Inference and Representation

David Sontag

New York University

Lecture 3, Sept. 15, 2014

How to acquire a model?

- Possible things to do:
 - Use expert knowledge to determine the graph and the potentials.
 - Use learning to determine the potentials, i.e., parameter learning.
 - Use learning to determine the graph, i.e., structure learning.
- Manual design is difficult to do and can take a long time for an expert.
- We usually have access to a set of examples from the distribution we wish to model, e.g., a set of images segmented by a labeler.

More rigorous definition

- Lets assume that the domain is governed by some underlying distribution p^* , which is induced by some network model $\mathcal{M}^* = (\mathcal{G}^*, \theta^*)$
- We are given a dataset \mathcal{D} of M samples from p^*
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M} , and our task is to learn some model $\hat{\mathcal{M}} \in \mathcal{M}$ (i.e., in this family) that defines a distribution $p_{\hat{\mathcal{M}}}$
- We can learn model parameters for a fixed structure, or both the structure and model parameters

Goal of learning

- The goal of learning is to return a model $\hat{\mathcal{M}}$ that precisely captures the distribution p^* from which our data was sampled
- This is in general not achievable because of
 - computational reasons
 - limited data only provides a rough approximation of the true underlying distribution
- ullet We need to select $\hat{\mathcal{M}}$ to construct the "best" approximation to \mathcal{M}^*
- What is "best"?

What is "best"?

This depends on what we want to do

- Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
- Specific prediction tasks: we are using the distribution to make a prediction
- Structure or knowledge discovery: we are interested in the model itself (often of interest in data science)

1) Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- ullet We want to construct $\hat{\mathcal{M}}$ as "close" as possible to p^*
- How do we evaluate "closeness"?
- KL-divergence (in particular, the M-projection) is one possibility:

$$\mathbf{D}(p^*||p_{ heta}) = \mathbf{E}_{\mathbf{x} \sim p^*} \left[\log \left(rac{p^*(\mathbf{x})}{p_{ heta}(\mathbf{x})}
ight)
ight]$$

Expected log-likelihood

• We can simplify this somewhat:

$$\mathsf{D}(p^*||p_\theta) = \mathsf{E}_{\mathsf{x} \sim p^*} \left[\log \left(\frac{p^*(\mathsf{x})}{p_\theta(\mathsf{x})} \right) \right] = -\mathsf{H}(p^*) - \mathsf{E}_{\mathsf{x} \sim p^*} \left[\log p_\theta(\mathsf{x}) \right]$$

- The first term does not depend on θ .
- Then, finding the minimal M-projection is equivalent to maximizing the expected log-likelihood

$$\mathsf{E}_{\mathsf{x} \sim p^*} \left[\log p_{\theta}(\mathsf{x}) \right]$$

- Asks that p_{θ} assign high probability to instances sampled from p^* , so as to reflect the true distribution
- Because of log, samples **x** where $p_{\theta}(\mathbf{x}) \approx 0$ weigh heavily in objective
- Although we can now compare models, since we are not computing $\mathbf{H}(p^*)$, we don't know how close we are to the optimum
- Problem: In general we do not know p^* .

Maximum likelihood

Approximate the expected log-likelihood

$$\mathbf{E}_{\mathbf{x} \sim p^*} \left[\log p_{\theta}(\mathbf{x}) \right]$$

with the empirical log-likelihood:

$$\mathsf{E}_{\mathcal{D}}\left[\log p_{ heta}(\mathsf{x})
ight] = rac{1}{|\mathcal{D}|} \sum_{\mathsf{x} \in \mathcal{D}} \log p_{ heta}(\mathsf{x})$$

• Maximum likelihood learning is then:

$$\max_{\theta} \ \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log p_{\theta}(\mathbf{x})$$

2) Likelihood, Loss and Risk

- We now generalize this by introducing the concept of a loss function
- A loss function $loss(\mathbf{x},\mathcal{M})$ measures the loss that a model \mathcal{M} makes on a particular instance \mathbf{x}
- Assuming instances are sampled from some distribution p^* , our goal is to find the model that minimizes the **expected loss** or **risk**,

$$\mathsf{E}_{\mathsf{x} \sim p^*} \left[loss(\mathsf{x}, \mathcal{M}) \right]$$

What is the loss function which corresponds to density estimation? Log-loss,

$$loss(\mathbf{x}, \hat{\mathcal{M}}) = -\log p_{ heta}(\mathbf{x}) = \log rac{1}{p_{ heta}(\mathbf{x})}.$$

