Inference and Representation

David Sontag

New York University

Lecture 5, Sept. 30, 2014

David Sontag (NYU)

Inference and Representation

Lecture 5, Sept. 30, 2014

1/

16

Today's lecture

@ Running-time of variable elimination

e Elimination as graph transformation
o Fill edges, width, treewidth

@ Sum-product belief propagation (BP)
Done on blackboard

© Max-product belief propagation
@ Loopy belief propagation

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 2 /16

Running time of VE in graph-theoretic concepts

@ Let's try to analyze the complexity in terms of the graph structure

@ Go is the undirected graph with one node per variable, where there is an
edge (Xj, X;) if these appear together in the scope of some factor ¢

@ lIgnoring evidence, this is either the original MRF (for sum-product VE on
MRFs) or the moralized Bayesian network:

Coherence

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 3/16

Elimination as graph transformation

When a variable X is eliminated,

@ We create a single factor ¢ that contains X and all of the variables Y with
which it appears in factors

@ We eliminate X from 1, replacing it with a new factor 7 that contains all of
the variables Y, but not X. Let’s call the new set of factors ®x

How does this modify the graph, going from G¢ to G, 7
@ Constructing 1) generates edges between all of the variables Y € Y
@ Some of these edges were already in G, some are new
@ The new edges are called fill edges

@ The step of removing X from & to construct ®x removes X and all its
incident edges from the graph

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 4 /16

Induced graph

@ We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination

@ We call this the induced graph Zs -, where < is the elimination ordering

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 5/ 16

Chordal Graphs

Graph is chordal, or triangulated, if every cycle of length > 3 has a shortcut
(called a “chord™)

Theorem: Every induced graph is chordal
Proof: (by contradiction)

@ Assume we have a chordless cycle X; — X5 — X3 — X3 — X in the induced
graph

@ Suppose Xj was the first variable that we eliminated (of these 4)

@ After a node is eliminated, no fill edges can be added to it. Thus, X; — X5
and X; — X; must have pre-existed

@ Eliminating X; introduces the edge X, — X,, contradicting our assumption

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 6 /16

Chordal graphs

@ Thm: Every induced graph is chordal

@ Thm: Any chordal graph has an elimination ordering that does not
introduce any fill edges

Algorithm 9.3 Maximum Cardinality Algorithm for constructing an elimination
ordering

Procedure Max-Cardinality (
‘H // An undirected graph over X'

)
1 Initialize all nodes in A" as unmarked
2 for k=[X]...1
3 X — unmarked variable in X with largest number of marked neighbors
1 mX)— k
5 Mark X

6 return =

(The elimination ordering is REVERSE)

@ Conclusion: Finding a good elimination ordering is equivalent to making
graph chordal with minimal width

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 7/

Today's lecture

@ Running-time of variable elimination

e Elimination as graph transformation
o Fill edges, width, treewidth

@ Sum-product belief propagation (BP)
Done on blackboard

© Max-product belief propagation
@ Loopy belief propagation

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 8 /16

MAP i ce

@ Recall the MAP inference task,
1
argmaxp(x), p(x) = 5 [] delxe)
ceC

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

@ Since the normalization term is simply a constant, this is equivalent to
arg max H dc(xc)
ceC
(called the max-product inference task)

@ Furthermore, since log is monotonic, letting .(xc) = Ig ¢c(xc), we have that
this is equivalent to

arg max Z 0c(xc)

ceC

(called max-sum)

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 9 /16

@ Compare the sum-product problem with the max-product (equivalently,
max-sum in log space):

sum-product Z H be(xc)

x ceC

max-sum max Z 0c(xc)
* ceC

@ Can exchange operators (+,) for (max, +) and, because both are semirings
satisfying associativity and commutativity, everything works!

