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Today’s lecture

Markov random fields
1 Factor graphs
2 Bayesian networks ⇒ Markov random fields (moralization)
3 Hammersley-Clifford theorem (conditional independence ⇒ joint

distribution factorization)

Conditional models
3 Discriminative versus generative classifiers
4 Conditional random fields
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Bayesian networks
Reminder of last lecture

A Bayesian network is specified by a directed acyclic graph
G = (V ,E ) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

Powerful framework for designing algorithms to perform probability
computations
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Bayesian networks have limitations

Recall that G is a perfect map for distribution p if I (G ) = I (p)

Theorem: Not every distribution has a perfect map as a DAG

Proof.

(By counterexample.) There is a distribution on 4 variables where the only
independencies are A ⊥ C | {B,D} and B ⊥ D | {A,C}. This cannot be
represented by any Bayesian network.

(a) (b)

Both (a) and (b) encode (A ⊥ C |B,D), but in both cases (B 6⊥ D|A,C ).
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Example

Let’s come up with an example of a distribution p satisfying
A ⊥ C | {B,D} and B ⊥ D | {A,C}
A=Alex’s hair color (red, green, blue)
B=Bob’s hair color
C=Catherine’s hair color
D=David’s hair color

Alex and Bob are friends, Bob and Catherine are friends, Catherine
and David are friends, David and Alex are friends

Friends never have the same hair color!
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Bayesian networks have limitations

Although we could represent any distribution as a fully connected BN,
this obscures its structure

Alternatively, we can introduce “dummy” binary variables Z and work
with a conditional distribution:

A

D B

C

Z1 Z2

Z3Z4

This satisfies A ⊥ C | {B,D,Z} and B ⊥ D | {A,C ,Z}
Returning to the previous example, we would set:

p(Z1 = 1 | a, d) = 1 if a 6= d , and 0 if a = d

Z1 is the observation that Alice and David have different hair colors
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Undirected graphical models

An alternative representation for joint distributions is as an undirected
graphical model

As in BNs, we have one node for each random variable

Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Like CPD’s, φc(xc) can be represented as a table, but it is not normalized

Also known as Markov random fields (MRFs) or Markov networks
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Undirected graphical models

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc), Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Simple example (potential function on each edge encourages the variables to take
the same value):

B

A C

10 1

1 10
A

B
0 1

0

1

φA,B(a, b) =

10 1

1 10
B

C
0 1

0

1

φB,C(b, c) = φA,C(a, c) =

10 1

1 10
A

C
0 1

0

1

p(a, b, c) =
1

Z
φA,B(a, b) · φB,C (b, c) · φA,C (a, c),

where

Z =
∑

â,b̂,ĉ∈{0,1}3

φA,B(â, b̂) · φB,C (b̂, ĉ) · φA,C (â, ĉ) = 2 · 1000 + 6 · 10 = 2060.
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Hair color example as a MRF

We now have an undirected graph:

The joint probability distribution is parameterized as

p(a, b, c , d) =
1

Z
φAB(a, b)φBC (b, c)φCD(c , d)φAD(a, d) φA(a)φB(b)φC (c)φD(d)

Pairwise potentials enforce that no friend has the same hair color:

φAB(a, b) = 0 if a = b, and 1 otherwise

Single-node potentials specify an affinity for a particular hair color, e.g.

φD(“red”) = 0.6, φD(“blue”) = 0.3, φD(“green”) = 0.1

The normalization Z makes the potentials scale invariant! Equivalent to

φD(“red”) = 6, φD(“blue”) = 3, φD(“green”) = 1
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Markov network structure implies conditional independencies

Let G be the undirected graph where we have one edge for every pair
of variables that appear together in a potential

Conditional independence is given by graph separation!