• p^* is unknown, but we can approximate the expectation using the empirical average, i.e., **empirical risk**

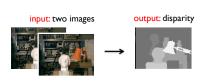
$$\mathbf{E}_{\mathcal{D}}\left[\mathit{loss}(\mathbf{x},\hat{\mathcal{M}})
ight] = rac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \mathit{loss}(\mathbf{x},\hat{\mathcal{M}})$$

Example: conditional log-likelihood

- Suppose we want to predict a set of variables Y given some others X,
 e.g., for segmentation or stereo vision
- We concentrate on predicting p(Y|X), and use a **conditional** loss function

$$loss(\mathbf{x}, \mathbf{y}, \hat{\mathcal{M}}) = -\log p_{\theta}(\mathbf{y} \mid \mathbf{x}).$$

- Since the loss function only depends on $p_{\theta}(\mathbf{y} \mid \mathbf{x})$, suffices to estimate the conditional distribution, not the joint
- This is the objective function we use to train conditional random fields (CRFs), which we discussed in Lecture 2



How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive hypothesis class:
 - Bayesian networks with at most d parents
 - Pairwise MRFs (instead of arbitrary higher-order potentials)
- Soft preference for simpler models: Occam's Razor.
- Augment the learning objective function with regularization:

$$objective(\mathbf{x}, \mathcal{M}) = loss(\mathbf{x}, \mathcal{M}) + R(\mathcal{M})$$

(often equivalent to MAP estimation where we put a prior over parameters θ and maximize $\log p(\theta \mid \mathbf{x}) = \log p(\mathbf{x}; \theta) + \log p(\theta) - \mathrm{constant})$

• Can evaluate generalization performance using cross-validation

Summary of how to think about learning

Figure out what you care about, e.g. expected loss

$$\textbf{E}_{\textbf{x} \sim P^*} \left[\textit{loss}(\textbf{x}, \hat{\mathcal{M}}) \right]$$

Figure out how best to estimate this from what you have, e.g. regularized empirical loss

$$\boldsymbol{\mathsf{E}}_{\mathcal{D}}\left[\mathit{loss}(\boldsymbol{\mathsf{x}},\hat{\mathcal{M}})\right] + \mathit{R}(\hat{\mathcal{M}})$$

When used with log-loss, the regularization term can be interpreted as a prior distribution over models, $p(\hat{\mathcal{M}}) \propto \exp(-R(\hat{\mathcal{M}}))$ (called *maximum a posteriori (MAP) estimation*)

 Figure out how to optimize over this objective function, e.g. the minimization

$$\min_{\hat{\mathcal{M}}} \ \mathbf{E}_{\mathcal{D}} \left[loss(\mathbf{x}, \hat{\mathcal{M}}) \right] + R(\hat{\mathcal{M}})$$

ML estimation in Bayesian networks

- Suppose that we know the Bayesian network structure G
- Let $\theta_{x_i | \mathbf{x}_{pa(i)}}$ be the parameter giving the value of the CPD $p(x_i | \mathbf{x}_{pa(i)}; \theta)$
- Maximum likelihood estimation corresponds to solving:

$$\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}^{n}; \theta) = \max_{\theta} \ell(\theta; \mathcal{D})$$

subject to the non-negativity and normalization constraints

• This is equal to:

$$\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}^{n}; \theta) = \max_{\theta} \sum_{n=1}^{N} \sum_{i=1}^{|V|} \log p(x_{i}^{n} \mid \mathbf{x}_{pa(i)}^{n}; \theta)$$
$$= \max_{\theta} \sum_{i=1}^{|V|} \sum_{n=1}^{N} \log p(x_{i}^{n} \mid \mathbf{x}_{pa(i)}^{n}; \theta)$$

 The optimization problem decomposes into an independent optimization problem for each CPD!

