwise

@ Thus, the only assignments Y with non-zero probability are the following
(called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111
o fi(Yi, X;) = p(X; | Vi), the likelihood of a bit flip according to noise model
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Example: Low-density parity-check codes

@ The decoding problem for LDPCs is to find

argmax, p(y | x)

This is called the maximum a posteriori (MAP) assignment
@ Since Z and p(x) are constants with respect to the choice of y, can
equivalently solve (taking the log of p(y, x)):

argmax, Z 0c(xc),

where 0c(xc) = log ¢c(xc) e

@ This is a discrete optimization problem!
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Converting BNs to Markov networks

What is the equivalent Markov network for a hidden Markov model?

Many inference algorithms are more conveniently given for undirected
models — this shows how they can be applied to Bayesian networks
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Moralization of Bayesian networks

@ Procedure for converting a Bayesian network into a Markov network

@ The moral graph M[G] of a BN G = (V, E) is an undirected graph over V
that contains an undirected edge between X; and X; if

@ there is a directed edge between them (in either direction)
@ Xi and X; are both parents of the same node

Q%‘ e Moralization ° e
— \/

O—® (O—

(term historically arose from the idea of "marrying the parents” of the node)

@ The addition of the moralizing edges leads to the loss of some independence
information, e.g., A — C < B, where A L B is lost
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Converting BNs to Markov networks

© Moralize the directed graph to obtain the undirected graphical model:

(B)  Moralization (A ——(B)
—_—
®\@

@ Introduce one potential function for each CPD:

¢i(Xiaxpa(i)) = P(Xi | xpa(i))
@ So, converting a hidden Markov model to a Markov network is simple:

ST T

@ For variables having > 1 parent, factor graph notation is useful
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Factorization implies conditional independencies

e p(x) is a Gibbs distribution over G if it can be written as

p(X17 e ,Xn) = % H ¢c(xc)7

ceC
where the variables in each potential ¢ € C form a clique in G
@ Recall that conditional independence is given by graph separation:

Xa

X

@ Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G, then G is an I-map for p(x), i.e. I(G) C I(p)
Proof: Suppose B separates A from C. Then we can write

1
p(Xa,Xg, Xc) = = f(Xa, Xg)g(Xe, Xc).
y4
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Conditional independencies implies factorization

Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G, then G is an I-map for p(x), i.e. I(G) C I(p)
What about the converse? We need one more assumption:
A distribution is positive if p(x) > 0 for all x
Theorem (Hammersley-Clifford, 1971): If p(x) is a positive
distribution and G is an |-map for p(x), then p(x) is a Gibbs
distribution that factorizes over G
Proof is in Koller & Friedman book (as is counter-example for when
p(x) is not positive)
This is important for learning;:

o Prior knowledge is often in the form of conditional independencies (i.e.,

a graph structure G)

o Hammersley-Clifford tells us that it suffices to search over Gibbs
distributions for G — allows us to parameterize the distribution
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Today's lecture

@ Markov random fields

@ Factor graphs

@ Bayesian networks = Markov random fields (moralization)

© Hammersley-Clifford theorem (conditional independence = joint
distribution factorization)

@ Conditional models

© Discriminative versus generative classifiers
@ Conditional random fields
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Conditional models

@ There is often significant flexibility in choosing the structure and
parameterization of a graphical model

Generative Discriminative

@ ©

It is important to understand the trade-offs

@ In the next few slides, we will study this question in the context of
e-mail classification
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From lecture 1... naive Bayes for single label prediction

o Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: nindex the words in our vocabulary (e.g., English)
e X; =1 if word i appears in an e-mail, and 0 otherwise
o E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Words are conditionally independent given Y:
Label

@O6-®

Features
@ Prediction given by:

Xp) = p(Yzl)H7:1P(Xi|Y:1)
VS oy PY = NI P [ Y =)

p(Y=1|x,...
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Discriminative versus generative models

@ Recall that these are equivalent models of p(Y, X):

Generative Discriminative

® ®

@ However, suppose all we need for prediction is p(Y | X)

@ In the left model, we need to estimate both p(Y') and p(X | Y)
@ In the right model, it suffices to estimate just the conditional
distribution p(Y | X)
o We never need to estimate p(X)!
o Would need p(X) if X is only partially observed
o Called a discriminative model because it is only useful for
discriminating Y's label
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Discriminative versus generative models

@ Let's go a bit deeper to understand what are the trade-offs inherent in
each approach
@ Since X is a random vector, for Y — X to be equivalent to X — Y,

we must have:
Generative Discriminative

We must make the following choices:

@ In the generative model, how do we parameterize p(X; | Xpa(i), Y')?
@ In the discriminative model, how do we parameterize p(Y | X)?
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Discriminative versus generative models

We must make the following choices:

O In the generative model, how do we parameterize p(X; | Xy, Y)?
@ In the discriminative model, how do we parameterize p(Y | X)?

Generative Discriminative

6890

@ For the generative model, assume that X; L X_; | Y (naive Bayes)
@ For the discriminative model, assume that

1 0.8

0.6
0.4

1+ e—a0—27:1 QiXi 02

p(Y =1[xa) =

This is called logistic regression. (o simpliy the story, we assume X; € {0,1})
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@ For the generative model, assume that X; L X_; | Y (naive Bayes)

(+)
@00 OO0 ®
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Logistic regression

@ For the discriminative model, assume that

ea0+z7:1 QX ]_
p(Y =1|xa)= 11 et o ] 1 e to—oig o

Let z(a,x) = o + D 1q @ix;. Then, p(Y =1 | x; ) = f(z(«r,x)), where
f(z) =1/(1+ e™#) is called the logistic function:

Same
graphical model
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Discriminative versus generative models

@ For the generative model, assume that X; L X_; | Y (naive Bayes)

@ For the discriminative model, assume that

0+ 1y ixi 1

p(Y =1 | X; a) = 1+ 0Dy @ix; - 1+ e~ Q0= QX

@ Last semester, in problem set 6, you showed assumption 1 =
assumption 2

@ Thus, every conditional distribution that can be represented using
naive Bayes can also be represented using the logistic model

@ What can we conclude from this?

With a large amount of training data, logistic regression
will perform at least as well as naive Bayes!
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Conditional random fields (CRFs)

@ Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

e Y is a set of target variables
e X is a set of observed variables

@ We typically show the graphical model using just the Y variables

@ Potentials are a function of X and Y
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Formal definition

@ A CRF is a Markov network on variables X U'Y, which specifies the
conditional distribution

1
P(y | X) = > ¢C(XC)yC)
Z(x) CI;[C
with partition function

Z(X) = Z H Qf)c(xca 9c)

y ceC

@ As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

@ The only difference with a standard Markov network is the normalization
term — before marginalized over X and Y, now only over Y
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CRFs in computer vision

@ Undirected graphical models very popular in applications such as computer
vision: segmentation, stereo, de-noising

@ Grids are particularly popular, e.g., pixels in an image with 4-connectivity

input: two images output: disparity

@ Not encoding p(X) is the main strength of this technique, e.g., if X is the
image, then we would need to encode the distribution of natural images!

@ Can encode a rich set of features, without worrying about their distribution
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