XA

XB

XC

XA ⊥ XC | XB if there is no path from a ∈ A to c ∈ C after removing
all variables in B
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Example

Returning to hair color example, its undirected graphical model is:

Since removing A and C leaves no path from D to B, we have
D ⊥ B | {A,C}
Similarly, since removing D and B leaves no path from A to C , we
have A ⊥ C | {D,B}
No other independencies implied by the graph
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Markov blanket

A set U is a Markov blanket of X if X /∈ U and if U is a minimal set
of nodes such that X ⊥ (X − {X} −U) | U

In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

X

In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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Proof of independence through separation

We will show that A ⊥ C | B for the following distribution:

BA C

p(a, b, c) =
1

Z
φAB(a, b)φBC (b, c)

First, we show that p(a | b) can be computed using only φAB(a, b):

p(a | b) =
p(a, b)

p(b)

=
1
Z

∑
ĉ φAB(a, b)φBC (b, ĉ)

1
Z

∑
â,ĉ φAB(â, b)φBC (b, ĉ)

=
φAB(a, b)

∑
ĉ φBC (b, ĉ)∑

â φAB(â, b)
∑

ĉ φBC (b, ĉ)
=

φAB(a, b)∑
â φAB(â, b)

.

More generally, the probability of a variable conditioned on its Markov
blanket depends only on potentials involving that node
David Sontag (NYU) Inference and Representation Lecture 2, September 9, 2014 13 / 37



Proof of independence through separation

We will show that A ⊥ C | B for the following distribution:

BA C

p(a, b, c) =
1

Z
φAB(a, b)φBC (b, c)

Proof.

p(a, c | b) =
p(a, c, b)∑
â,ĉ p(â, b, ĉ)

=
φAB(a, b)φBC (b, c)∑
â,ĉ φAB(â, b)φBC (b, ĉ)

=
φAB(a, b)φBC (b, c)∑

â φAB(â, b)
∑

ĉ φBC (b, ĉ)

= p(a | b)p(c | b)
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Example: Ising model

Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem to
his student Ernst Ising

Mathematical model of ferromagnetism in statistical mechanics

The spin of an atom is biased by the spins of atoms nearby on the material:

=  +1

=  -1

Each atom Xi ∈ {−1,+1}, whose value is the direction of the atom spin

If a spin at position i is +1, what is the probability that the spin at position
j is also +1?

Are there phase transitions where spins go from “disorder” to “order”?
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Example: Ising model

Each atom Xi ∈ {−1,+1}, whose value is the direction of the atom spin

The spin of an atom is biased by the spins of atoms nearby on the material:

=  +1

=  -1

p(x1, · · · , xn) =
1

Z
exp

(∑
i<j

wi,jxixj −
∑
i

uixi
)

When wi,j > 0, nearby atoms encouraged to have the same spin (called
ferromagnetic), whereas wi,j < 0 encourages Xi 6= Xj

Node potentials exp(−uixi ) encode the bias of the individual atoms

Scaling the parameters makes the distribution more or less spiky
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Higher-order potentials

The examples so far have all been pairwise MRFs, involving only
node potentials φi (Xi ) and pairwise potentials φi ,j(Xi ,Xj)

Often we need higher-order potentials, e.g.

φ(x , y , z) = 1[x + y + z ≥ 1],

where X ,Y ,Z are binary, enforcing that at least one of the variables
takes the value 1

Although Markov networks are useful for understanding
independencies, they hide much of the distribution’s structure:

A

C

B

D

Does this have pairwise potentials, or one potential for all 4 variables?
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Factor graphs

G does not reveal the structure of the distribution: maximum cliques vs.
subsets of them

A factor graph is a bipartite undirected graph with variable nodes and factor
nodes. Edges are only between the variable nodes and the factor nodes

Each factor node is associated with a single potential, whose scope is the set
of variables that are neighbors in the factor graph

A

C

B

D

A

C

B

D

A

C

B

D

Markov network

Factor graphs

The distribution is same as the MRF – this is just a different data structure
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Example: Low-density parity-check codes

Error correcting codes for transmitting a message over a noisy channel
(invented by Galleger in the 1960’s, then re-discovered in 1996)

Y2Y1 Y3 Y4 Y5 Y6

fA fB fC

f1 f2 f3 f4 f5 f6

X2X1 X3 X4 X5 X6

Each of the top row factors enforce that its variables have even parity:

fA(Y1,Y2,Y3,Y4) = 1 if Y1 ⊗ Y2 ⊗ Y3 ⊗ Y4 = 0, and 0 otherwise

Thus, the only assignments Y with non-zero probability are the following
(called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111

fi (Yi ,Xi ) = p(Xi | Yi ), the likelihood of a bit flip according to noise model
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Example: Low-density parity-check codes