ML estimation in Bayesian networks

$$\ell(\theta; \mathcal{D}) = \log p(\mathcal{D}; \theta) = \sum_{i=1}^{|V|} \sum_{n=1}^{N} \log p(\mathbf{x}_{i}^{n} \mid \mathbf{x}_{pa(i)}^{n}; \theta)$$

$$= \sum_{i=1}^{|V|} \sum_{\mathbf{x}_{pa(i)}} \sum_{\mathbf{x}_{i}} \sum_{\substack{\hat{\mathbf{x}} \in \mathcal{D}: \\ \hat{\mathbf{x}}_{i}, \hat{\mathbf{x}}_{pa(i)} = \mathbf{x}_{i}, \mathbf{x}_{pa(i)}}} \log p(\mathbf{x}_{i} \mid \mathbf{x}_{pa(i)}; \theta)$$

$$= \sum_{i=1}^{|V|} \sum_{\mathbf{x}_{pa(i)}} \sum_{\mathbf{x}_{i}} N_{\mathbf{x}_{i}, \mathbf{x}_{pa(i)}} \log \theta_{\mathbf{x}_{i} \mid \mathbf{x}_{pa(i)}},$$

where $N_{x_i, \mathbf{x}_{pa(i)}}$ is the number of times that the (partial) assignment $x_i, \mathbf{x}_{pa(i)}$ is observed in the training data

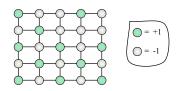
• We have the closed form ML solution:

$$\theta_{\mathsf{x}_i|\mathbf{x}_{\mathsf{pa}(i)}}^{\mathsf{ML}} = \frac{\mathsf{N}_{\mathsf{x}_i,\mathbf{x}_{\mathsf{pa}(i)}}}{\sum_{\hat{\mathbf{x}}_i} \mathsf{N}_{\hat{\mathbf{x}}_i,\mathbf{x}_{\mathsf{pa}(i)}}}$$

 We were able to estimate each CPD independently because the objective decomposes by variable and parent assignment

ML estimation in Markov networks

• How do we learn the parameters of an Ising model?



$$p(x_1, \dots, x_n) = \frac{1}{Z} \exp \left(\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i \right)$$

Bad news for Markov networks

• The global normalization constant $Z(\theta)$ kills decomposability:

$$\begin{split} \theta^{ML} &= & \arg\max_{\theta} \ \log\prod_{\mathbf{x}\in\mathcal{D}} p(\mathbf{x};\theta) \\ &= & \arg\max_{\theta} \sum_{\mathbf{x}\in\mathcal{D}} \left(\sum_{c} \log\phi_{c}(\mathbf{x}_{c};\theta) - \log Z(\theta)\right) \\ &= & \arg\max_{\theta} \left(\sum_{\mathbf{x}\in\mathcal{D}} \sum_{c} \log\phi_{c}(\mathbf{x}_{c};\theta)\right) - |\mathcal{D}| \log Z(\theta) \end{split}$$

- The log-partition function prevents us from decomposing the objective into a sum over terms for each potential
- Solving for the parameters becomes much more complicated

3) Knowledge Discovery

- We hope that looking at the learned model we can discover something about p^* , e.g.
 - Nature of the dependencies, e.g., positive or negative correlation
 - What are the direct and indirect dependencies
- Simple statistical models (e.g., looking at correlations) can be used for the first
- But the learned network gives us much more information, e.g. conditional independencies, causal relationships
- In this setting we care about discovering the correct model \mathcal{M}^* , rather than a different model $\hat{\mathcal{M}}$ that induces a distribution similar to \mathcal{M}^* .
- Metric is in terms of the differences between \mathcal{M}^* and $\hat{\mathcal{M}}$.

This is not always achievable

- The true model might not be identifiable
 - e.g., Bayesian network with several I-equivalent structures.
 - In this case the best we can hope is to discover an I-equivalent structure.
 - Problem is worse when the amount of data is limited and the relationships are weak.

Structure learning using maximum likelihood

Recall that for Bayesian networks we have decomposability of the likelihood:

$$\log p(\mathcal{D}; \theta) = \sum_{i=1}^{|V|} \sum_{\mathbf{x}_{pa(i)}} \sum_{\mathbf{x}_i} N_{x_i, \mathbf{x}_{pa(i)}} \log p(x_i \mid \mathbf{x}_{pa(i)}; \theta)$$