@ We get “max-product variable elimination” and “max-product belief
propagation”

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 10 / 16

Simple example

@ Suppose we have a simple chain, A— B — C — D, and we want to find
the MAP assignment,
max ¢ag(a, b)psc(b, c)pcp(c, d)

,D,C,

@ Just as we did before, we can push the maximizations inside to obtain:

max oag(a, b)max ppc(b, c) max ocp(c, d)
a, c

or, equivalently,

max 0ag(a, b) + maxfOgc(b, c) + max Ocp(c, d)
a, c

[/llustrate factor max-marginalization on board.]
e To find the actual maximizing assignment, we do a traceback (or keep

back pointers)

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 11 /16

Max-product variable elimination

Procedure Max-Product-VE (
®, /I Set of factors over X
< Il Ordering on X

)
1 Let Xi,..., X\ be an ordering of X such that
2 Xi=X; i<y
3 fori=1,....k
4 (®, ¢x,) < Max-Product-Eliminate-Var(®, X;)
5 x* Traceback-MAP({¢x, : i=1,...,k})
6 return *,® // ® contains the probability of the MAP
Procedure Max-Product-Eliminate-Var (
P, /I Set of factors
Z Il Variable to be eliminated
)
1 '« {pec® : Zc Scope[¢]}
2 D -
3 P~ Héed”]
4 T ¢ maxz Y
5 return (®” U {7}, v)
Procedure Traceback-MAP (
{ox, : i=1,....k}
)
1 fori=k,...,1
2 i (@) (Scopelo,] — (X))
3 1l The maximizing assignment to the variables eliminated after
Xi
4 ¢ argmax,, ¢x, (i, u;)
5 /I @} is chosen so as to maximize the corresponding entry in
the factor, relative to the previous choices u;
6 return z*

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 12

Max-product belief propagation (for tree-structured MRFs)

@ Same as sum-product BP except that the messages are now:

mj—H(Xl) = maX¢J(XJ ¢u XI7X_] H mk—>J X_/
keN()\i

o After passing all messages, can compute single node max-marginals,

mi(x;) = ¢i(x;) H mj_i(xi) x Taxp(xv\,,x,)
JEN() v

o If the MAP assignment x* is unique, can find it by locally decoding
each of the single node max-marginals, i.e.

x; = arg max mj(x;)
X

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 13 / 16

Max-sum belief propagation (for tree-structured MRFs)

@ Same as sum-product BP except that the messages are now:

mji(xi) = max9 i(x5) + 03 (xi, x;) Z Mi—j(X})
KENG\i

o After passing all messages, can compute single node max-marginals,

mi(xi) = 0i(x) + > mji(xi) = Tvzixlog p(xw\i, xi) + C
JEN() ’

o If the MAP assignment x* is unique, can find it by locally decoding
each of the single node max-marginals, i.e.

x; = arg max m;(x;)
Xj

e Working in log-space prevents numerical underflow /overflow

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 14 / 16

Implementing sum-product in log-space

@ Recall the sum-product messages:

mj—i(x;) E :¢J (X)) b3 (xi, x7) H My (X;)

keNG)\i

@ Making the messages in log-space corresponds to the update:

mji(xi) = log Y exp(8;(x) + (%,) + D> misj(x))
Xj kEN()\i

IogZexp (xi,x7))
where T (x;, xj) = 0;(x;) + 9U(Xf7><j) + D kengni Me—i (%)
@ Letting ¢, = max,, T(x;,X;), this is equivalent to

=G+ IogZexp(T(Xi,Xj) — Cx)s

Xj

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 15 /

Exactly solving MAP, beyond trees

@ MAP as a discrete optimization problem is

arg mfxz 0:(x;) + Z 0ij(xi, x;)

iev iicE

@ Very general discrete optimization problem — many hard combinatorial
optimization problems can be written as this (e.g., 3-SAT)

@ Studied in operations research communities, theoretical computer science, Al
(constraint satisfaction, weighted SAT), etc.

@ Very fast moving field, both for theory and heuristics

David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 16 / 16