Y2Y1 Y3 Y4 Y5 Y6

fA fB fC

f1 f2 f3 f4 f5 f6

X2X1 X3 X4 X5 X6

The decoding problem for LDPCs is to find

argmaxyp(y | x)

This is called the maximum a posteriori (MAP) assignment

Since Z and p(x) are constants with respect to the choice of y, can
equivalently solve (taking the log of p(y, x)):

argmaxy

∑
c∈C

θc(xc),

where θc(xc) = log φc(xc)

This is a discrete optimization problem!
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Converting BNs to Markov networks

What is the equivalent Markov network for a hidden Markov model?

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Many inference algorithms are more conveniently given for undirected
models – this shows how they can be applied to Bayesian networks
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Moralization of Bayesian networks

Procedure for converting a Bayesian network into a Markov network

The moral graph M[G ] of a BN G = (V ,E ) is an undirected graph over V
that contains an undirected edge between Xi and Xj if

1 there is a directed edge between them (in either direction)
2 Xi and Xj are both parents of the same node

A

C

B

D

A

C

B

D

Moralization

(term historically arose from the idea of “marrying the parents” of the node)

The addition of the moralizing edges leads to the loss of some independence
information, e.g., A→ C ← B, where A ⊥ B is lost
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Converting BNs to Markov networks

1 Moralize the directed graph to obtain the undirected graphical model:

A

C

B

D

A

C

B

D

Moralization

2 Introduce one potential function for each CPD:

φi (xi , xpa(i)) = p(xi | xpa(i))

So, converting a hidden Markov model to a Markov network is simple:

For variables having > 1 parent, factor graph notation is useful
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Factorization implies conditional independencies

p(x) is a Gibbs distribution over G if it can be written as

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc),

where the variables in each potential c ∈ C form a clique in G

Recall that conditional independence is given by graph separation:

XA

XB

XC

Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G , then G is an I-map for p(x), i.e. I (G ) ⊆ I (p)
Proof: Suppose B separates A from C. Then we can write

p(XA,XB,XC) =
1

Z
f (XA,XB)g(XB,XC).
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Conditional independencies implies factorization

Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G , then G is an I-map for p(x), i.e. I (G ) ⊆ I (p)

What about the converse? We need one more assumption:

A distribution is positive if p(x) > 0 for all x

Theorem (Hammersley-Clifford, 1971): If p(x) is a positive
distribution and G is an I-map for p(x), then p(x) is a Gibbs
distribution that factorizes over G

Proof is in Koller & Friedman book (as is counter-example for when
p(x) is not positive)

This is important for learning:

Prior knowledge is often in the form of conditional independencies (i.e.,
a graph structure G )
Hammersley-Clifford tells us that it suffices to search over Gibbs
distributions for G – allows us to parameterize the distribution
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Today’s lecture

Markov random fields
1 Factor graphs
2 Bayesian networks ⇒ Markov random fields (moralization)
3 Hammersley-Clifford theorem (conditional independence ⇒ joint

distribution factorization)

Conditional models
3 Discriminative versus generative classifiers
4 Conditional random fields
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Conditional models

There is often significant flexibility in choosing the structure and
parameterization of a graphical model

Y

X

Generative

Y

X

Discriminative

It is important to understand the trade-offs

In the next few slides, we will study this question in the context of
e-mail classification
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From lecture 1... naive Bayes for single label prediction

Classify e-mails as spam (Y = 1) or not spam (Y = 0)
Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Words are conditionally independent given Y :

Y

X1 X2 X3 Xn. . .

Features

Label

Prediction given by:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

David Sontag (NYU) Inference and Representation Lecture 2, September 9, 2014 28 / 37



Discriminative versus generative models

Recall that these are equivalent models of p(Y ,X):

Y

X

Generative

Y

X

Discriminative

However, suppose all we need for prediction is p(Y | X)

In the left model, we need to estimate both p(Y ) and p(X | Y )

In the right model, it suffices to estimate just the conditional
distribution p(Y | X)

We never need to estimate p(X)!
Would need p(X) if X is only partially observed
Called a discriminative model because it is only useful for
discriminating Y ’s label
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Discriminative versus generative models

Let’s go a bit deeper to understand what are the trade-offs inherent in
each approach

Since X is a random vector, for Y → X to be equivalent to X→ Y ,
we must have:

Generative Discriminative

Y

X1 X2 X3 Xn. . .
Y

X1 X2 X3 Xn. . .