- Given a candidate structure G = (V, E), the maximum likelihood parameters are given by: $\theta_{x_i \mid \mathbf{x}_{pa(i)}}^{ML} = \frac{N_{x_i, \mathbf{x}_{pa(i)}}}{\sum_{v} N_{\hat{x}_i, \mathbf{x}_{pa(i)}}} = \hat{p}(x_i \mid \mathbf{x}_{pa(i)})$
- Putting these together, maximum likelihood structure learning reduces to:

$$\begin{aligned} \max_{G} \sum_{i=1}^{|V|} \operatorname{score}(i \mid pa_{i}, \mathcal{D}), & \text{where} \\ \operatorname{score}(i \mid pa_{i}, \mathcal{D}) &= \sum_{\mathbf{x}_{pa(i)}} \sum_{\mathbf{x}_{i}} N_{\mathbf{x}_{i}, \mathbf{x}_{pa(i)}} \log p(\mathbf{x}_{i} \mid \mathbf{x}_{pa(i)}; \theta_{\mathbf{x}_{i}}^{ML} | \mathbf{x}_{pa(i)}) \\ &= N \sum_{\mathbf{x}_{i}} \frac{N_{\mathbf{x}_{pa(i)}}}{N} \sum_{\mathbf{x}_{i}} \frac{N_{\mathbf{x}_{i}, \mathbf{x}_{pa(i)}}}{N_{\mathbf{x}_{na(i)}}} \log \hat{p}(\mathbf{x}_{i} \mid \mathbf{x}_{pa(i)}) \end{aligned}$$

Structure learning using maximum likelihood

• Simplifying further, we get:

$$score(i \mid pa_{i}, \mathcal{D}) = N \sum_{\mathbf{x}_{pa(i)}} \frac{N_{\mathbf{x}_{pa(i)}}}{N} \sum_{\mathbf{x}_{i}} \frac{N_{\mathbf{x}_{i}, \mathbf{x}_{pa(i)}}}{N_{\mathbf{x}_{pa(i)}}} \log \hat{p}(x_{i} \mid \mathbf{x}_{pa(i)})$$

$$= N \sum_{\mathbf{x}_{pa(i)}} \hat{p}(\mathbf{x}_{pa(i)}) \sum_{\mathbf{x}_{i}} \hat{p}(x_{i} \mid \mathbf{x}_{pa(i)}) \log \hat{p}(x_{i} \mid \mathbf{x}_{pa(i)})$$

$$= -N \sum_{\mathbf{x}_{pa(i)}} \hat{p}(\mathbf{x}_{pa(i)}) \sum_{\mathbf{x}_{i}} \hat{p}(x_{i} \mid \mathbf{x}_{pa(i)}) \log \frac{1}{\hat{p}(x_{i} \mid \mathbf{x}_{pa(i)})}$$

$$= -N \cdot \hat{H}(X_{i} \mid X_{pa(i)}).$$

• We see that the maximum likelihood structure problem is equivalent to

$$\min_{G} \sum_{i=1}^{N} \hat{H}(X_i \mid X_{pa(i)}),$$

i.e. choose a graph structure which minimizes the entropy of each individual variable.

Structure learning: score-based approaches

- Q: What is the maximum likelihood graph?
 - A: The complete graph! Because $H(X \mid Y) \leq H(X)$ always.
 - Must regularize to recover a sparse graph and have any hope of recoverying true structure (called consistency)
 - Common approaches such as BIC and BDe (Bayesian Dirichlet score) are also decomposable
- Obtain a combinatorial optimization problem over acyclic graphs:

$$\mathrm{score}(G;D) = \sum_{i=1}^{n} \mathrm{score}(i|pa_i,D)$$

$$\mathrm{score}(\bigcap_{i=1}^{n} pa_i) + pa_i$$

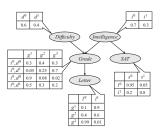
$$\mathrm{score}(\bigcap_{i=1}^{n} pa_i) + pa_i$$

$$\mathrm{NP-hard-must\ disallow\ cycles:}$$

$$\mathrm{score}(\bigcap_{i=1}^{n} pa_i) + pa_i$$

$$\mathrm{score}(\bigcap_{i=1}^{n} pa_i) + pa_i$$

Independence tests



The network structure implies several conditional independence statements:

$$D \perp I$$

$$G \perp S \mid I$$

$$D \perp L \mid G$$

$$L \perp S \mid G$$

If two variables are (conditionally) independent, structure has no edge between them

$$L \perp S \mid I$$
$$D \perp S$$

- Must make assumption that data is drawn from an I-map of the graph
- Possible to learn structure with polynomial number of data points and polynomial computation time (e.g., the SGS algorithm from Spirtes, Glymour, & Scheines '01)
- Very brittle: if we say that $X_i \perp X_j | X_v$ and they in fact are not, the resulting structure can be very off