We must make the following choices:

1 In the generative model, how do we parameterize p(Xi | Xpa(i),Y )?
2 In the discriminative model, how do we parameterize p(Y | X)?
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Discriminative versus generative models

We must make the following choices:

1 In the generative model, how do we parameterize p(Xi | Xpa(i),Y )?
2 In the discriminative model, how do we parameterize p(Y | X)?

Generative Discriminative

Y

X1 X2 X3 Xn. . .
Y

X1 X2 X3 Xn. . .

1 For the generative model, assume that Xi ⊥ X−i | Y (naive Bayes)
2 For the discriminative model, assume that

Logis:c&Func:on&in&n&Dimensions&

-2 0 2 4 6-4-2 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1x1x2

Sigmoid applied to a linear function of the data: 

Features can be discrete or continuous! 

Discriminative versus generative models

We must make the following choices:

1 In the generative model, how do we parameterize p(Xi | Xpa(i), Y )?

2 In the discriminative model, how do we parameterize p(Y | X)?

Generative Discriminative

Y

X1 X2 X3 Xn. . .
Y

X1 X2 X3 Xn. . .

1 For the generative model, assume that Xi ? X�i | Y (naive Bayes)
2 For the discriminative model, assume that

p(Y = 1 | x;↵) =
1

1 + e�↵0�
Pn

i=1 ↵i xi

This is called logistic regression. (To simplify the story, we assume Xi 2 {0, 1})
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Naive Bayes

1 For the generative model, assume that Xi ⊥ X−i | Y (naive Bayes)

Y

X1 X2 X3 Xn. . .

Y

X1 X2 X3 Xn. . .
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Logistic regression

2 For the discriminative model, assume that

p(Y = 1 | x;α) =
eα0+

∑n
i=1 αixi

1 + eα0+
∑n

i=1 αixi
=

1

1 + e−α0−
∑n

i=1 αixi

Let z(α, x) = α0 +
∑n

i=1 αixi .Then, p(Y = 1 | x;α) = f (z(α, x)), where
f (z) = 1/(1 + e−z) is called the logistic function:

Y

X1 X2 X3 Xn. . .
Same

graphical model

   z

1

1 + e−z
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Discriminative versus generative models

1 For the generative model, assume that Xi ⊥ X−i | Y (naive Bayes)

2 For the discriminative model, assume that

p(Y = 1 | x;α) =
eα0+

∑n
i=1 αixi

1 + eα0+
∑n

i=1 αixi
=

1

1 + e−α0−
∑n

i=1 αixi

Last semester, in problem set 6, you showed assumption 1⇒
assumption 2

Thus, every conditional distribution that can be represented using
naive Bayes can also be represented using the logistic model

What can we conclude from this?

With a large amount of training data, logistic regression
will perform at least as well as naive Bayes!
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Conditional random fields (CRFs)

Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

Y is a set of target variables
X is a set of observed variables

We typically show the graphical model using just the Y variables

Potentials are a function of X and Y
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Formal definition

A CRF is a Markov network on variables X ∪ Y, which specifies the
conditional distribution

P(y | x) =
1

Z (x)

∏
c∈C

φc(xc , yc)

with partition function

Z (x) =
∑

ŷ

∏
c∈C

φc(xc , ŷc).

As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

The only difference with a standard Markov network is the normalization
term – before marginalized over X and Y, now only over Y
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CRFs in computer vision

Undirected graphical models very popular in applications such as computer
vision: segmentation, stereo, de-noising

Grids are particularly popular, e.g., pixels in an image with 4-connectivity

output: disparity!input: two images!

Not encoding p(X) is the main strength of this technique, e.g., if X is the
image, then we would need to encode the distribution of natural images!

Can encode a rich set of features, without worrying about their distribution
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